000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** This file contains routines used for analyzing expressions and
000013  ** for generating VDBE code that evaluates expressions in SQLite.
000014  */
000015  #include "sqliteInt.h"
000016  
000017  /* Forward declarations */
000018  static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
000019  static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
000020  
000021  /*
000022  ** Return the affinity character for a single column of a table.
000023  */
000024  char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
000025    if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
000026    return pTab->aCol[iCol].affinity;
000027  }
000028  
000029  /*
000030  ** Return the 'affinity' of the expression pExpr if any.
000031  **
000032  ** If pExpr is a column, a reference to a column via an 'AS' alias,
000033  ** or a sub-select with a column as the return value, then the
000034  ** affinity of that column is returned. Otherwise, 0x00 is returned,
000035  ** indicating no affinity for the expression.
000036  **
000037  ** i.e. the WHERE clause expressions in the following statements all
000038  ** have an affinity:
000039  **
000040  ** CREATE TABLE t1(a);
000041  ** SELECT * FROM t1 WHERE a;
000042  ** SELECT a AS b FROM t1 WHERE b;
000043  ** SELECT * FROM t1 WHERE (select a from t1);
000044  */
000045  char sqlite3ExprAffinity(const Expr *pExpr){
000046    int op;
000047    op = pExpr->op;
000048    while( 1 /* exit-by-break */ ){
000049      if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
000050        assert( ExprUseYTab(pExpr) );
000051        assert( pExpr->y.pTab!=0 );
000052        return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
000053      }
000054      if( op==TK_SELECT ){
000055        assert( ExprUseXSelect(pExpr) );
000056        assert( pExpr->x.pSelect!=0 );
000057        assert( pExpr->x.pSelect->pEList!=0 );
000058        assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
000059        return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
000060      }
000061  #ifndef SQLITE_OMIT_CAST
000062      if( op==TK_CAST ){
000063        assert( !ExprHasProperty(pExpr, EP_IntValue) );
000064        return sqlite3AffinityType(pExpr->u.zToken, 0);
000065      }
000066  #endif
000067      if( op==TK_SELECT_COLUMN ){
000068        assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
000069        assert( pExpr->iColumn < pExpr->iTable );
000070        assert( pExpr->iColumn >= 0 );
000071        assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
000072        return sqlite3ExprAffinity(
000073            pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
000074        );
000075      }
000076      if( op==TK_VECTOR ){
000077        assert( ExprUseXList(pExpr) );
000078        return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
000079      }
000080      if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
000081        assert( pExpr->op==TK_COLLATE
000082             || pExpr->op==TK_IF_NULL_ROW
000083             || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
000084        pExpr = pExpr->pLeft;
000085        op = pExpr->op;
000086        continue;
000087      }
000088      if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break;
000089    }
000090    return pExpr->affExpr;
000091  }
000092  
000093  /*
000094  ** Make a guess at all the possible datatypes of the result that could
000095  ** be returned by an expression.  Return a bitmask indicating the answer:
000096  **
000097  **     0x01         Numeric
000098  **     0x02         Text
000099  **     0x04         Blob
000100  **
000101  ** If the expression must return NULL, then 0x00 is returned.
000102  */
000103  int sqlite3ExprDataType(const Expr *pExpr){
000104    while( pExpr ){
000105      switch( pExpr->op ){
000106        case TK_COLLATE:
000107        case TK_IF_NULL_ROW:
000108        case TK_UPLUS:  {
000109          pExpr = pExpr->pLeft;
000110          break;
000111        }
000112        case TK_NULL: {
000113          pExpr = 0;
000114          break;
000115        }
000116        case TK_STRING: {
000117          return 0x02;
000118        }
000119        case TK_BLOB: {
000120          return 0x04;
000121        }
000122        case TK_CONCAT: {
000123          return 0x06;
000124        }
000125        case TK_VARIABLE:
000126        case TK_AGG_FUNCTION:
000127        case TK_FUNCTION: {
000128          return 0x07;
000129        }
000130        case TK_COLUMN:
000131        case TK_AGG_COLUMN:
000132        case TK_SELECT:
000133        case TK_CAST:
000134        case TK_SELECT_COLUMN:
000135        case TK_VECTOR:  {
000136          int aff = sqlite3ExprAffinity(pExpr);
000137          if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
000138          if( aff==SQLITE_AFF_TEXT )    return 0x06;
000139          return 0x07;
000140        }
000141        case TK_CASE: {
000142          int res = 0;
000143          int ii;
000144          ExprList *pList = pExpr->x.pList;
000145          assert( ExprUseXList(pExpr) && pList!=0 );
000146          assert( pList->nExpr > 0);
000147          for(ii=1; ii<pList->nExpr; ii+=2){
000148            res |= sqlite3ExprDataType(pList->a[ii].pExpr);
000149          }
000150          if( pList->nExpr % 2 ){
000151            res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
000152          }
000153          return res;
000154        }
000155        default: {
000156          return 0x01;
000157        }
000158      } /* End of switch(op) */
000159    } /* End of while(pExpr) */
000160    return 0x00;
000161  }
000162  
000163  /*
000164  ** Set the collating sequence for expression pExpr to be the collating
000165  ** sequence named by pToken.   Return a pointer to a new Expr node that
000166  ** implements the COLLATE operator.
000167  **
000168  ** If a memory allocation error occurs, that fact is recorded in pParse->db
000169  ** and the pExpr parameter is returned unchanged.
000170  */
000171  Expr *sqlite3ExprAddCollateToken(
000172    const Parse *pParse,     /* Parsing context */
000173    Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
000174    const Token *pCollName,  /* Name of collating sequence */
000175    int dequote              /* True to dequote pCollName */
000176  ){
000177    if( pCollName->n>0 ){
000178      Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
000179      if( pNew ){
000180        pNew->pLeft = pExpr;
000181        pNew->flags |= EP_Collate|EP_Skip;
000182        pExpr = pNew;
000183      }
000184    }
000185    return pExpr;
000186  }
000187  Expr *sqlite3ExprAddCollateString(
000188    const Parse *pParse,  /* Parsing context */
000189    Expr *pExpr,          /* Add the "COLLATE" clause to this expression */
000190    const char *zC        /* The collating sequence name */
000191  ){
000192    Token s;
000193    assert( zC!=0 );
000194    sqlite3TokenInit(&s, (char*)zC);
000195    return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
000196  }
000197  
000198  /*
000199  ** Skip over any TK_COLLATE operators.
000200  */
000201  Expr *sqlite3ExprSkipCollate(Expr *pExpr){
000202    while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
000203      assert( pExpr->op==TK_COLLATE );
000204      pExpr = pExpr->pLeft;
000205    }  
000206    return pExpr;
000207  }
000208  
000209  /*
000210  ** Skip over any TK_COLLATE operators and/or any unlikely()
000211  ** or likelihood() or likely() functions at the root of an
000212  ** expression.
000213  */
000214  Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
000215    while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
000216      if( ExprHasProperty(pExpr, EP_Unlikely) ){
000217        assert( ExprUseXList(pExpr) );
000218        assert( pExpr->x.pList->nExpr>0 );
000219        assert( pExpr->op==TK_FUNCTION );
000220        pExpr = pExpr->x.pList->a[0].pExpr;
000221      }else{
000222        assert( pExpr->op==TK_COLLATE );
000223        pExpr = pExpr->pLeft;
000224      }
000225    }  
000226    return pExpr;
000227  }
000228  
000229  /*
000230  ** Return the collation sequence for the expression pExpr. If
000231  ** there is no defined collating sequence, return NULL.
000232  **
000233  ** See also: sqlite3ExprNNCollSeq()
000234  **
000235  ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
000236  ** default collation if pExpr has no defined collation.
000237  **
000238  ** The collating sequence might be determined by a COLLATE operator
000239  ** or by the presence of a column with a defined collating sequence.
000240  ** COLLATE operators take first precedence.  Left operands take
000241  ** precedence over right operands.
000242  */
000243  CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
000244    sqlite3 *db = pParse->db;
000245    CollSeq *pColl = 0;
000246    const Expr *p = pExpr;
000247    while( p ){
000248      int op = p->op;
000249      if( op==TK_REGISTER ) op = p->op2;
000250      if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
000251       || op==TK_COLUMN || op==TK_TRIGGER
000252      ){
000253        int j;
000254        assert( ExprUseYTab(p) );
000255        assert( p->y.pTab!=0 );
000256        if( (j = p->iColumn)>=0 ){
000257          const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
000258          pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
000259        }
000260        break;
000261      }
000262      if( op==TK_CAST || op==TK_UPLUS ){
000263        p = p->pLeft;
000264        continue;
000265      }
000266      if( op==TK_VECTOR ){
000267        assert( ExprUseXList(p) );
000268        p = p->x.pList->a[0].pExpr;
000269        continue;
000270      }
000271      if( op==TK_COLLATE ){
000272        assert( !ExprHasProperty(p, EP_IntValue) );
000273        pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
000274        break;
000275      }
000276      if( p->flags & EP_Collate ){
000277        if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
000278          p = p->pLeft;
000279        }else{
000280          Expr *pNext  = p->pRight;
000281          /* The Expr.x union is never used at the same time as Expr.pRight */
000282          assert( !ExprUseXList(p) || p->x.pList==0 || p->pRight==0 );
000283          if( ExprUseXList(p) && p->x.pList!=0 && !db->mallocFailed ){
000284            int i;
000285            for(i=0; i<p->x.pList->nExpr; i++){
000286              if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
000287                pNext = p->x.pList->a[i].pExpr;
000288                break;
000289              }
000290            }
000291          }
000292          p = pNext;
000293        }
000294      }else{
000295        break;
000296      }
000297    }
000298    if( sqlite3CheckCollSeq(pParse, pColl) ){
000299      pColl = 0;
000300    }
000301    return pColl;
000302  }
000303  
000304  /*
000305  ** Return the collation sequence for the expression pExpr. If
000306  ** there is no defined collating sequence, return a pointer to the
000307  ** default collation sequence.
000308  **
000309  ** See also: sqlite3ExprCollSeq()
000310  **
000311  ** The sqlite3ExprCollSeq() routine works the same except that it
000312  ** returns NULL if there is no defined collation.
000313  */
000314  CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
000315    CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
000316    if( p==0 ) p = pParse->db->pDfltColl;
000317    assert( p!=0 );
000318    return p;
000319  }
000320  
000321  /*
000322  ** Return TRUE if the two expressions have equivalent collating sequences.
000323  */
000324  int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
000325    CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
000326    CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
000327    return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
000328  }
000329  
000330  /*
000331  ** pExpr is an operand of a comparison operator.  aff2 is the
000332  ** type affinity of the other operand.  This routine returns the
000333  ** type affinity that should be used for the comparison operator.
000334  */
000335  char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
000336    char aff1 = sqlite3ExprAffinity(pExpr);
000337    if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
000338      /* Both sides of the comparison are columns. If one has numeric
000339      ** affinity, use that. Otherwise use no affinity.
000340      */
000341      if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
000342        return SQLITE_AFF_NUMERIC;
000343      }else{
000344        return SQLITE_AFF_BLOB;
000345      }
000346    }else{
000347      /* One side is a column, the other is not. Use the columns affinity. */
000348      assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
000349      return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
000350    }
000351  }
000352  
000353  /*
000354  ** pExpr is a comparison operator.  Return the type affinity that should
000355  ** be applied to both operands prior to doing the comparison.
000356  */
000357  static char comparisonAffinity(const Expr *pExpr){
000358    char aff;
000359    assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
000360            pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
000361            pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
000362    assert( pExpr->pLeft );
000363    aff = sqlite3ExprAffinity(pExpr->pLeft);
000364    if( pExpr->pRight ){
000365      aff = sqlite3CompareAffinity(pExpr->pRight, aff);
000366    }else if( ExprUseXSelect(pExpr) ){
000367      aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
000368    }else if( aff==0 ){
000369      aff = SQLITE_AFF_BLOB;
000370    }
000371    return aff;
000372  }
000373  
000374  /*
000375  ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
000376  ** idx_affinity is the affinity of an indexed column. Return true
000377  ** if the index with affinity idx_affinity may be used to implement
000378  ** the comparison in pExpr.
000379  */
000380  int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
000381    char aff = comparisonAffinity(pExpr);
000382    if( aff<SQLITE_AFF_TEXT ){
000383      return 1;
000384    }
000385    if( aff==SQLITE_AFF_TEXT ){
000386      return idx_affinity==SQLITE_AFF_TEXT;
000387    }
000388    return sqlite3IsNumericAffinity(idx_affinity);
000389  }
000390  
000391  /*
000392  ** Return the P5 value that should be used for a binary comparison
000393  ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
000394  */
000395  static u8 binaryCompareP5(
000396    const Expr *pExpr1,   /* Left operand */
000397    const Expr *pExpr2,   /* Right operand */
000398    int jumpIfNull        /* Extra flags added to P5 */
000399  ){
000400    u8 aff = (char)sqlite3ExprAffinity(pExpr2);
000401    aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
000402    return aff;
000403  }
000404  
000405  /*
000406  ** Return a pointer to the collation sequence that should be used by
000407  ** a binary comparison operator comparing pLeft and pRight.
000408  **
000409  ** If the left hand expression has a collating sequence type, then it is
000410  ** used. Otherwise the collation sequence for the right hand expression
000411  ** is used, or the default (BINARY) if neither expression has a collating
000412  ** type.
000413  **
000414  ** Argument pRight (but not pLeft) may be a null pointer. In this case,
000415  ** it is not considered.
000416  */
000417  CollSeq *sqlite3BinaryCompareCollSeq(
000418    Parse *pParse,
000419    const Expr *pLeft,
000420    const Expr *pRight
000421  ){
000422    CollSeq *pColl;
000423    assert( pLeft );
000424    if( pLeft->flags & EP_Collate ){
000425      pColl = sqlite3ExprCollSeq(pParse, pLeft);
000426    }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
000427      pColl = sqlite3ExprCollSeq(pParse, pRight);
000428    }else{
000429      pColl = sqlite3ExprCollSeq(pParse, pLeft);
000430      if( !pColl ){
000431        pColl = sqlite3ExprCollSeq(pParse, pRight);
000432      }
000433    }
000434    return pColl;
000435  }
000436  
000437  /* Expression p is a comparison operator.  Return a collation sequence
000438  ** appropriate for the comparison operator.
000439  **
000440  ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
000441  ** However, if the OP_Commuted flag is set, then the order of the operands
000442  ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
000443  ** correct collating sequence is found.
000444  */
000445  CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
000446    if( ExprHasProperty(p, EP_Commuted) ){
000447      return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
000448    }else{
000449      return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
000450    }
000451  }
000452  
000453  /*
000454  ** Generate code for a comparison operator.
000455  */
000456  static int codeCompare(
000457    Parse *pParse,    /* The parsing (and code generating) context */
000458    Expr *pLeft,      /* The left operand */
000459    Expr *pRight,     /* The right operand */
000460    int opcode,       /* The comparison opcode */
000461    int in1, int in2, /* Register holding operands */
000462    int dest,         /* Jump here if true.  */
000463    int jumpIfNull,   /* If true, jump if either operand is NULL */
000464    int isCommuted    /* The comparison has been commuted */
000465  ){
000466    int p5;
000467    int addr;
000468    CollSeq *p4;
000469  
000470    if( pParse->nErr ) return 0;
000471    if( isCommuted ){
000472      p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
000473    }else{
000474      p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
000475    }
000476    p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
000477    addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
000478                             (void*)p4, P4_COLLSEQ);
000479    sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
000480    return addr;
000481  }
000482  
000483  /*
000484  ** Return true if expression pExpr is a vector, or false otherwise.
000485  **
000486  ** A vector is defined as any expression that results in two or more
000487  ** columns of result.  Every TK_VECTOR node is an vector because the
000488  ** parser will not generate a TK_VECTOR with fewer than two entries.
000489  ** But a TK_SELECT might be either a vector or a scalar. It is only
000490  ** considered a vector if it has two or more result columns.
000491  */
000492  int sqlite3ExprIsVector(const Expr *pExpr){
000493    return sqlite3ExprVectorSize(pExpr)>1;
000494  }
000495  
000496  /*
000497  ** If the expression passed as the only argument is of type TK_VECTOR
000498  ** return the number of expressions in the vector. Or, if the expression
000499  ** is a sub-select, return the number of columns in the sub-select. For
000500  ** any other type of expression, return 1.
000501  */
000502  int sqlite3ExprVectorSize(const Expr *pExpr){
000503    u8 op = pExpr->op;
000504    if( op==TK_REGISTER ) op = pExpr->op2;
000505    if( op==TK_VECTOR ){
000506      assert( ExprUseXList(pExpr) );
000507      return pExpr->x.pList->nExpr;
000508    }else if( op==TK_SELECT ){
000509      assert( ExprUseXSelect(pExpr) );
000510      return pExpr->x.pSelect->pEList->nExpr;
000511    }else{
000512      return 1;
000513    }
000514  }
000515  
000516  /*
000517  ** Return a pointer to a subexpression of pVector that is the i-th
000518  ** column of the vector (numbered starting with 0).  The caller must
000519  ** ensure that i is within range.
000520  **
000521  ** If pVector is really a scalar (and "scalar" here includes subqueries
000522  ** that return a single column!) then return pVector unmodified.
000523  **
000524  ** pVector retains ownership of the returned subexpression.
000525  **
000526  ** If the vector is a (SELECT ...) then the expression returned is
000527  ** just the expression for the i-th term of the result set, and may
000528  ** not be ready for evaluation because the table cursor has not yet
000529  ** been positioned.
000530  */
000531  Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
000532    assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
000533    if( sqlite3ExprIsVector(pVector) ){
000534      assert( pVector->op2==0 || pVector->op==TK_REGISTER );
000535      if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
000536        assert( ExprUseXSelect(pVector) );
000537        return pVector->x.pSelect->pEList->a[i].pExpr;
000538      }else{
000539        assert( ExprUseXList(pVector) );
000540        return pVector->x.pList->a[i].pExpr;
000541      }
000542    }
000543    return pVector;
000544  }
000545  
000546  /*
000547  ** Compute and return a new Expr object which when passed to
000548  ** sqlite3ExprCode() will generate all necessary code to compute
000549  ** the iField-th column of the vector expression pVector.
000550  **
000551  ** It is ok for pVector to be a scalar (as long as iField==0). 
000552  ** In that case, this routine works like sqlite3ExprDup().
000553  **
000554  ** The caller owns the returned Expr object and is responsible for
000555  ** ensuring that the returned value eventually gets freed.
000556  **
000557  ** The caller retains ownership of pVector.  If pVector is a TK_SELECT,
000558  ** then the returned object will reference pVector and so pVector must remain
000559  ** valid for the life of the returned object.  If pVector is a TK_VECTOR
000560  ** or a scalar expression, then it can be deleted as soon as this routine
000561  ** returns.
000562  **
000563  ** A trick to cause a TK_SELECT pVector to be deleted together with
000564  ** the returned Expr object is to attach the pVector to the pRight field
000565  ** of the returned TK_SELECT_COLUMN Expr object.
000566  */
000567  Expr *sqlite3ExprForVectorField(
000568    Parse *pParse,       /* Parsing context */
000569    Expr *pVector,       /* The vector.  List of expressions or a sub-SELECT */
000570    int iField,          /* Which column of the vector to return */
000571    int nField           /* Total number of columns in the vector */
000572  ){
000573    Expr *pRet;
000574    if( pVector->op==TK_SELECT ){
000575      assert( ExprUseXSelect(pVector) );
000576      /* The TK_SELECT_COLUMN Expr node:
000577      **
000578      ** pLeft:           pVector containing TK_SELECT.  Not deleted.
000579      ** pRight:          not used.  But recursively deleted.
000580      ** iColumn:         Index of a column in pVector
000581      ** iTable:          0 or the number of columns on the LHS of an assignment
000582      ** pLeft->iTable:   First in an array of register holding result, or 0
000583      **                  if the result is not yet computed.
000584      **
000585      ** sqlite3ExprDelete() specifically skips the recursive delete of
000586      ** pLeft on TK_SELECT_COLUMN nodes.  But pRight is followed, so pVector
000587      ** can be attached to pRight to cause this node to take ownership of
000588      ** pVector.  Typically there will be multiple TK_SELECT_COLUMN nodes
000589      ** with the same pLeft pointer to the pVector, but only one of them
000590      ** will own the pVector.
000591      */
000592      pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
000593      if( pRet ){
000594        ExprSetProperty(pRet, EP_FullSize);
000595        pRet->iTable = nField;
000596        pRet->iColumn = iField;
000597        pRet->pLeft = pVector;
000598      }
000599    }else{
000600      if( pVector->op==TK_VECTOR ){
000601        Expr **ppVector;
000602        assert( ExprUseXList(pVector) );
000603        ppVector = &pVector->x.pList->a[iField].pExpr;
000604        pVector = *ppVector;
000605        if( IN_RENAME_OBJECT ){
000606          /* This must be a vector UPDATE inside a trigger */
000607          *ppVector = 0;
000608          return pVector;
000609        }
000610      }
000611      pRet = sqlite3ExprDup(pParse->db, pVector, 0);
000612    }
000613    return pRet;
000614  }
000615  
000616  /*
000617  ** If expression pExpr is of type TK_SELECT, generate code to evaluate
000618  ** it. Return the register in which the result is stored (or, if the
000619  ** sub-select returns more than one column, the first in an array
000620  ** of registers in which the result is stored).
000621  **
000622  ** If pExpr is not a TK_SELECT expression, return 0.
000623  */
000624  static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
000625    int reg = 0;
000626  #ifndef SQLITE_OMIT_SUBQUERY
000627    if( pExpr->op==TK_SELECT ){
000628      reg = sqlite3CodeSubselect(pParse, pExpr);
000629    }
000630  #endif
000631    return reg;
000632  }
000633  
000634  /*
000635  ** Argument pVector points to a vector expression - either a TK_VECTOR
000636  ** or TK_SELECT that returns more than one column. This function returns
000637  ** the register number of a register that contains the value of
000638  ** element iField of the vector.
000639  **
000640  ** If pVector is a TK_SELECT expression, then code for it must have
000641  ** already been generated using the exprCodeSubselect() routine. In this
000642  ** case parameter regSelect should be the first in an array of registers
000643  ** containing the results of the sub-select.
000644  **
000645  ** If pVector is of type TK_VECTOR, then code for the requested field
000646  ** is generated. In this case (*pRegFree) may be set to the number of
000647  ** a temporary register to be freed by the caller before returning.
000648  **
000649  ** Before returning, output parameter (*ppExpr) is set to point to the
000650  ** Expr object corresponding to element iElem of the vector.
000651  */
000652  static int exprVectorRegister(
000653    Parse *pParse,                  /* Parse context */
000654    Expr *pVector,                  /* Vector to extract element from */
000655    int iField,                     /* Field to extract from pVector */
000656    int regSelect,                  /* First in array of registers */
000657    Expr **ppExpr,                  /* OUT: Expression element */
000658    int *pRegFree                   /* OUT: Temp register to free */
000659  ){
000660    u8 op = pVector->op;
000661    assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
000662    if( op==TK_REGISTER ){
000663      *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
000664      return pVector->iTable+iField;
000665    }
000666    if( op==TK_SELECT ){
000667      assert( ExprUseXSelect(pVector) );
000668      *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
000669       return regSelect+iField;
000670    }
000671    if( op==TK_VECTOR ){
000672      assert( ExprUseXList(pVector) );
000673      *ppExpr = pVector->x.pList->a[iField].pExpr;
000674      return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
000675    }
000676    return 0;
000677  }
000678  
000679  /*
000680  ** Expression pExpr is a comparison between two vector values. Compute
000681  ** the result of the comparison (1, 0, or NULL) and write that
000682  ** result into register dest.
000683  **
000684  ** The caller must satisfy the following preconditions:
000685  **
000686  **    if pExpr->op==TK_IS:      op==TK_EQ and p5==SQLITE_NULLEQ
000687  **    if pExpr->op==TK_ISNOT:   op==TK_NE and p5==SQLITE_NULLEQ
000688  **    otherwise:                op==pExpr->op and p5==0
000689  */
000690  static void codeVectorCompare(
000691    Parse *pParse,        /* Code generator context */
000692    Expr *pExpr,          /* The comparison operation */
000693    int dest,             /* Write results into this register */
000694    u8 op,                /* Comparison operator */
000695    u8 p5                 /* SQLITE_NULLEQ or zero */
000696  ){
000697    Vdbe *v = pParse->pVdbe;
000698    Expr *pLeft = pExpr->pLeft;
000699    Expr *pRight = pExpr->pRight;
000700    int nLeft = sqlite3ExprVectorSize(pLeft);
000701    int i;
000702    int regLeft = 0;
000703    int regRight = 0;
000704    u8 opx = op;
000705    int addrCmp = 0;
000706    int addrDone = sqlite3VdbeMakeLabel(pParse);
000707    int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
000708  
000709    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
000710    if( pParse->nErr ) return;
000711    if( nLeft!=sqlite3ExprVectorSize(pRight) ){
000712      sqlite3ErrorMsg(pParse, "row value misused");
000713      return;
000714    }
000715    assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
000716         || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
000717         || pExpr->op==TK_LT || pExpr->op==TK_GT
000718         || pExpr->op==TK_LE || pExpr->op==TK_GE
000719    );
000720    assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
000721              || (pExpr->op==TK_ISNOT && op==TK_NE) );
000722    assert( p5==0 || pExpr->op!=op );
000723    assert( p5==SQLITE_NULLEQ || pExpr->op==op );
000724  
000725    if( op==TK_LE ) opx = TK_LT;
000726    if( op==TK_GE ) opx = TK_GT;
000727    if( op==TK_NE ) opx = TK_EQ;
000728  
000729    regLeft = exprCodeSubselect(pParse, pLeft);
000730    regRight = exprCodeSubselect(pParse, pRight);
000731  
000732    sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
000733    for(i=0; 1 /*Loop exits by "break"*/; i++){
000734      int regFree1 = 0, regFree2 = 0;
000735      Expr *pL = 0, *pR = 0;
000736      int r1, r2;
000737      assert( i>=0 && i<nLeft );
000738      if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
000739      r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
000740      r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
000741      addrCmp = sqlite3VdbeCurrentAddr(v);
000742      codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
000743      testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
000744      testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
000745      testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
000746      testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
000747      testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
000748      testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
000749      sqlite3ReleaseTempReg(pParse, regFree1);
000750      sqlite3ReleaseTempReg(pParse, regFree2);
000751      if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
000752        addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
000753        testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
000754        testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
000755      }
000756      if( p5==SQLITE_NULLEQ ){
000757        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
000758      }else{
000759        sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
000760      }
000761      if( i==nLeft-1 ){
000762        break;
000763      }
000764      if( opx==TK_EQ ){
000765        sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
000766      }else{
000767        assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
000768        sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
000769        if( i==nLeft-2 ) opx = op;
000770      }
000771    }
000772    sqlite3VdbeJumpHere(v, addrCmp);
000773    sqlite3VdbeResolveLabel(v, addrDone);
000774    if( op==TK_NE ){
000775      sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
000776    }
000777  }
000778  
000779  #if SQLITE_MAX_EXPR_DEPTH>0
000780  /*
000781  ** Check that argument nHeight is less than or equal to the maximum
000782  ** expression depth allowed. If it is not, leave an error message in
000783  ** pParse.
000784  */
000785  int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
000786    int rc = SQLITE_OK;
000787    int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
000788    if( nHeight>mxHeight ){
000789      sqlite3ErrorMsg(pParse,
000790         "Expression tree is too large (maximum depth %d)", mxHeight
000791      );
000792      rc = SQLITE_ERROR;
000793    }
000794    return rc;
000795  }
000796  
000797  /* The following three functions, heightOfExpr(), heightOfExprList()
000798  ** and heightOfSelect(), are used to determine the maximum height
000799  ** of any expression tree referenced by the structure passed as the
000800  ** first argument.
000801  **
000802  ** If this maximum height is greater than the current value pointed
000803  ** to by pnHeight, the second parameter, then set *pnHeight to that
000804  ** value.
000805  */
000806  static void heightOfExpr(const Expr *p, int *pnHeight){
000807    if( p ){
000808      if( p->nHeight>*pnHeight ){
000809        *pnHeight = p->nHeight;
000810      }
000811    }
000812  }
000813  static void heightOfExprList(const ExprList *p, int *pnHeight){
000814    if( p ){
000815      int i;
000816      for(i=0; i<p->nExpr; i++){
000817        heightOfExpr(p->a[i].pExpr, pnHeight);
000818      }
000819    }
000820  }
000821  static void heightOfSelect(const Select *pSelect, int *pnHeight){
000822    const Select *p;
000823    for(p=pSelect; p; p=p->pPrior){
000824      heightOfExpr(p->pWhere, pnHeight);
000825      heightOfExpr(p->pHaving, pnHeight);
000826      heightOfExpr(p->pLimit, pnHeight);
000827      heightOfExprList(p->pEList, pnHeight);
000828      heightOfExprList(p->pGroupBy, pnHeight);
000829      heightOfExprList(p->pOrderBy, pnHeight);
000830    }
000831  }
000832  
000833  /*
000834  ** Set the Expr.nHeight variable in the structure passed as an
000835  ** argument. An expression with no children, Expr.pList or
000836  ** Expr.pSelect member has a height of 1. Any other expression
000837  ** has a height equal to the maximum height of any other
000838  ** referenced Expr plus one.
000839  **
000840  ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
000841  ** if appropriate.
000842  */
000843  static void exprSetHeight(Expr *p){
000844    int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
000845    if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
000846      nHeight = p->pRight->nHeight;
000847    }
000848    if( ExprUseXSelect(p) ){
000849      heightOfSelect(p->x.pSelect, &nHeight);
000850    }else if( p->x.pList ){
000851      heightOfExprList(p->x.pList, &nHeight);
000852      p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
000853    }
000854    p->nHeight = nHeight + 1;
000855  }
000856  
000857  /*
000858  ** Set the Expr.nHeight variable using the exprSetHeight() function. If
000859  ** the height is greater than the maximum allowed expression depth,
000860  ** leave an error in pParse.
000861  **
000862  ** Also propagate all EP_Propagate flags from the Expr.x.pList into
000863  ** Expr.flags.
000864  */
000865  void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
000866    if( pParse->nErr ) return;
000867    exprSetHeight(p);
000868    sqlite3ExprCheckHeight(pParse, p->nHeight);
000869  }
000870  
000871  /*
000872  ** Return the maximum height of any expression tree referenced
000873  ** by the select statement passed as an argument.
000874  */
000875  int sqlite3SelectExprHeight(const Select *p){
000876    int nHeight = 0;
000877    heightOfSelect(p, &nHeight);
000878    return nHeight;
000879  }
000880  #else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
000881  /*
000882  ** Propagate all EP_Propagate flags from the Expr.x.pList into
000883  ** Expr.flags.
000884  */
000885  void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
000886    if( pParse->nErr ) return;
000887    if( p && ExprUseXList(p) && p->x.pList ){
000888      p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
000889    }
000890  }
000891  #define exprSetHeight(y)
000892  #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
000893  
000894  /*
000895  ** Set the error offset for an Expr node, if possible.
000896  */
000897  void sqlite3ExprSetErrorOffset(Expr *pExpr, int iOfst){
000898    if( pExpr==0 ) return;
000899    if( NEVER(ExprUseWJoin(pExpr)) ) return;
000900    pExpr->w.iOfst = iOfst;
000901  }
000902  
000903  /*
000904  ** This routine is the core allocator for Expr nodes.
000905  **
000906  ** Construct a new expression node and return a pointer to it.  Memory
000907  ** for this node and for the pToken argument is a single allocation
000908  ** obtained from sqlite3DbMalloc().  The calling function
000909  ** is responsible for making sure the node eventually gets freed.
000910  **
000911  ** If dequote is true, then the token (if it exists) is dequoted.
000912  ** If dequote is false, no dequoting is performed.  The deQuote
000913  ** parameter is ignored if pToken is NULL or if the token does not
000914  ** appear to be quoted.  If the quotes were of the form "..." (double-quotes)
000915  ** then the EP_DblQuoted flag is set on the expression node.
000916  **
000917  ** Special case:  If op==TK_INTEGER and pToken points to a string that
000918  ** can be translated into a 32-bit integer, then the token is not
000919  ** stored in u.zToken.  Instead, the integer values is written
000920  ** into u.iValue and the EP_IntValue flag is set.  No extra storage
000921  ** is allocated to hold the integer text and the dequote flag is ignored.
000922  */
000923  Expr *sqlite3ExprAlloc(
000924    sqlite3 *db,            /* Handle for sqlite3DbMallocRawNN() */
000925    int op,                 /* Expression opcode */
000926    const Token *pToken,    /* Token argument.  Might be NULL */
000927    int dequote             /* True to dequote */
000928  ){
000929    Expr *pNew;
000930    int nExtra = 0;
000931    int iValue = 0;
000932  
000933    assert( db!=0 );
000934    if( pToken ){
000935      if( op!=TK_INTEGER || pToken->z==0
000936            || sqlite3GetInt32(pToken->z, &iValue)==0 ){
000937        nExtra = pToken->n+1;
000938        assert( iValue>=0 );
000939      }
000940    }
000941    pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
000942    if( pNew ){
000943      memset(pNew, 0, sizeof(Expr));
000944      pNew->op = (u8)op;
000945      pNew->iAgg = -1;
000946      if( pToken ){
000947        if( nExtra==0 ){
000948          pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
000949          pNew->u.iValue = iValue;
000950        }else{
000951          pNew->u.zToken = (char*)&pNew[1];
000952          assert( pToken->z!=0 || pToken->n==0 );
000953          if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
000954          pNew->u.zToken[pToken->n] = 0;
000955          if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
000956            sqlite3DequoteExpr(pNew);
000957          }
000958        }
000959      }
000960  #if SQLITE_MAX_EXPR_DEPTH>0
000961      pNew->nHeight = 1;
000962  #endif 
000963    }
000964    return pNew;
000965  }
000966  
000967  /*
000968  ** Allocate a new expression node from a zero-terminated token that has
000969  ** already been dequoted.
000970  */
000971  Expr *sqlite3Expr(
000972    sqlite3 *db,            /* Handle for sqlite3DbMallocZero() (may be null) */
000973    int op,                 /* Expression opcode */
000974    const char *zToken      /* Token argument.  Might be NULL */
000975  ){
000976    Token x;
000977    x.z = zToken;
000978    x.n = sqlite3Strlen30(zToken);
000979    return sqlite3ExprAlloc(db, op, &x, 0);
000980  }
000981  
000982  /*
000983  ** Attach subtrees pLeft and pRight to the Expr node pRoot.
000984  **
000985  ** If pRoot==NULL that means that a memory allocation error has occurred.
000986  ** In that case, delete the subtrees pLeft and pRight.
000987  */
000988  void sqlite3ExprAttachSubtrees(
000989    sqlite3 *db,
000990    Expr *pRoot,
000991    Expr *pLeft,
000992    Expr *pRight
000993  ){
000994    if( pRoot==0 ){
000995      assert( db->mallocFailed );
000996      sqlite3ExprDelete(db, pLeft);
000997      sqlite3ExprDelete(db, pRight);
000998    }else{
000999      assert( ExprUseXList(pRoot) );
001000      assert( pRoot->x.pSelect==0 );
001001      if( pRight ){
001002        pRoot->pRight = pRight;
001003        pRoot->flags |= EP_Propagate & pRight->flags;
001004  #if SQLITE_MAX_EXPR_DEPTH>0
001005        pRoot->nHeight = pRight->nHeight+1;
001006      }else{
001007        pRoot->nHeight = 1;
001008  #endif
001009      }
001010      if( pLeft ){
001011        pRoot->pLeft = pLeft;
001012        pRoot->flags |= EP_Propagate & pLeft->flags;
001013  #if SQLITE_MAX_EXPR_DEPTH>0
001014        if( pLeft->nHeight>=pRoot->nHeight ){
001015          pRoot->nHeight = pLeft->nHeight+1;
001016        }
001017  #endif
001018      }
001019    }
001020  }
001021  
001022  /*
001023  ** Allocate an Expr node which joins as many as two subtrees.
001024  **
001025  ** One or both of the subtrees can be NULL.  Return a pointer to the new
001026  ** Expr node.  Or, if an OOM error occurs, set pParse->db->mallocFailed,
001027  ** free the subtrees and return NULL.
001028  */
001029  Expr *sqlite3PExpr(
001030    Parse *pParse,          /* Parsing context */
001031    int op,                 /* Expression opcode */
001032    Expr *pLeft,            /* Left operand */
001033    Expr *pRight            /* Right operand */
001034  ){
001035    Expr *p;
001036    p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
001037    if( p ){
001038      memset(p, 0, sizeof(Expr));
001039      p->op = op & 0xff;
001040      p->iAgg = -1;
001041      sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
001042      sqlite3ExprCheckHeight(pParse, p->nHeight);
001043    }else{
001044      sqlite3ExprDelete(pParse->db, pLeft);
001045      sqlite3ExprDelete(pParse->db, pRight);
001046    }
001047    return p;
001048  }
001049  
001050  /*
001051  ** Add pSelect to the Expr.x.pSelect field.  Or, if pExpr is NULL (due
001052  ** do a memory allocation failure) then delete the pSelect object.
001053  */
001054  void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
001055    if( pExpr ){
001056      pExpr->x.pSelect = pSelect;
001057      ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
001058      sqlite3ExprSetHeightAndFlags(pParse, pExpr);
001059    }else{
001060      assert( pParse->db->mallocFailed );
001061      sqlite3SelectDelete(pParse->db, pSelect);
001062    }
001063  }
001064  
001065  /*
001066  ** Expression list pEList is a list of vector values. This function
001067  ** converts the contents of pEList to a VALUES(...) Select statement
001068  ** returning 1 row for each element of the list. For example, the
001069  ** expression list:
001070  **
001071  **   ( (1,2), (3,4) (5,6) )
001072  **
001073  ** is translated to the equivalent of:
001074  **
001075  **   VALUES(1,2), (3,4), (5,6)
001076  **
001077  ** Each of the vector values in pEList must contain exactly nElem terms.
001078  ** If a list element that is not a vector or does not contain nElem terms,
001079  ** an error message is left in pParse.
001080  **
001081  ** This is used as part of processing IN(...) expressions with a list
001082  ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
001083  */
001084  Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
001085    int ii;
001086    Select *pRet = 0;
001087    assert( nElem>1 );
001088    for(ii=0; ii<pEList->nExpr; ii++){
001089      Select *pSel;
001090      Expr *pExpr = pEList->a[ii].pExpr;
001091      int nExprElem;
001092      if( pExpr->op==TK_VECTOR ){
001093        assert( ExprUseXList(pExpr) );
001094        nExprElem = pExpr->x.pList->nExpr;
001095      }else{
001096        nExprElem = 1;
001097      }
001098      if( nExprElem!=nElem ){
001099        sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
001100            nExprElem, nExprElem>1?"s":"", nElem
001101        );
001102        break;
001103      }
001104      assert( ExprUseXList(pExpr) );
001105      pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
001106      pExpr->x.pList = 0;
001107      if( pSel ){
001108        if( pRet ){
001109          pSel->op = TK_ALL;
001110          pSel->pPrior = pRet;
001111        }
001112        pRet = pSel;
001113      }
001114    }
001115  
001116    if( pRet && pRet->pPrior ){
001117      pRet->selFlags |= SF_MultiValue;
001118    }
001119    sqlite3ExprListDelete(pParse->db, pEList);
001120    return pRet;
001121  }
001122  
001123  /*
001124  ** Join two expressions using an AND operator.  If either expression is
001125  ** NULL, then just return the other expression.
001126  **
001127  ** If one side or the other of the AND is known to be false, and neither side
001128  ** is part of an ON clause, then instead of returning an AND expression,
001129  ** just return a constant expression with a value of false.
001130  */
001131  Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
001132    sqlite3 *db = pParse->db;
001133    if( pLeft==0  ){
001134      return pRight;
001135    }else if( pRight==0 ){
001136      return pLeft;
001137    }else{
001138      u32 f = pLeft->flags | pRight->flags;
001139      if( (f&(EP_OuterON|EP_InnerON|EP_IsFalse))==EP_IsFalse
001140       && !IN_RENAME_OBJECT
001141      ){
001142        sqlite3ExprDeferredDelete(pParse, pLeft);
001143        sqlite3ExprDeferredDelete(pParse, pRight);
001144        return sqlite3Expr(db, TK_INTEGER, "0");
001145      }else{
001146        return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
001147      }
001148    }
001149  }
001150  
001151  /*
001152  ** Construct a new expression node for a function with multiple
001153  ** arguments.
001154  */
001155  Expr *sqlite3ExprFunction(
001156    Parse *pParse,        /* Parsing context */
001157    ExprList *pList,      /* Argument list */
001158    const Token *pToken,  /* Name of the function */
001159    int eDistinct         /* SF_Distinct or SF_ALL or 0 */
001160  ){
001161    Expr *pNew;
001162    sqlite3 *db = pParse->db;
001163    assert( pToken );
001164    pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
001165    if( pNew==0 ){
001166      sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
001167      return 0;
001168    }
001169    assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
001170    pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
001171    if( pList
001172     && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
001173     && !pParse->nested
001174    ){
001175      sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
001176    }
001177    pNew->x.pList = pList;
001178    ExprSetProperty(pNew, EP_HasFunc);
001179    assert( ExprUseXList(pNew) );
001180    sqlite3ExprSetHeightAndFlags(pParse, pNew);
001181    if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
001182    return pNew;
001183  }
001184  
001185  /*
001186  ** Report an error when attempting to use an ORDER BY clause within
001187  ** the arguments of a non-aggregate function.
001188  */
001189  void sqlite3ExprOrderByAggregateError(Parse *pParse, Expr *p){
001190    sqlite3ErrorMsg(pParse,
001191       "ORDER BY may not be used with non-aggregate %#T()", p
001192    );
001193  }
001194  
001195  /*
001196  ** Attach an ORDER BY clause to a function call.
001197  **
001198  **     functionname( arguments ORDER BY sortlist )
001199  **     \_____________________/          \______/
001200  **             pExpr                    pOrderBy
001201  **
001202  ** The ORDER BY clause is inserted into a new Expr node of type TK_ORDER
001203  ** and added to the Expr.pLeft field of the parent TK_FUNCTION node.
001204  */
001205  void sqlite3ExprAddFunctionOrderBy(
001206    Parse *pParse,        /* Parsing context */
001207    Expr *pExpr,          /* The function call to which ORDER BY is to be added */
001208    ExprList *pOrderBy    /* The ORDER BY clause to add */
001209  ){
001210    Expr *pOB;
001211    sqlite3 *db = pParse->db;
001212    if( NEVER(pOrderBy==0) ){
001213      assert( db->mallocFailed );
001214      return;
001215    }
001216    if( pExpr==0 ){
001217      assert( db->mallocFailed );
001218      sqlite3ExprListDelete(db, pOrderBy);
001219      return;
001220    }
001221    assert( pExpr->op==TK_FUNCTION );
001222    assert( pExpr->pLeft==0 );
001223    assert( ExprUseXList(pExpr) );
001224    if( pExpr->x.pList==0 || NEVER(pExpr->x.pList->nExpr==0) ){
001225      /* Ignore ORDER BY on zero-argument aggregates */
001226      sqlite3ParserAddCleanup(pParse, sqlite3ExprListDeleteGeneric, pOrderBy);
001227      return;
001228    }
001229    if( IsWindowFunc(pExpr) ){
001230      sqlite3ExprOrderByAggregateError(pParse, pExpr);
001231      sqlite3ExprListDelete(db, pOrderBy);
001232      return;
001233    }
001234  
001235    pOB = sqlite3ExprAlloc(db, TK_ORDER, 0, 0);
001236    if( pOB==0 ){
001237      sqlite3ExprListDelete(db, pOrderBy);
001238      return;
001239    }
001240    pOB->x.pList = pOrderBy;
001241    assert( ExprUseXList(pOB) );
001242    pExpr->pLeft = pOB;
001243    ExprSetProperty(pOB, EP_FullSize);
001244  }
001245  
001246  /*
001247  ** Check to see if a function is usable according to current access
001248  ** rules:
001249  **
001250  **    SQLITE_FUNC_DIRECT    -     Only usable from top-level SQL
001251  **
001252  **    SQLITE_FUNC_UNSAFE    -     Usable if TRUSTED_SCHEMA or from
001253  **                                top-level SQL
001254  **
001255  ** If the function is not usable, create an error.
001256  */
001257  void sqlite3ExprFunctionUsable(
001258    Parse *pParse,         /* Parsing and code generating context */
001259    const Expr *pExpr,     /* The function invocation */
001260    const FuncDef *pDef    /* The function being invoked */
001261  ){
001262    assert( !IN_RENAME_OBJECT );
001263    assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
001264    if( ExprHasProperty(pExpr, EP_FromDDL) ){
001265      if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
001266       || (pParse->db->flags & SQLITE_TrustedSchema)==0
001267      ){
001268        /* Functions prohibited in triggers and views if:
001269        **     (1) tagged with SQLITE_DIRECTONLY
001270        **     (2) not tagged with SQLITE_INNOCUOUS (which means it
001271        **         is tagged with SQLITE_FUNC_UNSAFE) and
001272        **         SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
001273        **         that the schema is possibly tainted).
001274        */
001275        sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
001276      }
001277    }
001278  }
001279  
001280  /*
001281  ** Assign a variable number to an expression that encodes a wildcard
001282  ** in the original SQL statement. 
001283  **
001284  ** Wildcards consisting of a single "?" are assigned the next sequential
001285  ** variable number.
001286  **
001287  ** Wildcards of the form "?nnn" are assigned the number "nnn".  We make
001288  ** sure "nnn" is not too big to avoid a denial of service attack when
001289  ** the SQL statement comes from an external source.
001290  **
001291  ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
001292  ** as the previous instance of the same wildcard.  Or if this is the first
001293  ** instance of the wildcard, the next sequential variable number is
001294  ** assigned.
001295  */
001296  void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
001297    sqlite3 *db = pParse->db;
001298    const char *z;
001299    ynVar x;
001300  
001301    if( pExpr==0 ) return;
001302    assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
001303    z = pExpr->u.zToken;
001304    assert( z!=0 );
001305    assert( z[0]!=0 );
001306    assert( n==(u32)sqlite3Strlen30(z) );
001307    if( z[1]==0 ){
001308      /* Wildcard of the form "?".  Assign the next variable number */
001309      assert( z[0]=='?' );
001310      x = (ynVar)(++pParse->nVar);
001311    }else{
001312      int doAdd = 0;
001313      if( z[0]=='?' ){
001314        /* Wildcard of the form "?nnn".  Convert "nnn" to an integer and
001315        ** use it as the variable number */
001316        i64 i;
001317        int bOk;
001318        if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
001319          i = z[1]-'0';  /* The common case of ?N for a single digit N */
001320          bOk = 1;
001321        }else{
001322          bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
001323        }
001324        testcase( i==0 );
001325        testcase( i==1 );
001326        testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
001327        testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
001328        if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
001329          sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
001330              db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
001331          sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
001332          return;
001333        }
001334        x = (ynVar)i;
001335        if( x>pParse->nVar ){
001336          pParse->nVar = (int)x;
001337          doAdd = 1;
001338        }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
001339          doAdd = 1;
001340        }
001341      }else{
001342        /* Wildcards like ":aaa", "$aaa" or "@aaa".  Reuse the same variable
001343        ** number as the prior appearance of the same name, or if the name
001344        ** has never appeared before, reuse the same variable number
001345        */
001346        x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
001347        if( x==0 ){
001348          x = (ynVar)(++pParse->nVar);
001349          doAdd = 1;
001350        }
001351      }
001352      if( doAdd ){
001353        pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
001354      }
001355    }
001356    pExpr->iColumn = x;
001357    if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
001358      sqlite3ErrorMsg(pParse, "too many SQL variables");
001359      sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
001360    }
001361  }
001362  
001363  /*
001364  ** Recursively delete an expression tree.
001365  */
001366  static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
001367    assert( p!=0 );
001368    assert( db!=0 );
001369    assert( !ExprUseUValue(p) || p->u.iValue>=0 );
001370    assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
001371    assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
001372    assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
001373  #ifdef SQLITE_DEBUG
001374    if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
001375      assert( p->pLeft==0 );
001376      assert( p->pRight==0 );
001377      assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
001378      assert( !ExprUseXList(p) || p->x.pList==0 );
001379    }
001380  #endif
001381    if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
001382      /* The Expr.x union is never used at the same time as Expr.pRight */
001383      assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
001384      if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
001385      if( p->pRight ){
001386        assert( !ExprHasProperty(p, EP_WinFunc) );
001387        sqlite3ExprDeleteNN(db, p->pRight);
001388      }else if( ExprUseXSelect(p) ){
001389        assert( !ExprHasProperty(p, EP_WinFunc) );
001390        sqlite3SelectDelete(db, p->x.pSelect);
001391      }else{
001392        sqlite3ExprListDelete(db, p->x.pList);
001393  #ifndef SQLITE_OMIT_WINDOWFUNC
001394        if( ExprHasProperty(p, EP_WinFunc) ){
001395          sqlite3WindowDelete(db, p->y.pWin);
001396        }
001397  #endif
001398      }
001399    }
001400    if( !ExprHasProperty(p, EP_Static) ){
001401      sqlite3DbNNFreeNN(db, p);
001402    }
001403  }
001404  void sqlite3ExprDelete(sqlite3 *db, Expr *p){
001405    if( p ) sqlite3ExprDeleteNN(db, p);
001406  }
001407  void sqlite3ExprDeleteGeneric(sqlite3 *db, void *p){
001408    if( ALWAYS(p) ) sqlite3ExprDeleteNN(db, (Expr*)p);
001409  }
001410  
001411  /*
001412  ** Clear both elements of an OnOrUsing object
001413  */
001414  void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
001415    if( p==0 ){
001416      /* Nothing to clear */
001417    }else if( p->pOn ){
001418      sqlite3ExprDeleteNN(db, p->pOn);
001419    }else if( p->pUsing ){
001420      sqlite3IdListDelete(db, p->pUsing);
001421    }
001422  }
001423  
001424  /*
001425  ** Arrange to cause pExpr to be deleted when the pParse is deleted.
001426  ** This is similar to sqlite3ExprDelete() except that the delete is
001427  ** deferred until the pParse is deleted.
001428  **
001429  ** The pExpr might be deleted immediately on an OOM error.
001430  **
001431  ** The deferred delete is (currently) implemented by adding the
001432  ** pExpr to the pParse->pConstExpr list with a register number of 0.
001433  */
001434  void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
001435    sqlite3ParserAddCleanup(pParse, sqlite3ExprDeleteGeneric, pExpr);
001436  }
001437  
001438  /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
001439  ** expression.
001440  */
001441  void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
001442    if( p ){
001443      if( IN_RENAME_OBJECT ){
001444        sqlite3RenameExprUnmap(pParse, p);
001445      }
001446      sqlite3ExprDeleteNN(pParse->db, p);
001447    }
001448  }
001449  
001450  /*
001451  ** Return the number of bytes allocated for the expression structure
001452  ** passed as the first argument. This is always one of EXPR_FULLSIZE,
001453  ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
001454  */
001455  static int exprStructSize(const Expr *p){
001456    if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
001457    if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
001458    return EXPR_FULLSIZE;
001459  }
001460  
001461  /*
001462  ** The dupedExpr*Size() routines each return the number of bytes required
001463  ** to store a copy of an expression or expression tree.  They differ in
001464  ** how much of the tree is measured.
001465  **
001466  **     dupedExprStructSize()     Size of only the Expr structure
001467  **     dupedExprNodeSize()       Size of Expr + space for token
001468  **     dupedExprSize()           Expr + token + subtree components
001469  **
001470  ***************************************************************************
001471  **
001472  ** The dupedExprStructSize() function returns two values OR-ed together: 
001473  ** (1) the space required for a copy of the Expr structure only and
001474  ** (2) the EP_xxx flags that indicate what the structure size should be.
001475  ** The return values is always one of:
001476  **
001477  **      EXPR_FULLSIZE
001478  **      EXPR_REDUCEDSIZE   | EP_Reduced
001479  **      EXPR_TOKENONLYSIZE | EP_TokenOnly
001480  **
001481  ** The size of the structure can be found by masking the return value
001482  ** of this routine with 0xfff.  The flags can be found by masking the
001483  ** return value with EP_Reduced|EP_TokenOnly.
001484  **
001485  ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
001486  ** (unreduced) Expr objects as they or originally constructed by the parser.
001487  ** During expression analysis, extra information is computed and moved into
001488  ** later parts of the Expr object and that extra information might get chopped
001489  ** off if the expression is reduced.  Note also that it does not work to
001490  ** make an EXPRDUP_REDUCE copy of a reduced expression.  It is only legal
001491  ** to reduce a pristine expression tree from the parser.  The implementation
001492  ** of dupedExprStructSize() contain multiple assert() statements that attempt
001493  ** to enforce this constraint.
001494  */
001495  static int dupedExprStructSize(const Expr *p, int flags){
001496    int nSize;
001497    assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
001498    assert( EXPR_FULLSIZE<=0xfff );
001499    assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
001500    if( 0==flags || ExprHasProperty(p, EP_FullSize) ){
001501      nSize = EXPR_FULLSIZE;
001502    }else{
001503      assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
001504      assert( !ExprHasProperty(p, EP_OuterON) );
001505      assert( !ExprHasVVAProperty(p, EP_NoReduce) );
001506      if( p->pLeft || p->x.pList ){
001507        nSize = EXPR_REDUCEDSIZE | EP_Reduced;
001508      }else{
001509        assert( p->pRight==0 );
001510        nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
001511      }
001512    }
001513    return nSize;
001514  }
001515  
001516  /*
001517  ** This function returns the space in bytes required to store the copy
001518  ** of the Expr structure and a copy of the Expr.u.zToken string (if that
001519  ** string is defined.)
001520  */
001521  static int dupedExprNodeSize(const Expr *p, int flags){
001522    int nByte = dupedExprStructSize(p, flags) & 0xfff;
001523    if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001524      nByte += sqlite3Strlen30NN(p->u.zToken)+1;
001525    }
001526    return ROUND8(nByte);
001527  }
001528  
001529  /*
001530  ** Return the number of bytes required to create a duplicate of the
001531  ** expression passed as the first argument.
001532  **
001533  ** The value returned includes space to create a copy of the Expr struct
001534  ** itself and the buffer referred to by Expr.u.zToken, if any.
001535  **
001536  ** The return value includes space to duplicate all Expr nodes in the
001537  ** tree formed by Expr.pLeft and Expr.pRight, but not any other
001538  ** substructure such as Expr.x.pList, Expr.x.pSelect, and Expr.y.pWin.
001539  */
001540  static int dupedExprSize(const Expr *p){
001541    int nByte;
001542    assert( p!=0 );
001543    nByte = dupedExprNodeSize(p, EXPRDUP_REDUCE);
001544    if( p->pLeft ) nByte += dupedExprSize(p->pLeft);
001545    if( p->pRight ) nByte += dupedExprSize(p->pRight);
001546    assert( nByte==ROUND8(nByte) );
001547    return nByte;
001548  }
001549  
001550  /*
001551  ** An EdupBuf is a memory allocation used to stored multiple Expr objects
001552  ** together with their Expr.zToken content.  This is used to help implement
001553  ** compression while doing sqlite3ExprDup().  The top-level Expr does the
001554  ** allocation for itself and many of its decendents, then passes an instance
001555  ** of the structure down into exprDup() so that they decendents can have
001556  ** access to that memory.
001557  */
001558  typedef struct EdupBuf EdupBuf;
001559  struct EdupBuf {
001560    u8 *zAlloc;          /* Memory space available for storage */
001561  #ifdef SQLITE_DEBUG
001562    u8 *zEnd;            /* First byte past the end of memory */
001563  #endif
001564  };
001565  
001566  /*
001567  ** This function is similar to sqlite3ExprDup(), except that if pEdupBuf
001568  ** is not NULL then it points to memory that can be used to store a copy
001569  ** of the input Expr p together with its p->u.zToken (if any).  pEdupBuf
001570  ** is updated with the new buffer tail prior to returning.
001571  */
001572  static Expr *exprDup(
001573    sqlite3 *db,          /* Database connection (for memory allocation) */
001574    const Expr *p,        /* Expr tree to be duplicated */
001575    int dupFlags,         /* EXPRDUP_REDUCE for compression.  0 if not */
001576    EdupBuf *pEdupBuf     /* Preallocated storage space, or NULL */
001577  ){
001578    Expr *pNew;           /* Value to return */
001579    EdupBuf sEdupBuf;     /* Memory space from which to build Expr object */
001580    u32 staticFlag;       /* EP_Static if space not obtained from malloc */
001581    int nToken = -1;       /* Space needed for p->u.zToken.  -1 means unknown */
001582  
001583    assert( db!=0 );
001584    assert( p );
001585    assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
001586    assert( pEdupBuf==0 || dupFlags==EXPRDUP_REDUCE );
001587  
001588    /* Figure out where to write the new Expr structure. */
001589    if( pEdupBuf ){
001590      sEdupBuf.zAlloc = pEdupBuf->zAlloc;
001591  #ifdef SQLITE_DEBUG
001592      sEdupBuf.zEnd = pEdupBuf->zEnd;
001593  #endif
001594      staticFlag = EP_Static;
001595      assert( sEdupBuf.zAlloc!=0 );
001596      assert( dupFlags==EXPRDUP_REDUCE );
001597    }else{
001598      int nAlloc;
001599      if( dupFlags ){
001600        nAlloc = dupedExprSize(p);
001601      }else if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001602        nToken = sqlite3Strlen30NN(p->u.zToken)+1;
001603        nAlloc = ROUND8(EXPR_FULLSIZE + nToken);
001604      }else{
001605        nToken = 0;
001606        nAlloc = ROUND8(EXPR_FULLSIZE);
001607      }
001608      assert( nAlloc==ROUND8(nAlloc) );
001609      sEdupBuf.zAlloc = sqlite3DbMallocRawNN(db, nAlloc);
001610  #ifdef SQLITE_DEBUG
001611      sEdupBuf.zEnd = sEdupBuf.zAlloc ? sEdupBuf.zAlloc+nAlloc : 0;
001612  #endif
001613      
001614      staticFlag = 0;
001615    }
001616    pNew = (Expr *)sEdupBuf.zAlloc;
001617    assert( EIGHT_BYTE_ALIGNMENT(pNew) );
001618  
001619    if( pNew ){
001620      /* Set nNewSize to the size allocated for the structure pointed to
001621      ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
001622      ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
001623      ** by the copy of the p->u.zToken string (if any).
001624      */
001625      const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
001626      int nNewSize = nStructSize & 0xfff;
001627      if( nToken<0 ){
001628        if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
001629          nToken = sqlite3Strlen30(p->u.zToken) + 1;
001630        }else{
001631          nToken = 0;
001632        }
001633      }
001634      if( dupFlags ){
001635        assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >= nNewSize+nToken );
001636        assert( ExprHasProperty(p, EP_Reduced)==0 );
001637        memcpy(sEdupBuf.zAlloc, p, nNewSize);
001638      }else{
001639        u32 nSize = (u32)exprStructSize(p);
001640        assert( (int)(sEdupBuf.zEnd - sEdupBuf.zAlloc) >=
001641                                                     (int)EXPR_FULLSIZE+nToken );
001642        memcpy(sEdupBuf.zAlloc, p, nSize);
001643        if( nSize<EXPR_FULLSIZE ){
001644          memset(&sEdupBuf.zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
001645        }
001646        nNewSize = EXPR_FULLSIZE;
001647      }
001648  
001649      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
001650      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
001651      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
001652      pNew->flags |= staticFlag;
001653      ExprClearVVAProperties(pNew);
001654      if( dupFlags ){
001655        ExprSetVVAProperty(pNew, EP_Immutable);
001656      }
001657  
001658      /* Copy the p->u.zToken string, if any. */
001659      assert( nToken>=0 );
001660      if( nToken>0 ){
001661        char *zToken = pNew->u.zToken = (char*)&sEdupBuf.zAlloc[nNewSize];
001662        memcpy(zToken, p->u.zToken, nToken);
001663        nNewSize += nToken;
001664      }
001665      sEdupBuf.zAlloc += ROUND8(nNewSize);
001666  
001667      if( ((p->flags|pNew->flags)&(EP_TokenOnly|EP_Leaf))==0 ){
001668  
001669        /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
001670        if( ExprUseXSelect(p) ){
001671          pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
001672        }else{
001673          pNew->x.pList = sqlite3ExprListDup(db, p->x.pList,
001674                             p->op!=TK_ORDER ? dupFlags : 0);
001675        }
001676  
001677  #ifndef SQLITE_OMIT_WINDOWFUNC
001678        if( ExprHasProperty(p, EP_WinFunc) ){
001679          pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
001680          assert( ExprHasProperty(pNew, EP_WinFunc) );
001681        }
001682  #endif /* SQLITE_OMIT_WINDOWFUNC */
001683  
001684        /* Fill in pNew->pLeft and pNew->pRight. */
001685        if( dupFlags ){
001686          if( p->op==TK_SELECT_COLUMN ){
001687            pNew->pLeft = p->pLeft;
001688            assert( p->pRight==0 
001689                 || p->pRight==p->pLeft
001690                 || ExprHasProperty(p->pLeft, EP_Subquery) );
001691          }else{
001692            pNew->pLeft = p->pLeft ?
001693                        exprDup(db, p->pLeft, EXPRDUP_REDUCE, &sEdupBuf) : 0;
001694          }
001695          pNew->pRight = p->pRight ?
001696                         exprDup(db, p->pRight, EXPRDUP_REDUCE, &sEdupBuf) : 0;
001697        }else{
001698          if( p->op==TK_SELECT_COLUMN ){
001699            pNew->pLeft = p->pLeft;
001700            assert( p->pRight==0 
001701                 || p->pRight==p->pLeft
001702                 || ExprHasProperty(p->pLeft, EP_Subquery) );
001703          }else{
001704            pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
001705          }
001706          pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
001707        }
001708      }
001709    }
001710    if( pEdupBuf ) memcpy(pEdupBuf, &sEdupBuf, sizeof(sEdupBuf));
001711    assert( sEdupBuf.zAlloc <= sEdupBuf.zEnd );
001712    return pNew;
001713  }
001714  
001715  /*
001716  ** Create and return a deep copy of the object passed as the second
001717  ** argument. If an OOM condition is encountered, NULL is returned
001718  ** and the db->mallocFailed flag set.
001719  */
001720  #ifndef SQLITE_OMIT_CTE
001721  With *sqlite3WithDup(sqlite3 *db, With *p){
001722    With *pRet = 0;
001723    if( p ){
001724      sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
001725      pRet = sqlite3DbMallocZero(db, nByte);
001726      if( pRet ){
001727        int i;
001728        pRet->nCte = p->nCte;
001729        for(i=0; i<p->nCte; i++){
001730          pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
001731          pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
001732          pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
001733          pRet->a[i].eM10d = p->a[i].eM10d;
001734        }
001735      }
001736    }
001737    return pRet;
001738  }
001739  #else
001740  # define sqlite3WithDup(x,y) 0
001741  #endif
001742  
001743  #ifndef SQLITE_OMIT_WINDOWFUNC
001744  /*
001745  ** The gatherSelectWindows() procedure and its helper routine
001746  ** gatherSelectWindowsCallback() are used to scan all the expressions
001747  ** an a newly duplicated SELECT statement and gather all of the Window
001748  ** objects found there, assembling them onto the linked list at Select->pWin.
001749  */
001750  static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
001751    if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
001752      Select *pSelect = pWalker->u.pSelect;
001753      Window *pWin = pExpr->y.pWin;
001754      assert( pWin );
001755      assert( IsWindowFunc(pExpr) );
001756      assert( pWin->ppThis==0 );
001757      sqlite3WindowLink(pSelect, pWin);
001758    }
001759    return WRC_Continue;
001760  }
001761  static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
001762    return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
001763  }
001764  static void gatherSelectWindows(Select *p){
001765    Walker w;
001766    w.xExprCallback = gatherSelectWindowsCallback;
001767    w.xSelectCallback = gatherSelectWindowsSelectCallback;
001768    w.xSelectCallback2 = 0;
001769    w.pParse = 0;
001770    w.u.pSelect = p;
001771    sqlite3WalkSelect(&w, p);
001772  }
001773  #endif
001774  
001775  
001776  /*
001777  ** The following group of routines make deep copies of expressions,
001778  ** expression lists, ID lists, and select statements.  The copies can
001779  ** be deleted (by being passed to their respective ...Delete() routines)
001780  ** without effecting the originals.
001781  **
001782  ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
001783  ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
001784  ** by subsequent calls to sqlite*ListAppend() routines.
001785  **
001786  ** Any tables that the SrcList might point to are not duplicated.
001787  **
001788  ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
001789  ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
001790  ** truncated version of the usual Expr structure that will be stored as
001791  ** part of the in-memory representation of the database schema.
001792  */
001793  Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
001794    assert( flags==0 || flags==EXPRDUP_REDUCE );
001795    return p ? exprDup(db, p, flags, 0) : 0;
001796  }
001797  ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
001798    ExprList *pNew;
001799    struct ExprList_item *pItem;
001800    const struct ExprList_item *pOldItem;
001801    int i;
001802    Expr *pPriorSelectColOld = 0;
001803    Expr *pPriorSelectColNew = 0;
001804    assert( db!=0 );
001805    if( p==0 ) return 0;
001806    pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
001807    if( pNew==0 ) return 0;
001808    pNew->nExpr = p->nExpr;
001809    pNew->nAlloc = p->nAlloc;
001810    pItem = pNew->a;
001811    pOldItem = p->a;
001812    for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
001813      Expr *pOldExpr = pOldItem->pExpr;
001814      Expr *pNewExpr;
001815      pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
001816      if( pOldExpr
001817       && pOldExpr->op==TK_SELECT_COLUMN
001818       && (pNewExpr = pItem->pExpr)!=0
001819      ){
001820        if( pNewExpr->pRight ){
001821          pPriorSelectColOld = pOldExpr->pRight;
001822          pPriorSelectColNew = pNewExpr->pRight;
001823          pNewExpr->pLeft = pNewExpr->pRight;
001824        }else{
001825          if( pOldExpr->pLeft!=pPriorSelectColOld ){
001826            pPriorSelectColOld = pOldExpr->pLeft;
001827            pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
001828            pNewExpr->pRight = pPriorSelectColNew;
001829          }
001830          pNewExpr->pLeft = pPriorSelectColNew;
001831        }
001832      }
001833      pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
001834      pItem->fg = pOldItem->fg;
001835      pItem->fg.done = 0;
001836      pItem->u = pOldItem->u;
001837    }
001838    return pNew;
001839  }
001840  
001841  /*
001842  ** If cursors, triggers, views and subqueries are all omitted from
001843  ** the build, then none of the following routines, except for
001844  ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
001845  ** called with a NULL argument.
001846  */
001847  #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
001848   || !defined(SQLITE_OMIT_SUBQUERY)
001849  SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
001850    SrcList *pNew;
001851    int i;
001852    int nByte;
001853    assert( db!=0 );
001854    if( p==0 ) return 0;
001855    nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
001856    pNew = sqlite3DbMallocRawNN(db, nByte );
001857    if( pNew==0 ) return 0;
001858    pNew->nSrc = pNew->nAlloc = p->nSrc;
001859    for(i=0; i<p->nSrc; i++){
001860      SrcItem *pNewItem = &pNew->a[i];
001861      const SrcItem *pOldItem = &p->a[i];
001862      Table *pTab;
001863      pNewItem->pSchema = pOldItem->pSchema;
001864      pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
001865      pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
001866      pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
001867      pNewItem->fg = pOldItem->fg;
001868      pNewItem->iCursor = pOldItem->iCursor;
001869      pNewItem->addrFillSub = pOldItem->addrFillSub;
001870      pNewItem->regReturn = pOldItem->regReturn;
001871      if( pNewItem->fg.isIndexedBy ){
001872        pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
001873      }
001874      pNewItem->u2 = pOldItem->u2;
001875      if( pNewItem->fg.isCte ){
001876        pNewItem->u2.pCteUse->nUse++;
001877      }
001878      if( pNewItem->fg.isTabFunc ){
001879        pNewItem->u1.pFuncArg =
001880            sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
001881      }
001882      pTab = pNewItem->pTab = pOldItem->pTab;
001883      if( pTab ){
001884        pTab->nTabRef++;
001885      }
001886      pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
001887      if( pOldItem->fg.isUsing ){
001888        assert( pNewItem->fg.isUsing );
001889        pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
001890      }else{
001891        pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
001892      }
001893      pNewItem->colUsed = pOldItem->colUsed;
001894    }
001895    return pNew;
001896  }
001897  IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
001898    IdList *pNew;
001899    int i;
001900    assert( db!=0 );
001901    if( p==0 ) return 0;
001902    assert( p->eU4!=EU4_EXPR );
001903    pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
001904    if( pNew==0 ) return 0;
001905    pNew->nId = p->nId;
001906    pNew->eU4 = p->eU4;
001907    for(i=0; i<p->nId; i++){
001908      struct IdList_item *pNewItem = &pNew->a[i];
001909      const struct IdList_item *pOldItem = &p->a[i];
001910      pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
001911      pNewItem->u4 = pOldItem->u4;
001912    }
001913    return pNew;
001914  }
001915  Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
001916    Select *pRet = 0;
001917    Select *pNext = 0;
001918    Select **pp = &pRet;
001919    const Select *p;
001920  
001921    assert( db!=0 );
001922    for(p=pDup; p; p=p->pPrior){
001923      Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
001924      if( pNew==0 ) break;
001925      pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
001926      pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
001927      pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
001928      pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
001929      pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
001930      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
001931      pNew->op = p->op;
001932      pNew->pNext = pNext;
001933      pNew->pPrior = 0;
001934      pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
001935      pNew->iLimit = 0;
001936      pNew->iOffset = 0;
001937      pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
001938      pNew->addrOpenEphm[0] = -1;
001939      pNew->addrOpenEphm[1] = -1;
001940      pNew->nSelectRow = p->nSelectRow;
001941      pNew->pWith = sqlite3WithDup(db, p->pWith);
001942  #ifndef SQLITE_OMIT_WINDOWFUNC
001943      pNew->pWin = 0;
001944      pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
001945      if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
001946  #endif
001947      pNew->selId = p->selId;
001948      if( db->mallocFailed ){
001949        /* Any prior OOM might have left the Select object incomplete.
001950        ** Delete the whole thing rather than allow an incomplete Select
001951        ** to be used by the code generator. */
001952        pNew->pNext = 0;
001953        sqlite3SelectDelete(db, pNew);
001954        break;
001955      }
001956      *pp = pNew;
001957      pp = &pNew->pPrior;
001958      pNext = pNew;
001959    }
001960  
001961    return pRet;
001962  }
001963  #else
001964  Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
001965    assert( p==0 );
001966    return 0;
001967  }
001968  #endif
001969  
001970  
001971  /*
001972  ** Add a new element to the end of an expression list.  If pList is
001973  ** initially NULL, then create a new expression list.
001974  **
001975  ** The pList argument must be either NULL or a pointer to an ExprList
001976  ** obtained from a prior call to sqlite3ExprListAppend().
001977  **
001978  ** If a memory allocation error occurs, the entire list is freed and
001979  ** NULL is returned.  If non-NULL is returned, then it is guaranteed
001980  ** that the new entry was successfully appended.
001981  */
001982  static const struct ExprList_item zeroItem = {0};
001983  SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
001984    sqlite3 *db,            /* Database handle.  Used for memory allocation */
001985    Expr *pExpr             /* Expression to be appended. Might be NULL */
001986  ){
001987    struct ExprList_item *pItem;
001988    ExprList *pList;
001989  
001990    pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
001991    if( pList==0 ){
001992      sqlite3ExprDelete(db, pExpr);
001993      return 0;
001994    }
001995    pList->nAlloc = 4;
001996    pList->nExpr = 1;
001997    pItem = &pList->a[0];
001998    *pItem = zeroItem;
001999    pItem->pExpr = pExpr;
002000    return pList;
002001  }
002002  SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
002003    sqlite3 *db,            /* Database handle.  Used for memory allocation */
002004    ExprList *pList,        /* List to which to append. Might be NULL */
002005    Expr *pExpr             /* Expression to be appended. Might be NULL */
002006  ){
002007    struct ExprList_item *pItem;
002008    ExprList *pNew;
002009    pList->nAlloc *= 2;
002010    pNew = sqlite3DbRealloc(db, pList,
002011         sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
002012    if( pNew==0 ){
002013      sqlite3ExprListDelete(db, pList);
002014      sqlite3ExprDelete(db, pExpr);
002015      return 0;
002016    }else{
002017      pList = pNew;
002018    }
002019    pItem = &pList->a[pList->nExpr++];
002020    *pItem = zeroItem;
002021    pItem->pExpr = pExpr;
002022    return pList;
002023  }
002024  ExprList *sqlite3ExprListAppend(
002025    Parse *pParse,          /* Parsing context */
002026    ExprList *pList,        /* List to which to append. Might be NULL */
002027    Expr *pExpr             /* Expression to be appended. Might be NULL */
002028  ){
002029    struct ExprList_item *pItem;
002030    if( pList==0 ){
002031      return sqlite3ExprListAppendNew(pParse->db,pExpr);
002032    }
002033    if( pList->nAlloc<pList->nExpr+1 ){
002034      return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
002035    }
002036    pItem = &pList->a[pList->nExpr++];
002037    *pItem = zeroItem;
002038    pItem->pExpr = pExpr;
002039    return pList;
002040  }
002041  
002042  /*
002043  ** pColumns and pExpr form a vector assignment which is part of the SET
002044  ** clause of an UPDATE statement.  Like this:
002045  **
002046  **        (a,b,c) = (expr1,expr2,expr3)
002047  ** Or:    (a,b,c) = (SELECT x,y,z FROM ....)
002048  **
002049  ** For each term of the vector assignment, append new entries to the
002050  ** expression list pList.  In the case of a subquery on the RHS, append
002051  ** TK_SELECT_COLUMN expressions.
002052  */
002053  ExprList *sqlite3ExprListAppendVector(
002054    Parse *pParse,         /* Parsing context */
002055    ExprList *pList,       /* List to which to append. Might be NULL */
002056    IdList *pColumns,      /* List of names of LHS of the assignment */
002057    Expr *pExpr            /* Vector expression to be appended. Might be NULL */
002058  ){
002059    sqlite3 *db = pParse->db;
002060    int n;
002061    int i;
002062    int iFirst = pList ? pList->nExpr : 0;
002063    /* pColumns can only be NULL due to an OOM but an OOM will cause an
002064    ** exit prior to this routine being invoked */
002065    if( NEVER(pColumns==0) ) goto vector_append_error;
002066    if( pExpr==0 ) goto vector_append_error;
002067  
002068    /* If the RHS is a vector, then we can immediately check to see that
002069    ** the size of the RHS and LHS match.  But if the RHS is a SELECT,
002070    ** wildcards ("*") in the result set of the SELECT must be expanded before
002071    ** we can do the size check, so defer the size check until code generation.
002072    */
002073    if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
002074      sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
002075                      pColumns->nId, n);
002076      goto vector_append_error;
002077    }
002078  
002079    for(i=0; i<pColumns->nId; i++){
002080      Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
002081      assert( pSubExpr!=0 || db->mallocFailed );
002082      if( pSubExpr==0 ) continue;
002083      pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
002084      if( pList ){
002085        assert( pList->nExpr==iFirst+i+1 );
002086        pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
002087        pColumns->a[i].zName = 0;
002088      }
002089    }
002090  
002091    if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
002092      Expr *pFirst = pList->a[iFirst].pExpr;
002093      assert( pFirst!=0 );
002094      assert( pFirst->op==TK_SELECT_COLUMN );
002095      
002096      /* Store the SELECT statement in pRight so it will be deleted when
002097      ** sqlite3ExprListDelete() is called */
002098      pFirst->pRight = pExpr;
002099      pExpr = 0;
002100  
002101      /* Remember the size of the LHS in iTable so that we can check that
002102      ** the RHS and LHS sizes match during code generation. */
002103      pFirst->iTable = pColumns->nId;
002104    }
002105  
002106  vector_append_error:
002107    sqlite3ExprUnmapAndDelete(pParse, pExpr);
002108    sqlite3IdListDelete(db, pColumns);
002109    return pList;
002110  }
002111  
002112  /*
002113  ** Set the sort order for the last element on the given ExprList.
002114  */
002115  void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
002116    struct ExprList_item *pItem;
002117    if( p==0 ) return;
002118    assert( p->nExpr>0 );
002119  
002120    assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
002121    assert( iSortOrder==SQLITE_SO_UNDEFINED
002122         || iSortOrder==SQLITE_SO_ASC
002123         || iSortOrder==SQLITE_SO_DESC
002124    );
002125    assert( eNulls==SQLITE_SO_UNDEFINED
002126         || eNulls==SQLITE_SO_ASC
002127         || eNulls==SQLITE_SO_DESC
002128    );
002129  
002130    pItem = &p->a[p->nExpr-1];
002131    assert( pItem->fg.bNulls==0 );
002132    if( iSortOrder==SQLITE_SO_UNDEFINED ){
002133      iSortOrder = SQLITE_SO_ASC;
002134    }
002135    pItem->fg.sortFlags = (u8)iSortOrder;
002136  
002137    if( eNulls!=SQLITE_SO_UNDEFINED ){
002138      pItem->fg.bNulls = 1;
002139      if( iSortOrder!=eNulls ){
002140        pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
002141      }
002142    }
002143  }
002144  
002145  /*
002146  ** Set the ExprList.a[].zEName element of the most recently added item
002147  ** on the expression list.
002148  **
002149  ** pList might be NULL following an OOM error.  But pName should never be
002150  ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
002151  ** is set.
002152  */
002153  void sqlite3ExprListSetName(
002154    Parse *pParse,          /* Parsing context */
002155    ExprList *pList,        /* List to which to add the span. */
002156    const Token *pName,     /* Name to be added */
002157    int dequote             /* True to cause the name to be dequoted */
002158  ){
002159    assert( pList!=0 || pParse->db->mallocFailed!=0 );
002160    assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
002161    if( pList ){
002162      struct ExprList_item *pItem;
002163      assert( pList->nExpr>0 );
002164      pItem = &pList->a[pList->nExpr-1];
002165      assert( pItem->zEName==0 );
002166      assert( pItem->fg.eEName==ENAME_NAME );
002167      pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
002168      if( dequote ){
002169        /* If dequote==0, then pName->z does not point to part of a DDL
002170        ** statement handled by the parser. And so no token need be added
002171        ** to the token-map.  */
002172        sqlite3Dequote(pItem->zEName);
002173        if( IN_RENAME_OBJECT ){
002174          sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
002175        }
002176      }
002177    }
002178  }
002179  
002180  /*
002181  ** Set the ExprList.a[].zSpan element of the most recently added item
002182  ** on the expression list.
002183  **
002184  ** pList might be NULL following an OOM error.  But pSpan should never be
002185  ** NULL.  If a memory allocation fails, the pParse->db->mallocFailed flag
002186  ** is set.
002187  */
002188  void sqlite3ExprListSetSpan(
002189    Parse *pParse,          /* Parsing context */
002190    ExprList *pList,        /* List to which to add the span. */
002191    const char *zStart,     /* Start of the span */
002192    const char *zEnd        /* End of the span */
002193  ){
002194    sqlite3 *db = pParse->db;
002195    assert( pList!=0 || db->mallocFailed!=0 );
002196    if( pList ){
002197      struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
002198      assert( pList->nExpr>0 );
002199      if( pItem->zEName==0 ){
002200        pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
002201        pItem->fg.eEName = ENAME_SPAN;
002202      }
002203    }
002204  }
002205  
002206  /*
002207  ** If the expression list pEList contains more than iLimit elements,
002208  ** leave an error message in pParse.
002209  */
002210  void sqlite3ExprListCheckLength(
002211    Parse *pParse,
002212    ExprList *pEList,
002213    const char *zObject
002214  ){
002215    int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
002216    testcase( pEList && pEList->nExpr==mx );
002217    testcase( pEList && pEList->nExpr==mx+1 );
002218    if( pEList && pEList->nExpr>mx ){
002219      sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
002220    }
002221  }
002222  
002223  /*
002224  ** Delete an entire expression list.
002225  */
002226  static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
002227    int i = pList->nExpr;
002228    struct ExprList_item *pItem =  pList->a;
002229    assert( pList->nExpr>0 );
002230    assert( db!=0 );
002231    do{
002232      sqlite3ExprDelete(db, pItem->pExpr);
002233      if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
002234      pItem++;
002235    }while( --i>0 );
002236    sqlite3DbNNFreeNN(db, pList);
002237  }
002238  void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
002239    if( pList ) exprListDeleteNN(db, pList);
002240  }
002241  void sqlite3ExprListDeleteGeneric(sqlite3 *db, void *pList){
002242    if( ALWAYS(pList) ) exprListDeleteNN(db, (ExprList*)pList);
002243  }
002244  
002245  /*
002246  ** Return the bitwise-OR of all Expr.flags fields in the given
002247  ** ExprList.
002248  */
002249  u32 sqlite3ExprListFlags(const ExprList *pList){
002250    int i;
002251    u32 m = 0;
002252    assert( pList!=0 );
002253    for(i=0; i<pList->nExpr; i++){
002254       Expr *pExpr = pList->a[i].pExpr;
002255       assert( pExpr!=0 );
002256       m |= pExpr->flags;
002257    }
002258    return m;
002259  }
002260  
002261  /*
002262  ** This is a SELECT-node callback for the expression walker that
002263  ** always "fails".  By "fail" in this case, we mean set
002264  ** pWalker->eCode to zero and abort.
002265  **
002266  ** This callback is used by multiple expression walkers.
002267  */
002268  int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
002269    UNUSED_PARAMETER(NotUsed);
002270    pWalker->eCode = 0;
002271    return WRC_Abort;
002272  }
002273  
002274  /*
002275  ** Check the input string to see if it is "true" or "false" (in any case).
002276  **
002277  **       If the string is....           Return
002278  **         "true"                         EP_IsTrue
002279  **         "false"                        EP_IsFalse
002280  **         anything else                  0
002281  */
002282  u32 sqlite3IsTrueOrFalse(const char *zIn){
002283    if( sqlite3StrICmp(zIn, "true")==0  ) return EP_IsTrue;
002284    if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
002285    return 0;
002286  }
002287  
002288  
002289  /*
002290  ** If the input expression is an ID with the name "true" or "false"
002291  ** then convert it into an TK_TRUEFALSE term.  Return non-zero if
002292  ** the conversion happened, and zero if the expression is unaltered.
002293  */
002294  int sqlite3ExprIdToTrueFalse(Expr *pExpr){
002295    u32 v;
002296    assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
002297    if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
002298     && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
002299    ){
002300      pExpr->op = TK_TRUEFALSE;
002301      ExprSetProperty(pExpr, v);
002302      return 1;
002303    }
002304    return 0;
002305  }
002306  
002307  /*
002308  ** The argument must be a TK_TRUEFALSE Expr node.  Return 1 if it is TRUE
002309  ** and 0 if it is FALSE.
002310  */
002311  int sqlite3ExprTruthValue(const Expr *pExpr){
002312    pExpr = sqlite3ExprSkipCollateAndLikely((Expr*)pExpr);
002313    assert( pExpr->op==TK_TRUEFALSE );
002314    assert( !ExprHasProperty(pExpr, EP_IntValue) );
002315    assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
002316         || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
002317    return pExpr->u.zToken[4]==0;
002318  }
002319  
002320  /*
002321  ** If pExpr is an AND or OR expression, try to simplify it by eliminating
002322  ** terms that are always true or false.  Return the simplified expression.
002323  ** Or return the original expression if no simplification is possible.
002324  **
002325  ** Examples:
002326  **
002327  **     (x<10) AND true                =>   (x<10)
002328  **     (x<10) AND false               =>   false
002329  **     (x<10) AND (y=22 OR false)     =>   (x<10) AND (y=22)
002330  **     (x<10) AND (y=22 OR true)      =>   (x<10)
002331  **     (y=22) OR true                 =>   true
002332  */
002333  Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
002334    assert( pExpr!=0 );
002335    if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
002336      Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
002337      Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
002338      if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
002339        pExpr = pExpr->op==TK_AND ? pRight : pLeft;
002340      }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
002341        pExpr = pExpr->op==TK_AND ? pLeft : pRight;
002342      }
002343    }
002344    return pExpr;
002345  }
002346  
002347  
002348  /*
002349  ** These routines are Walker callbacks used to check expressions to
002350  ** see if they are "constant" for some definition of constant.  The
002351  ** Walker.eCode value determines the type of "constant" we are looking
002352  ** for.
002353  **
002354  ** These callback routines are used to implement the following:
002355  **
002356  **     sqlite3ExprIsConstant()                  pWalker->eCode==1
002357  **     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
002358  **     sqlite3ExprIsTableConstant()             pWalker->eCode==3
002359  **     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
002360  **
002361  ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
002362  ** is found to not be a constant.
002363  **
002364  ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
002365  ** expressions in a CREATE TABLE statement.  The Walker.eCode value is 5
002366  ** when parsing an existing schema out of the sqlite_schema table and 4
002367  ** when processing a new CREATE TABLE statement.  A bound parameter raises
002368  ** an error for new statements, but is silently converted
002369  ** to NULL for existing schemas.  This allows sqlite_schema tables that
002370  ** contain a bound parameter because they were generated by older versions
002371  ** of SQLite to be parsed by newer versions of SQLite without raising a
002372  ** malformed schema error.
002373  */
002374  static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
002375  
002376    /* If pWalker->eCode is 2 then any term of the expression that comes from
002377    ** the ON or USING clauses of an outer join disqualifies the expression
002378    ** from being considered constant. */
002379    if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
002380      pWalker->eCode = 0;
002381      return WRC_Abort;
002382    }
002383  
002384    switch( pExpr->op ){
002385      /* Consider functions to be constant if all their arguments are constant
002386      ** and either pWalker->eCode==4 or 5 or the function has the
002387      ** SQLITE_FUNC_CONST flag. */
002388      case TK_FUNCTION:
002389        if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
002390         && !ExprHasProperty(pExpr, EP_WinFunc)
002391        ){
002392          if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
002393          return WRC_Continue;
002394        }else{
002395          pWalker->eCode = 0;
002396          return WRC_Abort;
002397        }
002398      case TK_ID:
002399        /* Convert "true" or "false" in a DEFAULT clause into the
002400        ** appropriate TK_TRUEFALSE operator */
002401        if( sqlite3ExprIdToTrueFalse(pExpr) ){
002402          return WRC_Prune;
002403        }
002404        /* no break */ deliberate_fall_through
002405      case TK_COLUMN:
002406      case TK_AGG_FUNCTION:
002407      case TK_AGG_COLUMN:
002408        testcase( pExpr->op==TK_ID );
002409        testcase( pExpr->op==TK_COLUMN );
002410        testcase( pExpr->op==TK_AGG_FUNCTION );
002411        testcase( pExpr->op==TK_AGG_COLUMN );
002412        if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
002413          return WRC_Continue;
002414        }
002415        if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
002416          return WRC_Continue;
002417        }
002418        /* no break */ deliberate_fall_through
002419      case TK_IF_NULL_ROW:
002420      case TK_REGISTER:
002421      case TK_DOT:
002422        testcase( pExpr->op==TK_REGISTER );
002423        testcase( pExpr->op==TK_IF_NULL_ROW );
002424        testcase( pExpr->op==TK_DOT );
002425        pWalker->eCode = 0;
002426        return WRC_Abort;
002427      case TK_VARIABLE:
002428        if( pWalker->eCode==5 ){
002429          /* Silently convert bound parameters that appear inside of CREATE
002430          ** statements into a NULL when parsing the CREATE statement text out
002431          ** of the sqlite_schema table */
002432          pExpr->op = TK_NULL;
002433        }else if( pWalker->eCode==4 ){
002434          /* A bound parameter in a CREATE statement that originates from
002435          ** sqlite3_prepare() causes an error */
002436          pWalker->eCode = 0;
002437          return WRC_Abort;
002438        }
002439        /* no break */ deliberate_fall_through
002440      default:
002441        testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
002442        testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
002443        return WRC_Continue;
002444    }
002445  }
002446  static int exprIsConst(Expr *p, int initFlag, int iCur){
002447    Walker w;
002448    w.eCode = initFlag;
002449    w.xExprCallback = exprNodeIsConstant;
002450    w.xSelectCallback = sqlite3SelectWalkFail;
002451  #ifdef SQLITE_DEBUG
002452    w.xSelectCallback2 = sqlite3SelectWalkAssert2;
002453  #endif
002454    w.u.iCur = iCur;
002455    sqlite3WalkExpr(&w, p);
002456    return w.eCode;
002457  }
002458  
002459  /*
002460  ** Walk an expression tree.  Return non-zero if the expression is constant
002461  ** and 0 if it involves variables or function calls.
002462  **
002463  ** For the purposes of this function, a double-quoted string (ex: "abc")
002464  ** is considered a variable but a single-quoted string (ex: 'abc') is
002465  ** a constant.
002466  */
002467  int sqlite3ExprIsConstant(Expr *p){
002468    return exprIsConst(p, 1, 0);
002469  }
002470  
002471  /*
002472  ** Walk an expression tree.  Return non-zero if
002473  **
002474  **   (1) the expression is constant, and
002475  **   (2) the expression does originate in the ON or USING clause
002476  **       of a LEFT JOIN, and
002477  **   (3) the expression does not contain any EP_FixedCol TK_COLUMN
002478  **       operands created by the constant propagation optimization.
002479  **
002480  ** When this routine returns true, it indicates that the expression
002481  ** can be added to the pParse->pConstExpr list and evaluated once when
002482  ** the prepared statement starts up.  See sqlite3ExprCodeRunJustOnce().
002483  */
002484  int sqlite3ExprIsConstantNotJoin(Expr *p){
002485    return exprIsConst(p, 2, 0);
002486  }
002487  
002488  /*
002489  ** Walk an expression tree.  Return non-zero if the expression is constant
002490  ** for any single row of the table with cursor iCur.  In other words, the
002491  ** expression must not refer to any non-deterministic function nor any
002492  ** table other than iCur.
002493  */
002494  int sqlite3ExprIsTableConstant(Expr *p, int iCur){
002495    return exprIsConst(p, 3, iCur);
002496  }
002497  
002498  /*
002499  ** Check pExpr to see if it is an constraint on the single data source
002500  ** pSrc = &pSrcList->a[iSrc].  In other words, check to see if pExpr
002501  ** constrains pSrc but does not depend on any other tables or data
002502  ** sources anywhere else in the query.  Return true (non-zero) if pExpr
002503  ** is a constraint on pSrc only.
002504  **
002505  ** This is an optimization.  False negatives will perhaps cause slower
002506  ** queries, but false positives will yield incorrect answers.  So when in
002507  ** doubt, return 0.
002508  **
002509  ** To be an single-source constraint, the following must be true:
002510  **
002511  **   (1)  pExpr cannot refer to any table other than pSrc->iCursor.
002512  **
002513  **   (2)  pExpr cannot use subqueries or non-deterministic functions.
002514  **
002515  **   (3)  pSrc cannot be part of the left operand for a RIGHT JOIN.
002516  **        (Is there some way to relax this constraint?)
002517  **
002518  **   (4)  If pSrc is the right operand of a LEFT JOIN, then...
002519  **         (4a)  pExpr must come from an ON clause..
002520  **         (4b)  and specifically the ON clause associated with the LEFT JOIN.
002521  **
002522  **   (5)  If pSrc is not the right operand of a LEFT JOIN or the left
002523  **        operand of a RIGHT JOIN, then pExpr must be from the WHERE
002524  **        clause, not an ON clause.
002525  **
002526  **   (6) Either:
002527  **
002528  **       (6a) pExpr does not originate in an ON or USING clause, or
002529  **
002530  **       (6b) The ON or USING clause from which pExpr is derived is
002531  **            not to the left of a RIGHT JOIN (or FULL JOIN).
002532  **
002533  **       Without this restriction, accepting pExpr as a single-table
002534  **       constraint might move the the ON/USING filter expression
002535  **       from the left side of a RIGHT JOIN over to the right side,
002536  **       which leads to incorrect answers.  See also restriction (9)
002537  **       on push-down.
002538  */
002539  int sqlite3ExprIsSingleTableConstraint(
002540    Expr *pExpr,                 /* The constraint */
002541    const SrcList *pSrcList,     /* Complete FROM clause */
002542    int iSrc                     /* Which element of pSrcList to use */
002543  ){
002544    const SrcItem *pSrc = &pSrcList->a[iSrc];
002545    if( pSrc->fg.jointype & JT_LTORJ ){
002546      return 0;  /* rule (3) */
002547    }
002548    if( pSrc->fg.jointype & JT_LEFT ){
002549      if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0;   /* rule (4a) */
002550      if( pExpr->w.iJoin!=pSrc->iCursor ) return 0;         /* rule (4b) */
002551    }else{
002552      if( ExprHasProperty(pExpr, EP_OuterON) ) return 0;    /* rule (5) */
002553    }
002554    if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)  /* (6a) */
002555     && (pSrcList->a[0].fg.jointype & JT_LTORJ)!=0     /* Fast pre-test of (6b) */
002556    ){
002557      int jj;
002558      for(jj=0; jj<iSrc; jj++){
002559        if( pExpr->w.iJoin==pSrcList->a[jj].iCursor ){
002560          if( (pSrcList->a[jj].fg.jointype & JT_LTORJ)!=0 ){
002561            return 0;  /* restriction (6) */
002562          }
002563          break;
002564        }
002565      }
002566    }
002567    return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
002568  }
002569  
002570  
002571  /*
002572  ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
002573  */
002574  static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
002575    ExprList *pGroupBy = pWalker->u.pGroupBy;
002576    int i;
002577  
002578    /* Check if pExpr is identical to any GROUP BY term. If so, consider
002579    ** it constant.  */
002580    for(i=0; i<pGroupBy->nExpr; i++){
002581      Expr *p = pGroupBy->a[i].pExpr;
002582      if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
002583        CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
002584        if( sqlite3IsBinary(pColl) ){
002585          return WRC_Prune;
002586        }
002587      }
002588    }
002589  
002590    /* Check if pExpr is a sub-select. If so, consider it variable. */
002591    if( ExprUseXSelect(pExpr) ){
002592      pWalker->eCode = 0;
002593      return WRC_Abort;
002594    }
002595  
002596    return exprNodeIsConstant(pWalker, pExpr);
002597  }
002598  
002599  /*
002600  ** Walk the expression tree passed as the first argument. Return non-zero
002601  ** if the expression consists entirely of constants or copies of terms
002602  ** in pGroupBy that sort with the BINARY collation sequence.
002603  **
002604  ** This routine is used to determine if a term of the HAVING clause can
002605  ** be promoted into the WHERE clause.  In order for such a promotion to work,
002606  ** the value of the HAVING clause term must be the same for all members of
002607  ** a "group".  The requirement that the GROUP BY term must be BINARY
002608  ** assumes that no other collating sequence will have a finer-grained
002609  ** grouping than binary.  In other words (A=B COLLATE binary) implies
002610  ** A=B in every other collating sequence.  The requirement that the
002611  ** GROUP BY be BINARY is stricter than necessary.  It would also work
002612  ** to promote HAVING clauses that use the same alternative collating
002613  ** sequence as the GROUP BY term, but that is much harder to check,
002614  ** alternative collating sequences are uncommon, and this is only an
002615  ** optimization, so we take the easy way out and simply require the
002616  ** GROUP BY to use the BINARY collating sequence.
002617  */
002618  int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
002619    Walker w;
002620    w.eCode = 1;
002621    w.xExprCallback = exprNodeIsConstantOrGroupBy;
002622    w.xSelectCallback = 0;
002623    w.u.pGroupBy = pGroupBy;
002624    w.pParse = pParse;
002625    sqlite3WalkExpr(&w, p);
002626    return w.eCode;
002627  }
002628  
002629  /*
002630  ** Walk an expression tree for the DEFAULT field of a column definition
002631  ** in a CREATE TABLE statement.  Return non-zero if the expression is
002632  ** acceptable for use as a DEFAULT.  That is to say, return non-zero if
002633  ** the expression is constant or a function call with constant arguments.
002634  ** Return and 0 if there are any variables.
002635  **
002636  ** isInit is true when parsing from sqlite_schema.  isInit is false when
002637  ** processing a new CREATE TABLE statement.  When isInit is true, parameters
002638  ** (such as ? or $abc) in the expression are converted into NULL.  When
002639  ** isInit is false, parameters raise an error.  Parameters should not be
002640  ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
002641  ** allowed it, so we need to support it when reading sqlite_schema for
002642  ** backwards compatibility.
002643  **
002644  ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
002645  **
002646  ** For the purposes of this function, a double-quoted string (ex: "abc")
002647  ** is considered a variable but a single-quoted string (ex: 'abc') is
002648  ** a constant.
002649  */
002650  int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
002651    assert( isInit==0 || isInit==1 );
002652    return exprIsConst(p, 4+isInit, 0);
002653  }
002654  
002655  #ifdef SQLITE_ENABLE_CURSOR_HINTS
002656  /*
002657  ** Walk an expression tree.  Return 1 if the expression contains a
002658  ** subquery of some kind.  Return 0 if there are no subqueries.
002659  */
002660  int sqlite3ExprContainsSubquery(Expr *p){
002661    Walker w;
002662    w.eCode = 1;
002663    w.xExprCallback = sqlite3ExprWalkNoop;
002664    w.xSelectCallback = sqlite3SelectWalkFail;
002665  #ifdef SQLITE_DEBUG
002666    w.xSelectCallback2 = sqlite3SelectWalkAssert2;
002667  #endif
002668    sqlite3WalkExpr(&w, p);
002669    return w.eCode==0;
002670  }
002671  #endif
002672  
002673  /*
002674  ** If the expression p codes a constant integer that is small enough
002675  ** to fit in a 32-bit integer, return 1 and put the value of the integer
002676  ** in *pValue.  If the expression is not an integer or if it is too big
002677  ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
002678  */
002679  int sqlite3ExprIsInteger(const Expr *p, int *pValue){
002680    int rc = 0;
002681    if( NEVER(p==0) ) return 0;  /* Used to only happen following on OOM */
002682  
002683    /* If an expression is an integer literal that fits in a signed 32-bit
002684    ** integer, then the EP_IntValue flag will have already been set */
002685    assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
002686             || sqlite3GetInt32(p->u.zToken, &rc)==0 );
002687  
002688    if( p->flags & EP_IntValue ){
002689      *pValue = p->u.iValue;
002690      return 1;
002691    }
002692    switch( p->op ){
002693      case TK_UPLUS: {
002694        rc = sqlite3ExprIsInteger(p->pLeft, pValue);
002695        break;
002696      }
002697      case TK_UMINUS: {
002698        int v = 0;
002699        if( sqlite3ExprIsInteger(p->pLeft, &v) ){
002700          assert( ((unsigned int)v)!=0x80000000 );
002701          *pValue = -v;
002702          rc = 1;
002703        }
002704        break;
002705      }
002706      default: break;
002707    }
002708    return rc;
002709  }
002710  
002711  /*
002712  ** Return FALSE if there is no chance that the expression can be NULL.
002713  **
002714  ** If the expression might be NULL or if the expression is too complex
002715  ** to tell return TRUE. 
002716  **
002717  ** This routine is used as an optimization, to skip OP_IsNull opcodes
002718  ** when we know that a value cannot be NULL.  Hence, a false positive
002719  ** (returning TRUE when in fact the expression can never be NULL) might
002720  ** be a small performance hit but is otherwise harmless.  On the other
002721  ** hand, a false negative (returning FALSE when the result could be NULL)
002722  ** will likely result in an incorrect answer.  So when in doubt, return
002723  ** TRUE.
002724  */
002725  int sqlite3ExprCanBeNull(const Expr *p){
002726    u8 op;
002727    assert( p!=0 );
002728    while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
002729      p = p->pLeft;
002730      assert( p!=0 );
002731    }
002732    op = p->op;
002733    if( op==TK_REGISTER ) op = p->op2;
002734    switch( op ){
002735      case TK_INTEGER:
002736      case TK_STRING:
002737      case TK_FLOAT:
002738      case TK_BLOB:
002739        return 0;
002740      case TK_COLUMN:
002741        assert( ExprUseYTab(p) );
002742        return ExprHasProperty(p, EP_CanBeNull) ||
002743               NEVER(p->y.pTab==0) ||  /* Reference to column of index on expr */
002744               (p->iColumn>=0
002745                && p->y.pTab->aCol!=0 /* Possible due to prior error */
002746                && ALWAYS(p->iColumn<p->y.pTab->nCol)
002747                && p->y.pTab->aCol[p->iColumn].notNull==0);
002748      default:
002749        return 1;
002750    }
002751  }
002752  
002753  /*
002754  ** Return TRUE if the given expression is a constant which would be
002755  ** unchanged by OP_Affinity with the affinity given in the second
002756  ** argument.
002757  **
002758  ** This routine is used to determine if the OP_Affinity operation
002759  ** can be omitted.  When in doubt return FALSE.  A false negative
002760  ** is harmless.  A false positive, however, can result in the wrong
002761  ** answer.
002762  */
002763  int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
002764    u8 op;
002765    int unaryMinus = 0;
002766    if( aff==SQLITE_AFF_BLOB ) return 1;
002767    while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
002768      if( p->op==TK_UMINUS ) unaryMinus = 1;
002769      p = p->pLeft;
002770    }
002771    op = p->op;
002772    if( op==TK_REGISTER ) op = p->op2;
002773    switch( op ){
002774      case TK_INTEGER: {
002775        return aff>=SQLITE_AFF_NUMERIC;
002776      }
002777      case TK_FLOAT: {
002778        return aff>=SQLITE_AFF_NUMERIC;
002779      }
002780      case TK_STRING: {
002781        return !unaryMinus && aff==SQLITE_AFF_TEXT;
002782      }
002783      case TK_BLOB: {
002784        return !unaryMinus;
002785      }
002786      case TK_COLUMN: {
002787        assert( p->iTable>=0 );  /* p cannot be part of a CHECK constraint */
002788        return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
002789      }
002790      default: {
002791        return 0;
002792      }
002793    }
002794  }
002795  
002796  /*
002797  ** Return TRUE if the given string is a row-id column name.
002798  */
002799  int sqlite3IsRowid(const char *z){
002800    if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
002801    if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
002802    if( sqlite3StrICmp(z, "OID")==0 ) return 1;
002803    return 0;
002804  }
002805  
002806  /*
002807  ** Return a pointer to a buffer containing a usable rowid alias for table
002808  ** pTab. An alias is usable if there is not an explicit user-defined column 
002809  ** of the same name.
002810  */
002811  const char *sqlite3RowidAlias(Table *pTab){
002812    const char *azOpt[] = {"_ROWID_", "ROWID", "OID"};
002813    int ii;
002814    assert( VisibleRowid(pTab) );
002815    for(ii=0; ii<ArraySize(azOpt); ii++){
002816      int iCol;
002817      for(iCol=0; iCol<pTab->nCol; iCol++){
002818        if( sqlite3_stricmp(azOpt[ii], pTab->aCol[iCol].zCnName)==0 ) break;
002819      }
002820      if( iCol==pTab->nCol ){
002821        return azOpt[ii];
002822      }
002823    }
002824    return 0;
002825  }
002826  
002827  /*
002828  ** pX is the RHS of an IN operator.  If pX is a SELECT statement
002829  ** that can be simplified to a direct table access, then return
002830  ** a pointer to the SELECT statement.  If pX is not a SELECT statement,
002831  ** or if the SELECT statement needs to be materialized into a transient
002832  ** table, then return NULL.
002833  */
002834  #ifndef SQLITE_OMIT_SUBQUERY
002835  static Select *isCandidateForInOpt(const Expr *pX){
002836    Select *p;
002837    SrcList *pSrc;
002838    ExprList *pEList;
002839    Table *pTab;
002840    int i;
002841    if( !ExprUseXSelect(pX) ) return 0;                 /* Not a subquery */
002842    if( ExprHasProperty(pX, EP_VarSelect)  ) return 0;  /* Correlated subq */
002843    p = pX->x.pSelect;
002844    if( p->pPrior ) return 0;              /* Not a compound SELECT */
002845    if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
002846      testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
002847      testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
002848      return 0; /* No DISTINCT keyword and no aggregate functions */
002849    }
002850    assert( p->pGroupBy==0 );              /* Has no GROUP BY clause */
002851    if( p->pLimit ) return 0;              /* Has no LIMIT clause */
002852    if( p->pWhere ) return 0;              /* Has no WHERE clause */
002853    pSrc = p->pSrc;
002854    assert( pSrc!=0 );
002855    if( pSrc->nSrc!=1 ) return 0;          /* Single term in FROM clause */
002856    if( pSrc->a[0].pSelect ) return 0;     /* FROM is not a subquery or view */
002857    pTab = pSrc->a[0].pTab;
002858    assert( pTab!=0 );
002859    assert( !IsView(pTab)  );              /* FROM clause is not a view */
002860    if( IsVirtual(pTab) ) return 0;        /* FROM clause not a virtual table */
002861    pEList = p->pEList;
002862    assert( pEList!=0 );
002863    /* All SELECT results must be columns. */
002864    for(i=0; i<pEList->nExpr; i++){
002865      Expr *pRes = pEList->a[i].pExpr;
002866      if( pRes->op!=TK_COLUMN ) return 0;
002867      assert( pRes->iTable==pSrc->a[0].iCursor );  /* Not a correlated subquery */
002868    }
002869    return p;
002870  }
002871  #endif /* SQLITE_OMIT_SUBQUERY */
002872  
002873  #ifndef SQLITE_OMIT_SUBQUERY
002874  /*
002875  ** Generate code that checks the left-most column of index table iCur to see if
002876  ** it contains any NULL entries.  Cause the register at regHasNull to be set
002877  ** to a non-NULL value if iCur contains no NULLs.  Cause register regHasNull
002878  ** to be set to NULL if iCur contains one or more NULL values.
002879  */
002880  static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
002881    int addr1;
002882    sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
002883    addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
002884    sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
002885    sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
002886    VdbeComment((v, "first_entry_in(%d)", iCur));
002887    sqlite3VdbeJumpHere(v, addr1);
002888  }
002889  #endif
002890  
002891  
002892  #ifndef SQLITE_OMIT_SUBQUERY
002893  /*
002894  ** The argument is an IN operator with a list (not a subquery) on the
002895  ** right-hand side.  Return TRUE if that list is constant.
002896  */
002897  static int sqlite3InRhsIsConstant(Expr *pIn){
002898    Expr *pLHS;
002899    int res;
002900    assert( !ExprHasProperty(pIn, EP_xIsSelect) );
002901    pLHS = pIn->pLeft;
002902    pIn->pLeft = 0;
002903    res = sqlite3ExprIsConstant(pIn);
002904    pIn->pLeft = pLHS;
002905    return res;
002906  }
002907  #endif
002908  
002909  /*
002910  ** This function is used by the implementation of the IN (...) operator.
002911  ** The pX parameter is the expression on the RHS of the IN operator, which
002912  ** might be either a list of expressions or a subquery.
002913  **
002914  ** The job of this routine is to find or create a b-tree object that can
002915  ** be used either to test for membership in the RHS set or to iterate through
002916  ** all members of the RHS set, skipping duplicates.
002917  **
002918  ** A cursor is opened on the b-tree object that is the RHS of the IN operator
002919  ** and the *piTab parameter is set to the index of that cursor.
002920  **
002921  ** The returned value of this function indicates the b-tree type, as follows:
002922  **
002923  **   IN_INDEX_ROWID      - The cursor was opened on a database table.
002924  **   IN_INDEX_INDEX_ASC  - The cursor was opened on an ascending index.
002925  **   IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
002926  **   IN_INDEX_EPH        - The cursor was opened on a specially created and
002927  **                         populated ephemeral table.
002928  **   IN_INDEX_NOOP       - No cursor was allocated.  The IN operator must be
002929  **                         implemented as a sequence of comparisons.
002930  **
002931  ** An existing b-tree might be used if the RHS expression pX is a simple
002932  ** subquery such as:
002933  **
002934  **     SELECT <column1>, <column2>... FROM <table>
002935  **
002936  ** If the RHS of the IN operator is a list or a more complex subquery, then
002937  ** an ephemeral table might need to be generated from the RHS and then
002938  ** pX->iTable made to point to the ephemeral table instead of an
002939  ** existing table.  In this case, the creation and initialization of the
002940  ** ephemeral table might be put inside of a subroutine, the EP_Subrtn flag
002941  ** will be set on pX and the pX->y.sub fields will be set to show where
002942  ** the subroutine is coded.
002943  **
002944  ** The inFlags parameter must contain, at a minimum, one of the bits
002945  ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both.  If inFlags contains
002946  ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
002947  ** membership test.  When the IN_INDEX_LOOP bit is set, the IN index will
002948  ** be used to loop over all values of the RHS of the IN operator.
002949  **
002950  ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
002951  ** through the set members) then the b-tree must not contain duplicates.
002952  ** An ephemeral table will be created unless the selected columns are guaranteed
002953  ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
002954  ** a UNIQUE constraint or index.
002955  **
002956  ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
002957  ** for fast set membership tests) then an ephemeral table must
002958  ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
002959  ** index can be found with the specified <columns> as its left-most.
002960  **
002961  ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
002962  ** if the RHS of the IN operator is a list (not a subquery) then this
002963  ** routine might decide that creating an ephemeral b-tree for membership
002964  ** testing is too expensive and return IN_INDEX_NOOP.  In that case, the
002965  ** calling routine should implement the IN operator using a sequence
002966  ** of Eq or Ne comparison operations.
002967  **
002968  ** When the b-tree is being used for membership tests, the calling function
002969  ** might need to know whether or not the RHS side of the IN operator
002970  ** contains a NULL.  If prRhsHasNull is not a NULL pointer and
002971  ** if there is any chance that the (...) might contain a NULL value at
002972  ** runtime, then a register is allocated and the register number written
002973  ** to *prRhsHasNull. If there is no chance that the (...) contains a
002974  ** NULL value, then *prRhsHasNull is left unchanged.
002975  **
002976  ** If a register is allocated and its location stored in *prRhsHasNull, then
002977  ** the value in that register will be NULL if the b-tree contains one or more
002978  ** NULL values, and it will be some non-NULL value if the b-tree contains no
002979  ** NULL values.
002980  **
002981  ** If the aiMap parameter is not NULL, it must point to an array containing
002982  ** one element for each column returned by the SELECT statement on the RHS
002983  ** of the IN(...) operator. The i'th entry of the array is populated with the
002984  ** offset of the index column that matches the i'th column returned by the
002985  ** SELECT. For example, if the expression and selected index are:
002986  **
002987  **   (?,?,?) IN (SELECT a, b, c FROM t1)
002988  **   CREATE INDEX i1 ON t1(b, c, a);
002989  **
002990  ** then aiMap[] is populated with {2, 0, 1}.
002991  */
002992  #ifndef SQLITE_OMIT_SUBQUERY
002993  int sqlite3FindInIndex(
002994    Parse *pParse,             /* Parsing context */
002995    Expr *pX,                  /* The IN expression */
002996    u32 inFlags,               /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
002997    int *prRhsHasNull,         /* Register holding NULL status.  See notes */
002998    int *aiMap,                /* Mapping from Index fields to RHS fields */
002999    int *piTab                 /* OUT: index to use */
003000  ){
003001    Select *p;                            /* SELECT to the right of IN operator */
003002    int eType = 0;                        /* Type of RHS table. IN_INDEX_* */
003003    int iTab;                             /* Cursor of the RHS table */
003004    int mustBeUnique;                     /* True if RHS must be unique */
003005    Vdbe *v = sqlite3GetVdbe(pParse);     /* Virtual machine being coded */
003006  
003007    assert( pX->op==TK_IN );
003008    mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
003009    iTab = pParse->nTab++;
003010  
003011    /* If the RHS of this IN(...) operator is a SELECT, and if it matters
003012    ** whether or not the SELECT result contains NULL values, check whether
003013    ** or not NULL is actually possible (it may not be, for example, due
003014    ** to NOT NULL constraints in the schema). If no NULL values are possible,
003015    ** set prRhsHasNull to 0 before continuing.  */
003016    if( prRhsHasNull && ExprUseXSelect(pX) ){
003017      int i;
003018      ExprList *pEList = pX->x.pSelect->pEList;
003019      for(i=0; i<pEList->nExpr; i++){
003020        if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
003021      }
003022      if( i==pEList->nExpr ){
003023        prRhsHasNull = 0;
003024      }
003025    }
003026  
003027    /* Check to see if an existing table or index can be used to
003028    ** satisfy the query.  This is preferable to generating a new
003029    ** ephemeral table.  */
003030    if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
003031      sqlite3 *db = pParse->db;              /* Database connection */
003032      Table *pTab;                           /* Table <table>. */
003033      int iDb;                               /* Database idx for pTab */
003034      ExprList *pEList = p->pEList;
003035      int nExpr = pEList->nExpr;
003036  
003037      assert( p->pEList!=0 );             /* Because of isCandidateForInOpt(p) */
003038      assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
003039      assert( p->pSrc!=0 );               /* Because of isCandidateForInOpt(p) */
003040      pTab = p->pSrc->a[0].pTab;
003041  
003042      /* Code an OP_Transaction and OP_TableLock for <table>. */
003043      iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
003044      assert( iDb>=0 && iDb<SQLITE_MAX_DB );
003045      sqlite3CodeVerifySchema(pParse, iDb);
003046      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
003047  
003048      assert(v);  /* sqlite3GetVdbe() has always been previously called */
003049      if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
003050        /* The "x IN (SELECT rowid FROM table)" case */
003051        int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
003052        VdbeCoverage(v);
003053  
003054        sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
003055        eType = IN_INDEX_ROWID;
003056        ExplainQueryPlan((pParse, 0,
003057              "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
003058        sqlite3VdbeJumpHere(v, iAddr);
003059      }else{
003060        Index *pIdx;                         /* Iterator variable */
003061        int affinity_ok = 1;
003062        int i;
003063  
003064        /* Check that the affinity that will be used to perform each
003065        ** comparison is the same as the affinity of each column in table
003066        ** on the RHS of the IN operator.  If it not, it is not possible to
003067        ** use any index of the RHS table.  */
003068        for(i=0; i<nExpr && affinity_ok; i++){
003069          Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
003070          int iCol = pEList->a[i].pExpr->iColumn;
003071          char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
003072          char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
003073          testcase( cmpaff==SQLITE_AFF_BLOB );
003074          testcase( cmpaff==SQLITE_AFF_TEXT );
003075          switch( cmpaff ){
003076            case SQLITE_AFF_BLOB:
003077              break;
003078            case SQLITE_AFF_TEXT:
003079              /* sqlite3CompareAffinity() only returns TEXT if one side or the
003080              ** other has no affinity and the other side is TEXT.  Hence,
003081              ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
003082              ** and for the term on the LHS of the IN to have no affinity. */
003083              assert( idxaff==SQLITE_AFF_TEXT );
003084              break;
003085            default:
003086              affinity_ok = sqlite3IsNumericAffinity(idxaff);
003087          }
003088        }
003089  
003090        if( affinity_ok ){
003091          /* Search for an existing index that will work for this IN operator */
003092          for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
003093            Bitmask colUsed;      /* Columns of the index used */
003094            Bitmask mCol;         /* Mask for the current column */
003095            if( pIdx->nColumn<nExpr ) continue;
003096            if( pIdx->pPartIdxWhere!=0 ) continue;
003097            /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
003098            ** BITMASK(nExpr) without overflowing */
003099            testcase( pIdx->nColumn==BMS-2 );
003100            testcase( pIdx->nColumn==BMS-1 );
003101            if( pIdx->nColumn>=BMS-1 ) continue;
003102            if( mustBeUnique ){
003103              if( pIdx->nKeyCol>nExpr
003104               ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
003105              ){
003106                continue;  /* This index is not unique over the IN RHS columns */
003107              }
003108            }
003109   
003110            colUsed = 0;   /* Columns of index used so far */
003111            for(i=0; i<nExpr; i++){
003112              Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
003113              Expr *pRhs = pEList->a[i].pExpr;
003114              CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
003115              int j;
003116   
003117              for(j=0; j<nExpr; j++){
003118                if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
003119                assert( pIdx->azColl[j] );
003120                if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
003121                  continue;
003122                }
003123                break;
003124              }
003125              if( j==nExpr ) break;
003126              mCol = MASKBIT(j);
003127              if( mCol & colUsed ) break; /* Each column used only once */
003128              colUsed |= mCol;
003129              if( aiMap ) aiMap[i] = j;
003130            }
003131   
003132            assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
003133            if( colUsed==(MASKBIT(nExpr)-1) ){
003134              /* If we reach this point, that means the index pIdx is usable */
003135              int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003136              ExplainQueryPlan((pParse, 0,
003137                                "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
003138              sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
003139              sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
003140              VdbeComment((v, "%s", pIdx->zName));
003141              assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
003142              eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
003143   
003144              if( prRhsHasNull ){
003145  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
003146                i64 mask = (1<<nExpr)-1;
003147                sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
003148                    iTab, 0, 0, (u8*)&mask, P4_INT64);
003149  #endif
003150                *prRhsHasNull = ++pParse->nMem;
003151                if( nExpr==1 ){
003152                  sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
003153                }
003154              }
003155              sqlite3VdbeJumpHere(v, iAddr);
003156            }
003157          } /* End loop over indexes */
003158        } /* End if( affinity_ok ) */
003159      } /* End if not an rowid index */
003160    } /* End attempt to optimize using an index */
003161  
003162    /* If no preexisting index is available for the IN clause
003163    ** and IN_INDEX_NOOP is an allowed reply
003164    ** and the RHS of the IN operator is a list, not a subquery
003165    ** and the RHS is not constant or has two or fewer terms,
003166    ** then it is not worth creating an ephemeral table to evaluate
003167    ** the IN operator so return IN_INDEX_NOOP.
003168    */
003169    if( eType==0
003170     && (inFlags & IN_INDEX_NOOP_OK)
003171     && ExprUseXList(pX)
003172     && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
003173    ){
003174      pParse->nTab--;  /* Back out the allocation of the unused cursor */
003175      iTab = -1;       /* Cursor is not allocated */
003176      eType = IN_INDEX_NOOP;
003177    }
003178  
003179    if( eType==0 ){
003180      /* Could not find an existing table or index to use as the RHS b-tree.
003181      ** We will have to generate an ephemeral table to do the job.
003182      */
003183      u32 savedNQueryLoop = pParse->nQueryLoop;
003184      int rMayHaveNull = 0;
003185      eType = IN_INDEX_EPH;
003186      if( inFlags & IN_INDEX_LOOP ){
003187        pParse->nQueryLoop = 0;
003188      }else if( prRhsHasNull ){
003189        *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
003190      }
003191      assert( pX->op==TK_IN );
003192      sqlite3CodeRhsOfIN(pParse, pX, iTab);
003193      if( rMayHaveNull ){
003194        sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
003195      }
003196      pParse->nQueryLoop = savedNQueryLoop;
003197    }
003198  
003199    if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
003200      int i, n;
003201      n = sqlite3ExprVectorSize(pX->pLeft);
003202      for(i=0; i<n; i++) aiMap[i] = i;
003203    }
003204    *piTab = iTab;
003205    return eType;
003206  }
003207  #endif
003208  
003209  #ifndef SQLITE_OMIT_SUBQUERY
003210  /*
003211  ** Argument pExpr is an (?, ?...) IN(...) expression. This
003212  ** function allocates and returns a nul-terminated string containing
003213  ** the affinities to be used for each column of the comparison.
003214  **
003215  ** It is the responsibility of the caller to ensure that the returned
003216  ** string is eventually freed using sqlite3DbFree().
003217  */
003218  static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
003219    Expr *pLeft = pExpr->pLeft;
003220    int nVal = sqlite3ExprVectorSize(pLeft);
003221    Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
003222    char *zRet;
003223  
003224    assert( pExpr->op==TK_IN );
003225    zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
003226    if( zRet ){
003227      int i;
003228      for(i=0; i<nVal; i++){
003229        Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
003230        char a = sqlite3ExprAffinity(pA);
003231        if( pSelect ){
003232          zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
003233        }else{
003234          zRet[i] = a;
003235        }
003236      }
003237      zRet[nVal] = '\0';
003238    }
003239    return zRet;
003240  }
003241  #endif
003242  
003243  #ifndef SQLITE_OMIT_SUBQUERY
003244  /*
003245  ** Load the Parse object passed as the first argument with an error
003246  ** message of the form:
003247  **
003248  **   "sub-select returns N columns - expected M"
003249  */  
003250  void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
003251    if( pParse->nErr==0 ){
003252      const char *zFmt = "sub-select returns %d columns - expected %d";
003253      sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
003254    }
003255  }
003256  #endif
003257  
003258  /*
003259  ** Expression pExpr is a vector that has been used in a context where
003260  ** it is not permitted. If pExpr is a sub-select vector, this routine
003261  ** loads the Parse object with a message of the form:
003262  **
003263  **   "sub-select returns N columns - expected 1"
003264  **
003265  ** Or, if it is a regular scalar vector:
003266  **
003267  **   "row value misused"
003268  */  
003269  void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
003270  #ifndef SQLITE_OMIT_SUBQUERY
003271    if( ExprUseXSelect(pExpr) ){
003272      sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
003273    }else
003274  #endif
003275    {
003276      sqlite3ErrorMsg(pParse, "row value misused");
003277    }
003278  }
003279  
003280  #ifndef SQLITE_OMIT_SUBQUERY
003281  /*
003282  ** Generate code that will construct an ephemeral table containing all terms
003283  ** in the RHS of an IN operator.  The IN operator can be in either of two
003284  ** forms:
003285  **
003286  **     x IN (4,5,11)              -- IN operator with list on right-hand side
003287  **     x IN (SELECT a FROM b)     -- IN operator with subquery on the right
003288  **
003289  ** The pExpr parameter is the IN operator.  The cursor number for the
003290  ** constructed ephemeral table is returned.  The first time the ephemeral
003291  ** table is computed, the cursor number is also stored in pExpr->iTable,
003292  ** however the cursor number returned might not be the same, as it might
003293  ** have been duplicated using OP_OpenDup.
003294  **
003295  ** If the LHS expression ("x" in the examples) is a column value, or
003296  ** the SELECT statement returns a column value, then the affinity of that
003297  ** column is used to build the index keys. If both 'x' and the
003298  ** SELECT... statement are columns, then numeric affinity is used
003299  ** if either column has NUMERIC or INTEGER affinity. If neither
003300  ** 'x' nor the SELECT... statement are columns, then numeric affinity
003301  ** is used.
003302  */
003303  void sqlite3CodeRhsOfIN(
003304    Parse *pParse,          /* Parsing context */
003305    Expr *pExpr,            /* The IN operator */
003306    int iTab                /* Use this cursor number */
003307  ){
003308    int addrOnce = 0;           /* Address of the OP_Once instruction at top */
003309    int addr;                   /* Address of OP_OpenEphemeral instruction */
003310    Expr *pLeft;                /* the LHS of the IN operator */
003311    KeyInfo *pKeyInfo = 0;      /* Key information */
003312    int nVal;                   /* Size of vector pLeft */
003313    Vdbe *v;                    /* The prepared statement under construction */
003314  
003315    v = pParse->pVdbe;
003316    assert( v!=0 );
003317  
003318    /* The evaluation of the IN must be repeated every time it
003319    ** is encountered if any of the following is true:
003320    **
003321    **    *  The right-hand side is a correlated subquery
003322    **    *  The right-hand side is an expression list containing variables
003323    **    *  We are inside a trigger
003324    **
003325    ** If all of the above are false, then we can compute the RHS just once
003326    ** and reuse it many names.
003327    */
003328    if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
003329      /* Reuse of the RHS is allowed */
003330      /* If this routine has already been coded, but the previous code
003331      ** might not have been invoked yet, so invoke it now as a subroutine.
003332      */
003333      if( ExprHasProperty(pExpr, EP_Subrtn) ){
003334        addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003335        if( ExprUseXSelect(pExpr) ){
003336          ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
003337                pExpr->x.pSelect->selId));
003338        }
003339        assert( ExprUseYSub(pExpr) );
003340        sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
003341                          pExpr->y.sub.iAddr);
003342        assert( iTab!=pExpr->iTable );
003343        sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
003344        sqlite3VdbeJumpHere(v, addrOnce);
003345        return;
003346      }
003347  
003348      /* Begin coding the subroutine */
003349      assert( !ExprUseYWin(pExpr) );
003350      ExprSetProperty(pExpr, EP_Subrtn);
003351      assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
003352      pExpr->y.sub.regReturn = ++pParse->nMem;
003353      pExpr->y.sub.iAddr =
003354        sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
003355  
003356      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003357    }
003358  
003359    /* Check to see if this is a vector IN operator */
003360    pLeft = pExpr->pLeft;
003361    nVal = sqlite3ExprVectorSize(pLeft);
003362  
003363    /* Construct the ephemeral table that will contain the content of
003364    ** RHS of the IN operator.
003365    */
003366    pExpr->iTable = iTab;
003367    addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
003368  #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
003369    if( ExprUseXSelect(pExpr) ){
003370      VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
003371    }else{
003372      VdbeComment((v, "RHS of IN operator"));
003373    }
003374  #endif
003375    pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
003376  
003377    if( ExprUseXSelect(pExpr) ){
003378      /* Case 1:     expr IN (SELECT ...)
003379      **
003380      ** Generate code to write the results of the select into the temporary
003381      ** table allocated and opened above.
003382      */
003383      Select *pSelect = pExpr->x.pSelect;
003384      ExprList *pEList = pSelect->pEList;
003385  
003386      ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
003387          addrOnce?"":"CORRELATED ", pSelect->selId
003388      ));
003389      /* If the LHS and RHS of the IN operator do not match, that
003390      ** error will have been caught long before we reach this point. */
003391      if( ALWAYS(pEList->nExpr==nVal) ){
003392        Select *pCopy;
003393        SelectDest dest;
003394        int i;
003395        int rc;
003396        sqlite3SelectDestInit(&dest, SRT_Set, iTab);
003397        dest.zAffSdst = exprINAffinity(pParse, pExpr);
003398        pSelect->iLimit = 0;
003399        testcase( pSelect->selFlags & SF_Distinct );
003400        testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
003401        pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
003402        rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
003403        sqlite3SelectDelete(pParse->db, pCopy);
003404        sqlite3DbFree(pParse->db, dest.zAffSdst);
003405        if( rc ){
003406          sqlite3KeyInfoUnref(pKeyInfo);
003407          return;
003408        }     
003409        assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
003410        assert( pEList!=0 );
003411        assert( pEList->nExpr>0 );
003412        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
003413        for(i=0; i<nVal; i++){
003414          Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
003415          pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
003416              pParse, p, pEList->a[i].pExpr
003417          );
003418        }
003419      }
003420    }else if( ALWAYS(pExpr->x.pList!=0) ){
003421      /* Case 2:     expr IN (exprlist)
003422      **
003423      ** For each expression, build an index key from the evaluation and
003424      ** store it in the temporary table. If <expr> is a column, then use
003425      ** that columns affinity when building index keys. If <expr> is not
003426      ** a column, use numeric affinity.
003427      */
003428      char affinity;            /* Affinity of the LHS of the IN */
003429      int i;
003430      ExprList *pList = pExpr->x.pList;
003431      struct ExprList_item *pItem;
003432      int r1, r2;
003433      affinity = sqlite3ExprAffinity(pLeft);
003434      if( affinity<=SQLITE_AFF_NONE ){
003435        affinity = SQLITE_AFF_BLOB;
003436      }else if( affinity==SQLITE_AFF_REAL ){
003437        affinity = SQLITE_AFF_NUMERIC;
003438      }
003439      if( pKeyInfo ){
003440        assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
003441        pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
003442      }
003443  
003444      /* Loop through each expression in <exprlist>. */
003445      r1 = sqlite3GetTempReg(pParse);
003446      r2 = sqlite3GetTempReg(pParse);
003447      for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
003448        Expr *pE2 = pItem->pExpr;
003449  
003450        /* If the expression is not constant then we will need to
003451        ** disable the test that was generated above that makes sure
003452        ** this code only executes once.  Because for a non-constant
003453        ** expression we need to rerun this code each time.
003454        */
003455        if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
003456          sqlite3VdbeChangeToNoop(v, addrOnce-1);
003457          sqlite3VdbeChangeToNoop(v, addrOnce);
003458          ExprClearProperty(pExpr, EP_Subrtn);
003459          addrOnce = 0;
003460        }
003461  
003462        /* Evaluate the expression and insert it into the temp table */
003463        sqlite3ExprCode(pParse, pE2, r1);
003464        sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
003465        sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
003466      }
003467      sqlite3ReleaseTempReg(pParse, r1);
003468      sqlite3ReleaseTempReg(pParse, r2);
003469    }
003470    if( pKeyInfo ){
003471      sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
003472    }
003473    if( addrOnce ){
003474      sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
003475      sqlite3VdbeJumpHere(v, addrOnce);
003476      /* Subroutine return */
003477      assert( ExprUseYSub(pExpr) );
003478      assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
003479              || pParse->nErr );
003480      sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
003481                        pExpr->y.sub.iAddr, 1);
003482      VdbeCoverage(v);
003483      sqlite3ClearTempRegCache(pParse);
003484    }
003485  }
003486  #endif /* SQLITE_OMIT_SUBQUERY */
003487  
003488  /*
003489  ** Generate code for scalar subqueries used as a subquery expression
003490  ** or EXISTS operator:
003491  **
003492  **     (SELECT a FROM b)          -- subquery
003493  **     EXISTS (SELECT a FROM b)   -- EXISTS subquery
003494  **
003495  ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
003496  **
003497  ** Return the register that holds the result.  For a multi-column SELECT,
003498  ** the result is stored in a contiguous array of registers and the
003499  ** return value is the register of the left-most result column.
003500  ** Return 0 if an error occurs.
003501  */
003502  #ifndef SQLITE_OMIT_SUBQUERY
003503  int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
003504    int addrOnce = 0;           /* Address of OP_Once at top of subroutine */
003505    int rReg = 0;               /* Register storing resulting */
003506    Select *pSel;               /* SELECT statement to encode */
003507    SelectDest dest;            /* How to deal with SELECT result */
003508    int nReg;                   /* Registers to allocate */
003509    Expr *pLimit;               /* New limit expression */
003510  #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
003511    int addrExplain;            /* Address of OP_Explain instruction */
003512  #endif
003513  
003514    Vdbe *v = pParse->pVdbe;
003515    assert( v!=0 );
003516    if( pParse->nErr ) return 0;
003517    testcase( pExpr->op==TK_EXISTS );
003518    testcase( pExpr->op==TK_SELECT );
003519    assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
003520    assert( ExprUseXSelect(pExpr) );
003521    pSel = pExpr->x.pSelect;
003522  
003523    /* If this routine has already been coded, then invoke it as a
003524    ** subroutine. */
003525    if( ExprHasProperty(pExpr, EP_Subrtn) ){
003526      ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
003527      assert( ExprUseYSub(pExpr) );
003528      sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
003529                        pExpr->y.sub.iAddr);
003530      return pExpr->iTable;
003531    }
003532  
003533    /* Begin coding the subroutine */
003534    assert( !ExprUseYWin(pExpr) );
003535    assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
003536    ExprSetProperty(pExpr, EP_Subrtn);
003537    pExpr->y.sub.regReturn = ++pParse->nMem;
003538    pExpr->y.sub.iAddr =
003539      sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
003540  
003541    /* The evaluation of the EXISTS/SELECT must be repeated every time it
003542    ** is encountered if any of the following is true:
003543    **
003544    **    *  The right-hand side is a correlated subquery
003545    **    *  The right-hand side is an expression list containing variables
003546    **    *  We are inside a trigger
003547    **
003548    ** If all of the above are false, then we can run this code just once
003549    ** save the results, and reuse the same result on subsequent invocations.
003550    */
003551    if( !ExprHasProperty(pExpr, EP_VarSelect) ){
003552      addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
003553    }
003554   
003555    /* For a SELECT, generate code to put the values for all columns of
003556    ** the first row into an array of registers and return the index of
003557    ** the first register.
003558    **
003559    ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
003560    ** into a register and return that register number.
003561    **
003562    ** In both cases, the query is augmented with "LIMIT 1".  Any
003563    ** preexisting limit is discarded in place of the new LIMIT 1.
003564    */
003565    ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
003566          addrOnce?"":"CORRELATED ", pSel->selId));
003567    sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
003568    nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
003569    sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
003570    pParse->nMem += nReg;
003571    if( pExpr->op==TK_SELECT ){
003572      dest.eDest = SRT_Mem;
003573      dest.iSdst = dest.iSDParm;
003574      dest.nSdst = nReg;
003575      sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
003576      VdbeComment((v, "Init subquery result"));
003577    }else{
003578      dest.eDest = SRT_Exists;
003579      sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
003580      VdbeComment((v, "Init EXISTS result"));
003581    }
003582    if( pSel->pLimit ){
003583      /* The subquery already has a limit.  If the pre-existing limit is X
003584      ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
003585      sqlite3 *db = pParse->db;
003586      pLimit = sqlite3Expr(db, TK_INTEGER, "0");
003587      if( pLimit ){
003588        pLimit->affExpr = SQLITE_AFF_NUMERIC;
003589        pLimit = sqlite3PExpr(pParse, TK_NE,
003590                              sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
003591      }
003592      sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
003593      pSel->pLimit->pLeft = pLimit;
003594    }else{
003595      /* If there is no pre-existing limit add a limit of 1 */
003596      pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
003597      pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
003598    }
003599    pSel->iLimit = 0;
003600    if( sqlite3Select(pParse, pSel, &dest) ){
003601      pExpr->op2 = pExpr->op;
003602      pExpr->op = TK_ERROR;
003603      return 0;
003604    }
003605    pExpr->iTable = rReg = dest.iSDParm;
003606    ExprSetVVAProperty(pExpr, EP_NoReduce);
003607    if( addrOnce ){
003608      sqlite3VdbeJumpHere(v, addrOnce);
003609    }
003610    sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
003611  
003612    /* Subroutine return */
003613    assert( ExprUseYSub(pExpr) );
003614    assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
003615            || pParse->nErr );
003616    sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
003617                      pExpr->y.sub.iAddr, 1);
003618    VdbeCoverage(v);
003619    sqlite3ClearTempRegCache(pParse);
003620    return rReg;
003621  }
003622  #endif /* SQLITE_OMIT_SUBQUERY */
003623  
003624  #ifndef SQLITE_OMIT_SUBQUERY
003625  /*
003626  ** Expr pIn is an IN(...) expression. This function checks that the
003627  ** sub-select on the RHS of the IN() operator has the same number of
003628  ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
003629  ** a sub-query, that the LHS is a vector of size 1.
003630  */
003631  int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
003632    int nVector = sqlite3ExprVectorSize(pIn->pLeft);
003633    if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
003634      if( nVector!=pIn->x.pSelect->pEList->nExpr ){
003635        sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
003636        return 1;
003637      }
003638    }else if( nVector!=1 ){
003639      sqlite3VectorErrorMsg(pParse, pIn->pLeft);
003640      return 1;
003641    }
003642    return 0;
003643  }
003644  #endif
003645  
003646  #ifndef SQLITE_OMIT_SUBQUERY
003647  /*
003648  ** Generate code for an IN expression.
003649  **
003650  **      x IN (SELECT ...)
003651  **      x IN (value, value, ...)
003652  **
003653  ** The left-hand side (LHS) is a scalar or vector expression.  The
003654  ** right-hand side (RHS) is an array of zero or more scalar values, or a
003655  ** subquery.  If the RHS is a subquery, the number of result columns must
003656  ** match the number of columns in the vector on the LHS.  If the RHS is
003657  ** a list of values, the LHS must be a scalar.
003658  **
003659  ** The IN operator is true if the LHS value is contained within the RHS.
003660  ** The result is false if the LHS is definitely not in the RHS.  The
003661  ** result is NULL if the presence of the LHS in the RHS cannot be
003662  ** determined due to NULLs.
003663  **
003664  ** This routine generates code that jumps to destIfFalse if the LHS is not
003665  ** contained within the RHS.  If due to NULLs we cannot determine if the LHS
003666  ** is contained in the RHS then jump to destIfNull.  If the LHS is contained
003667  ** within the RHS then fall through.
003668  **
003669  ** See the separate in-operator.md documentation file in the canonical
003670  ** SQLite source tree for additional information.
003671  */
003672  static void sqlite3ExprCodeIN(
003673    Parse *pParse,        /* Parsing and code generating context */
003674    Expr *pExpr,          /* The IN expression */
003675    int destIfFalse,      /* Jump here if LHS is not contained in the RHS */
003676    int destIfNull        /* Jump here if the results are unknown due to NULLs */
003677  ){
003678    int rRhsHasNull = 0;  /* Register that is true if RHS contains NULL values */
003679    int eType;            /* Type of the RHS */
003680    int rLhs;             /* Register(s) holding the LHS values */
003681    int rLhsOrig;         /* LHS values prior to reordering by aiMap[] */
003682    Vdbe *v;              /* Statement under construction */
003683    int *aiMap = 0;       /* Map from vector field to index column */
003684    char *zAff = 0;       /* Affinity string for comparisons */
003685    int nVector;          /* Size of vectors for this IN operator */
003686    int iDummy;           /* Dummy parameter to exprCodeVector() */
003687    Expr *pLeft;          /* The LHS of the IN operator */
003688    int i;                /* loop counter */
003689    int destStep2;        /* Where to jump when NULLs seen in step 2 */
003690    int destStep6 = 0;    /* Start of code for Step 6 */
003691    int addrTruthOp;      /* Address of opcode that determines the IN is true */
003692    int destNotNull;      /* Jump here if a comparison is not true in step 6 */
003693    int addrTop;          /* Top of the step-6 loop */
003694    int iTab = 0;         /* Index to use */
003695    u8 okConstFactor = pParse->okConstFactor;
003696  
003697    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
003698    pLeft = pExpr->pLeft;
003699    if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
003700    zAff = exprINAffinity(pParse, pExpr);
003701    nVector = sqlite3ExprVectorSize(pExpr->pLeft);
003702    aiMap = (int*)sqlite3DbMallocZero(
003703        pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
003704    );
003705    if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
003706  
003707    /* Attempt to compute the RHS. After this step, if anything other than
003708    ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
003709    ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
003710    ** the RHS has not yet been coded.  */
003711    v = pParse->pVdbe;
003712    assert( v!=0 );       /* OOM detected prior to this routine */
003713    VdbeNoopComment((v, "begin IN expr"));
003714    eType = sqlite3FindInIndex(pParse, pExpr,
003715                               IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
003716                               destIfFalse==destIfNull ? 0 : &rRhsHasNull,
003717                               aiMap, &iTab);
003718  
003719    assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
003720         || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
003721    );
003722  #ifdef SQLITE_DEBUG
003723    /* Confirm that aiMap[] contains nVector integer values between 0 and
003724    ** nVector-1. */
003725    for(i=0; i<nVector; i++){
003726      int j, cnt;
003727      for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
003728      assert( cnt==1 );
003729    }
003730  #endif
003731  
003732    /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
003733    ** vector, then it is stored in an array of nVector registers starting
003734    ** at r1.
003735    **
003736    ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
003737    ** so that the fields are in the same order as an existing index.   The
003738    ** aiMap[] array contains a mapping from the original LHS field order to
003739    ** the field order that matches the RHS index.
003740    **
003741    ** Avoid factoring the LHS of the IN(...) expression out of the loop,
003742    ** even if it is constant, as OP_Affinity may be used on the register
003743    ** by code generated below.  */
003744    assert( pParse->okConstFactor==okConstFactor );
003745    pParse->okConstFactor = 0;
003746    rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
003747    pParse->okConstFactor = okConstFactor;
003748    for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
003749    if( i==nVector ){
003750      /* LHS fields are not reordered */
003751      rLhs = rLhsOrig;
003752    }else{
003753      /* Need to reorder the LHS fields according to aiMap */
003754      rLhs = sqlite3GetTempRange(pParse, nVector);
003755      for(i=0; i<nVector; i++){
003756        sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
003757      }
003758    }
003759  
003760    /* If sqlite3FindInIndex() did not find or create an index that is
003761    ** suitable for evaluating the IN operator, then evaluate using a
003762    ** sequence of comparisons.
003763    **
003764    ** This is step (1) in the in-operator.md optimized algorithm.
003765    */
003766    if( eType==IN_INDEX_NOOP ){
003767      ExprList *pList;
003768      CollSeq *pColl;
003769      int labelOk = sqlite3VdbeMakeLabel(pParse);
003770      int r2, regToFree;
003771      int regCkNull = 0;
003772      int ii;
003773      assert( ExprUseXList(pExpr) );
003774      pList = pExpr->x.pList;
003775      pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
003776      if( destIfNull!=destIfFalse ){
003777        regCkNull = sqlite3GetTempReg(pParse);
003778        sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
003779      }
003780      for(ii=0; ii<pList->nExpr; ii++){
003781        r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
003782        if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
003783          sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
003784        }
003785        sqlite3ReleaseTempReg(pParse, regToFree);
003786        if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
003787          int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
003788          sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
003789                            (void*)pColl, P4_COLLSEQ);
003790          VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
003791          VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
003792          VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
003793          VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
003794          sqlite3VdbeChangeP5(v, zAff[0]);
003795        }else{
003796          int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
003797          assert( destIfNull==destIfFalse );
003798          sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
003799                            (void*)pColl, P4_COLLSEQ);
003800          VdbeCoverageIf(v, op==OP_Ne);
003801          VdbeCoverageIf(v, op==OP_IsNull);
003802          sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
003803        }
003804      }
003805      if( regCkNull ){
003806        sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
003807        sqlite3VdbeGoto(v, destIfFalse);
003808      }
003809      sqlite3VdbeResolveLabel(v, labelOk);
003810      sqlite3ReleaseTempReg(pParse, regCkNull);
003811      goto sqlite3ExprCodeIN_finished;
003812    }
003813  
003814    /* Step 2: Check to see if the LHS contains any NULL columns.  If the
003815    ** LHS does contain NULLs then the result must be either FALSE or NULL.
003816    ** We will then skip the binary search of the RHS.
003817    */
003818    if( destIfNull==destIfFalse ){
003819      destStep2 = destIfFalse;
003820    }else{
003821      destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
003822    }
003823    for(i=0; i<nVector; i++){
003824      Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
003825      if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
003826      if( sqlite3ExprCanBeNull(p) ){
003827        sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
003828        VdbeCoverage(v);
003829      }
003830    }
003831  
003832    /* Step 3.  The LHS is now known to be non-NULL.  Do the binary search
003833    ** of the RHS using the LHS as a probe.  If found, the result is
003834    ** true.
003835    */
003836    if( eType==IN_INDEX_ROWID ){
003837      /* In this case, the RHS is the ROWID of table b-tree and so we also
003838      ** know that the RHS is non-NULL.  Hence, we combine steps 3 and 4
003839      ** into a single opcode. */
003840      sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
003841      VdbeCoverage(v);
003842      addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto);  /* Return True */
003843    }else{
003844      sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
003845      if( destIfFalse==destIfNull ){
003846        /* Combine Step 3 and Step 5 into a single opcode */
003847        sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
003848                             rLhs, nVector); VdbeCoverage(v);
003849        goto sqlite3ExprCodeIN_finished;
003850      }
003851      /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
003852      addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
003853                                        rLhs, nVector); VdbeCoverage(v);
003854    }
003855  
003856    /* Step 4.  If the RHS is known to be non-NULL and we did not find
003857    ** an match on the search above, then the result must be FALSE.
003858    */
003859    if( rRhsHasNull && nVector==1 ){
003860      sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
003861      VdbeCoverage(v);
003862    }
003863  
003864    /* Step 5.  If we do not care about the difference between NULL and
003865    ** FALSE, then just return false.
003866    */
003867    if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
003868  
003869    /* Step 6: Loop through rows of the RHS.  Compare each row to the LHS.
003870    ** If any comparison is NULL, then the result is NULL.  If all
003871    ** comparisons are FALSE then the final result is FALSE.
003872    **
003873    ** For a scalar LHS, it is sufficient to check just the first row
003874    ** of the RHS.
003875    */
003876    if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
003877    addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
003878    VdbeCoverage(v);
003879    if( nVector>1 ){
003880      destNotNull = sqlite3VdbeMakeLabel(pParse);
003881    }else{
003882      /* For nVector==1, combine steps 6 and 7 by immediately returning
003883      ** FALSE if the first comparison is not NULL */
003884      destNotNull = destIfFalse;
003885    }
003886    for(i=0; i<nVector; i++){
003887      Expr *p;
003888      CollSeq *pColl;
003889      int r3 = sqlite3GetTempReg(pParse);
003890      p = sqlite3VectorFieldSubexpr(pLeft, i);
003891      pColl = sqlite3ExprCollSeq(pParse, p);
003892      sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
003893      sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
003894                        (void*)pColl, P4_COLLSEQ);
003895      VdbeCoverage(v);
003896      sqlite3ReleaseTempReg(pParse, r3);
003897    }
003898    sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
003899    if( nVector>1 ){
003900      sqlite3VdbeResolveLabel(v, destNotNull);
003901      sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
003902      VdbeCoverage(v);
003903  
003904      /* Step 7:  If we reach this point, we know that the result must
003905      ** be false. */
003906      sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
003907    }
003908  
003909    /* Jumps here in order to return true. */
003910    sqlite3VdbeJumpHere(v, addrTruthOp);
003911  
003912  sqlite3ExprCodeIN_finished:
003913    if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
003914    VdbeComment((v, "end IN expr"));
003915  sqlite3ExprCodeIN_oom_error:
003916    sqlite3DbFree(pParse->db, aiMap);
003917    sqlite3DbFree(pParse->db, zAff);
003918  }
003919  #endif /* SQLITE_OMIT_SUBQUERY */
003920  
003921  #ifndef SQLITE_OMIT_FLOATING_POINT
003922  /*
003923  ** Generate an instruction that will put the floating point
003924  ** value described by z[0..n-1] into register iMem.
003925  **
003926  ** The z[] string will probably not be zero-terminated.  But the
003927  ** z[n] character is guaranteed to be something that does not look
003928  ** like the continuation of the number.
003929  */
003930  static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
003931    if( ALWAYS(z!=0) ){
003932      double value;
003933      sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
003934      assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
003935      if( negateFlag ) value = -value;
003936      sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
003937    }
003938  }
003939  #endif
003940  
003941  
003942  /*
003943  ** Generate an instruction that will put the integer describe by
003944  ** text z[0..n-1] into register iMem.
003945  **
003946  ** Expr.u.zToken is always UTF8 and zero-terminated.
003947  */
003948  static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
003949    Vdbe *v = pParse->pVdbe;
003950    if( pExpr->flags & EP_IntValue ){
003951      int i = pExpr->u.iValue;
003952      assert( i>=0 );
003953      if( negFlag ) i = -i;
003954      sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
003955    }else{
003956      int c;
003957      i64 value;
003958      const char *z = pExpr->u.zToken;
003959      assert( z!=0 );
003960      c = sqlite3DecOrHexToI64(z, &value);
003961      if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
003962  #ifdef SQLITE_OMIT_FLOATING_POINT
003963        sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
003964  #else
003965  #ifndef SQLITE_OMIT_HEX_INTEGER
003966        if( sqlite3_strnicmp(z,"0x",2)==0 ){
003967          sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
003968                          negFlag?"-":"",pExpr);
003969        }else
003970  #endif
003971        {
003972          codeReal(v, z, negFlag, iMem);
003973        }
003974  #endif
003975      }else{
003976        if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
003977        sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
003978      }
003979    }
003980  }
003981  
003982  
003983  /* Generate code that will load into register regOut a value that is
003984  ** appropriate for the iIdxCol-th column of index pIdx.
003985  */
003986  void sqlite3ExprCodeLoadIndexColumn(
003987    Parse *pParse,  /* The parsing context */
003988    Index *pIdx,    /* The index whose column is to be loaded */
003989    int iTabCur,    /* Cursor pointing to a table row */
003990    int iIdxCol,    /* The column of the index to be loaded */
003991    int regOut      /* Store the index column value in this register */
003992  ){
003993    i16 iTabCol = pIdx->aiColumn[iIdxCol];
003994    if( iTabCol==XN_EXPR ){
003995      assert( pIdx->aColExpr );
003996      assert( pIdx->aColExpr->nExpr>iIdxCol );
003997      pParse->iSelfTab = iTabCur + 1;
003998      sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
003999      pParse->iSelfTab = 0;
004000    }else{
004001      sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
004002                                      iTabCol, regOut);
004003    }
004004  }
004005  
004006  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004007  /*
004008  ** Generate code that will compute the value of generated column pCol
004009  ** and store the result in register regOut
004010  */
004011  void sqlite3ExprCodeGeneratedColumn(
004012    Parse *pParse,     /* Parsing context */
004013    Table *pTab,       /* Table containing the generated column */
004014    Column *pCol,      /* The generated column */
004015    int regOut         /* Put the result in this register */
004016  ){
004017    int iAddr;
004018    Vdbe *v = pParse->pVdbe;
004019    int nErr = pParse->nErr;
004020    assert( v!=0 );
004021    assert( pParse->iSelfTab!=0 );
004022    if( pParse->iSelfTab>0 ){
004023      iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
004024    }else{
004025      iAddr = 0;
004026    }
004027    sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
004028    if( pCol->affinity>=SQLITE_AFF_TEXT ){
004029      sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
004030    }
004031    if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
004032    if( pParse->nErr>nErr ) pParse->db->errByteOffset = -1;
004033  }
004034  #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
004035  
004036  /*
004037  ** Generate code to extract the value of the iCol-th column of a table.
004038  */
004039  void sqlite3ExprCodeGetColumnOfTable(
004040    Vdbe *v,        /* Parsing context */
004041    Table *pTab,    /* The table containing the value */
004042    int iTabCur,    /* The table cursor.  Or the PK cursor for WITHOUT ROWID */
004043    int iCol,       /* Index of the column to extract */
004044    int regOut      /* Extract the value into this register */
004045  ){
004046    Column *pCol;
004047    assert( v!=0 );
004048    assert( pTab!=0 );
004049    assert( iCol!=XN_EXPR );
004050    if( iCol<0 || iCol==pTab->iPKey ){
004051      sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
004052      VdbeComment((v, "%s.rowid", pTab->zName));
004053    }else{
004054      int op;
004055      int x;
004056      if( IsVirtual(pTab) ){
004057        op = OP_VColumn;
004058        x = iCol;
004059  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004060      }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
004061        Parse *pParse = sqlite3VdbeParser(v);
004062        if( pCol->colFlags & COLFLAG_BUSY ){
004063          sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
004064                          pCol->zCnName);
004065        }else{
004066          int savedSelfTab = pParse->iSelfTab;
004067          pCol->colFlags |= COLFLAG_BUSY;
004068          pParse->iSelfTab = iTabCur+1;
004069          sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
004070          pParse->iSelfTab = savedSelfTab;
004071          pCol->colFlags &= ~COLFLAG_BUSY;
004072        }
004073        return;
004074  #endif
004075      }else if( !HasRowid(pTab) ){
004076        testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
004077        x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
004078        op = OP_Column;
004079      }else{
004080        x = sqlite3TableColumnToStorage(pTab,iCol);
004081        testcase( x!=iCol );
004082        op = OP_Column;
004083      }
004084      sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
004085      sqlite3ColumnDefault(v, pTab, iCol, regOut);
004086    }
004087  }
004088  
004089  /*
004090  ** Generate code that will extract the iColumn-th column from
004091  ** table pTab and store the column value in register iReg.
004092  **
004093  ** There must be an open cursor to pTab in iTable when this routine
004094  ** is called.  If iColumn<0 then code is generated that extracts the rowid.
004095  */
004096  int sqlite3ExprCodeGetColumn(
004097    Parse *pParse,   /* Parsing and code generating context */
004098    Table *pTab,     /* Description of the table we are reading from */
004099    int iColumn,     /* Index of the table column */
004100    int iTable,      /* The cursor pointing to the table */
004101    int iReg,        /* Store results here */
004102    u8 p5            /* P5 value for OP_Column + FLAGS */
004103  ){
004104    assert( pParse->pVdbe!=0 );
004105    assert( (p5 & (OPFLAG_NOCHNG|OPFLAG_TYPEOFARG|OPFLAG_LENGTHARG))==p5 );
004106    assert( IsVirtual(pTab) || (p5 & OPFLAG_NOCHNG)==0 );
004107    sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
004108    if( p5 ){
004109      VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
004110      if( pOp->opcode==OP_Column ) pOp->p5 = p5;
004111      if( pOp->opcode==OP_VColumn ) pOp->p5 = (p5 & OPFLAG_NOCHNG);
004112    }
004113    return iReg;
004114  }
004115  
004116  /*
004117  ** Generate code to move content from registers iFrom...iFrom+nReg-1
004118  ** over to iTo..iTo+nReg-1.
004119  */
004120  void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
004121    sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
004122  }
004123  
004124  /*
004125  ** Convert a scalar expression node to a TK_REGISTER referencing
004126  ** register iReg.  The caller must ensure that iReg already contains
004127  ** the correct value for the expression.
004128  */
004129  static void exprToRegister(Expr *pExpr, int iReg){
004130    Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
004131    if( NEVER(p==0) ) return;
004132    p->op2 = p->op;
004133    p->op = TK_REGISTER;
004134    p->iTable = iReg;
004135    ExprClearProperty(p, EP_Skip);
004136  }
004137  
004138  /*
004139  ** Evaluate an expression (either a vector or a scalar expression) and store
004140  ** the result in contiguous temporary registers.  Return the index of
004141  ** the first register used to store the result.
004142  **
004143  ** If the returned result register is a temporary scalar, then also write
004144  ** that register number into *piFreeable.  If the returned result register
004145  ** is not a temporary or if the expression is a vector set *piFreeable
004146  ** to 0.
004147  */
004148  static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
004149    int iResult;
004150    int nResult = sqlite3ExprVectorSize(p);
004151    if( nResult==1 ){
004152      iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
004153    }else{
004154      *piFreeable = 0;
004155      if( p->op==TK_SELECT ){
004156  #if SQLITE_OMIT_SUBQUERY
004157        iResult = 0;
004158  #else
004159        iResult = sqlite3CodeSubselect(pParse, p);
004160  #endif
004161      }else{
004162        int i;
004163        iResult = pParse->nMem+1;
004164        pParse->nMem += nResult;
004165        assert( ExprUseXList(p) );
004166        for(i=0; i<nResult; i++){
004167          sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
004168        }
004169      }
004170    }
004171    return iResult;
004172  }
004173  
004174  /*
004175  ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
004176  ** so that a subsequent copy will not be merged into this one.
004177  */
004178  static void setDoNotMergeFlagOnCopy(Vdbe *v){
004179    if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
004180      sqlite3VdbeChangeP5(v, 1);  /* Tag trailing OP_Copy as not mergeable */
004181    }
004182  }
004183  
004184  /*
004185  ** Generate code to implement special SQL functions that are implemented
004186  ** in-line rather than by using the usual callbacks.
004187  */
004188  static int exprCodeInlineFunction(
004189    Parse *pParse,        /* Parsing context */
004190    ExprList *pFarg,      /* List of function arguments */
004191    int iFuncId,          /* Function ID.  One of the INTFUNC_... values */
004192    int target            /* Store function result in this register */
004193  ){
004194    int nFarg;
004195    Vdbe *v = pParse->pVdbe;
004196    assert( v!=0 );
004197    assert( pFarg!=0 );
004198    nFarg = pFarg->nExpr;
004199    assert( nFarg>0 );  /* All in-line functions have at least one argument */
004200    switch( iFuncId ){
004201      case INLINEFUNC_coalesce: {
004202        /* Attempt a direct implementation of the built-in COALESCE() and
004203        ** IFNULL() functions.  This avoids unnecessary evaluation of
004204        ** arguments past the first non-NULL argument.
004205        */
004206        int endCoalesce = sqlite3VdbeMakeLabel(pParse);
004207        int i;
004208        assert( nFarg>=2 );
004209        sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
004210        for(i=1; i<nFarg; i++){
004211          sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
004212          VdbeCoverage(v);
004213          sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
004214        }
004215        setDoNotMergeFlagOnCopy(v);
004216        sqlite3VdbeResolveLabel(v, endCoalesce);
004217        break;
004218      }
004219      case INLINEFUNC_iif: {
004220        Expr caseExpr;
004221        memset(&caseExpr, 0, sizeof(caseExpr));
004222        caseExpr.op = TK_CASE;
004223        caseExpr.x.pList = pFarg;
004224        return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
004225      }
004226  #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
004227      case INLINEFUNC_sqlite_offset: {
004228        Expr *pArg = pFarg->a[0].pExpr;
004229        if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
004230          sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
004231        }else{
004232          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004233        }
004234        break;
004235      }
004236  #endif
004237      default: {  
004238        /* The UNLIKELY() function is a no-op.  The result is the value
004239        ** of the first argument.
004240        */
004241        assert( nFarg==1 || nFarg==2 );
004242        target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
004243        break;
004244      }
004245  
004246    /***********************************************************************
004247    ** Test-only SQL functions that are only usable if enabled
004248    ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
004249    */
004250  #if !defined(SQLITE_UNTESTABLE)
004251      case INLINEFUNC_expr_compare: {
004252        /* Compare two expressions using sqlite3ExprCompare() */
004253        assert( nFarg==2 );
004254        sqlite3VdbeAddOp2(v, OP_Integer,
004255           sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
004256           target);
004257        break;
004258      }
004259  
004260      case INLINEFUNC_expr_implies_expr: {
004261        /* Compare two expressions using sqlite3ExprImpliesExpr() */
004262        assert( nFarg==2 );
004263        sqlite3VdbeAddOp2(v, OP_Integer,
004264           sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
004265           target);
004266        break;
004267      }
004268  
004269      case INLINEFUNC_implies_nonnull_row: {
004270        /* Result of sqlite3ExprImpliesNonNullRow() */
004271        Expr *pA1;
004272        assert( nFarg==2 );
004273        pA1 = pFarg->a[1].pExpr;
004274        if( pA1->op==TK_COLUMN ){
004275          sqlite3VdbeAddOp2(v, OP_Integer,
004276             sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable,1),
004277             target);
004278        }else{
004279          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004280        }
004281        break;
004282      }
004283  
004284      case INLINEFUNC_affinity: {
004285        /* The AFFINITY() function evaluates to a string that describes
004286        ** the type affinity of the argument.  This is used for testing of
004287        ** the SQLite type logic.
004288        */
004289        const char *azAff[] = { "blob", "text", "numeric", "integer",
004290                                "real", "flexnum" };
004291        char aff;
004292        assert( nFarg==1 );
004293        aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
004294        assert( aff<=SQLITE_AFF_NONE
004295             || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
004296        sqlite3VdbeLoadString(v, target,
004297                (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
004298        break;
004299      }
004300  #endif /* !defined(SQLITE_UNTESTABLE) */
004301    }
004302    return target;
004303  }
004304  
004305  /*
004306  ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
004307  ** If it is, then resolve the expression by reading from the index and
004308  ** return the register into which the value has been read.  If pExpr is
004309  ** not an indexed expression, then return negative.
004310  */
004311  static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
004312    Parse *pParse,   /* The parsing context */
004313    Expr *pExpr,     /* The expression to potentially bypass */
004314    int target       /* Where to store the result of the expression */
004315  ){
004316    IndexedExpr *p;
004317    Vdbe *v;
004318    for(p=pParse->pIdxEpr; p; p=p->pIENext){
004319      u8 exprAff;
004320      int iDataCur = p->iDataCur;
004321      if( iDataCur<0 ) continue;
004322      if( pParse->iSelfTab ){
004323        if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
004324        iDataCur = -1;
004325      }
004326      if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
004327      assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
004328      exprAff = sqlite3ExprAffinity(pExpr);
004329      if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
004330       || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
004331       || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
004332      ){
004333        /* Affinity mismatch on a generated column */
004334        continue;
004335      }
004336  
004337      v = pParse->pVdbe;
004338      assert( v!=0 );
004339      if( p->bMaybeNullRow ){
004340        /* If the index is on a NULL row due to an outer join, then we
004341        ** cannot extract the value from the index.  The value must be
004342        ** computed using the original expression. */
004343        int addr = sqlite3VdbeCurrentAddr(v);
004344        sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
004345        VdbeCoverage(v);
004346        sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
004347        VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
004348        sqlite3VdbeGoto(v, 0);
004349        p = pParse->pIdxEpr;
004350        pParse->pIdxEpr = 0;
004351        sqlite3ExprCode(pParse, pExpr, target);
004352        pParse->pIdxEpr = p;
004353        sqlite3VdbeJumpHere(v, addr+2);
004354      }else{
004355        sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
004356        VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
004357      }
004358      return target;
004359    }
004360    return -1;  /* Not found */
004361  }
004362  
004363  
004364  /*
004365  ** Expresion pExpr is guaranteed to be a TK_COLUMN or equivalent. This
004366  ** function checks the Parse.pIdxPartExpr list to see if this column
004367  ** can be replaced with a constant value. If so, it generates code to
004368  ** put the constant value in a register (ideally, but not necessarily, 
004369  ** register iTarget) and returns the register number.
004370  **
004371  ** Or, if the TK_COLUMN cannot be replaced by a constant, zero is 
004372  ** returned.
004373  */
004374  static int exprPartidxExprLookup(Parse *pParse, Expr *pExpr, int iTarget){
004375    IndexedExpr *p;
004376    for(p=pParse->pIdxPartExpr; p; p=p->pIENext){
004377      if( pExpr->iColumn==p->iIdxCol && pExpr->iTable==p->iDataCur ){
004378        Vdbe *v = pParse->pVdbe;
004379        int addr = 0;
004380        int ret;
004381  
004382        if( p->bMaybeNullRow ){
004383          addr = sqlite3VdbeAddOp1(v, OP_IfNullRow, p->iIdxCur);
004384        }
004385        ret = sqlite3ExprCodeTarget(pParse, p->pExpr, iTarget);
004386        sqlite3VdbeAddOp4(pParse->pVdbe, OP_Affinity, ret, 1, 0,
004387                          (const char*)&p->aff, 1);
004388        if( addr ){
004389          sqlite3VdbeJumpHere(v, addr);
004390          sqlite3VdbeChangeP3(v, addr, ret);
004391        }
004392        return ret;
004393      }
004394    }
004395    return 0;
004396  }
004397  
004398  
004399  /*
004400  ** Generate code into the current Vdbe to evaluate the given
004401  ** expression.  Attempt to store the results in register "target".
004402  ** Return the register where results are stored.
004403  **
004404  ** With this routine, there is no guarantee that results will
004405  ** be stored in target.  The result might be stored in some other
004406  ** register if it is convenient to do so.  The calling function
004407  ** must check the return code and move the results to the desired
004408  ** register.
004409  */
004410  int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
004411    Vdbe *v = pParse->pVdbe;  /* The VM under construction */
004412    int op;                   /* The opcode being coded */
004413    int inReg = target;       /* Results stored in register inReg */
004414    int regFree1 = 0;         /* If non-zero free this temporary register */
004415    int regFree2 = 0;         /* If non-zero free this temporary register */
004416    int r1, r2;               /* Various register numbers */
004417    Expr tempX;               /* Temporary expression node */
004418    int p5 = 0;
004419  
004420    assert( target>0 && target<=pParse->nMem );
004421    assert( v!=0 );
004422  
004423  expr_code_doover:
004424    if( pExpr==0 ){
004425      op = TK_NULL;
004426    }else if( pParse->pIdxEpr!=0
004427     && !ExprHasProperty(pExpr, EP_Leaf)
004428     && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
004429    ){
004430      return r1;
004431    }else{
004432      assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
004433      op = pExpr->op;
004434    }
004435    assert( op!=TK_ORDER );
004436    switch( op ){
004437      case TK_AGG_COLUMN: {
004438        AggInfo *pAggInfo = pExpr->pAggInfo;
004439        struct AggInfo_col *pCol;
004440        assert( pAggInfo!=0 );
004441        assert( pExpr->iAgg>=0 );
004442        if( pExpr->iAgg>=pAggInfo->nColumn ){
004443          /* Happens when the left table of a RIGHT JOIN is null and
004444          ** is using an expression index */
004445          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004446  #ifdef SQLITE_VDBE_COVERAGE
004447          /* Verify that the OP_Null above is exercised by tests
004448          ** tag-20230325-2 */
004449          sqlite3VdbeAddOp3(v, OP_NotNull, target, 1, 20230325);
004450          VdbeCoverageNeverTaken(v);
004451  #endif
004452          break;
004453        }
004454        pCol = &pAggInfo->aCol[pExpr->iAgg];
004455        if( !pAggInfo->directMode ){
004456          return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
004457        }else if( pAggInfo->useSortingIdx ){
004458          Table *pTab = pCol->pTab;
004459          sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
004460                                pCol->iSorterColumn, target);
004461          if( pTab==0 ){
004462            /* No comment added */
004463          }else if( pCol->iColumn<0 ){
004464            VdbeComment((v,"%s.rowid",pTab->zName));
004465          }else{
004466            VdbeComment((v,"%s.%s",
004467                pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
004468            if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
004469              sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
004470            }
004471          }
004472          return target;
004473        }else if( pExpr->y.pTab==0 ){
004474          /* This case happens when the argument to an aggregate function
004475          ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
004476          sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
004477          return target;
004478        }
004479        /* Otherwise, fall thru into the TK_COLUMN case */
004480        /* no break */ deliberate_fall_through
004481      }
004482      case TK_COLUMN: {
004483        int iTab = pExpr->iTable;
004484        int iReg;
004485        if( ExprHasProperty(pExpr, EP_FixedCol) ){
004486          /* This COLUMN expression is really a constant due to WHERE clause
004487          ** constraints, and that constant is coded by the pExpr->pLeft
004488          ** expression.  However, make sure the constant has the correct
004489          ** datatype by applying the Affinity of the table column to the
004490          ** constant.
004491          */
004492          int aff;
004493          iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
004494          assert( ExprUseYTab(pExpr) );
004495          assert( pExpr->y.pTab!=0 );
004496          aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
004497          if( aff>SQLITE_AFF_BLOB ){
004498            static const char zAff[] = "B\000C\000D\000E\000F";
004499            assert( SQLITE_AFF_BLOB=='A' );
004500            assert( SQLITE_AFF_TEXT=='B' );
004501            sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
004502                              &zAff[(aff-'B')*2], P4_STATIC);
004503          }
004504          return iReg;
004505        }
004506        if( iTab<0 ){
004507          if( pParse->iSelfTab<0 ){
004508            /* Other columns in the same row for CHECK constraints or
004509            ** generated columns or for inserting into partial index.
004510            ** The row is unpacked into registers beginning at
004511            ** 0-(pParse->iSelfTab).  The rowid (if any) is in a register
004512            ** immediately prior to the first column.
004513            */
004514            Column *pCol;
004515            Table *pTab;
004516            int iSrc;
004517            int iCol = pExpr->iColumn;
004518            assert( ExprUseYTab(pExpr) );
004519            pTab = pExpr->y.pTab;
004520            assert( pTab!=0 );
004521            assert( iCol>=XN_ROWID );
004522            assert( iCol<pTab->nCol );
004523            if( iCol<0 ){
004524              return -1-pParse->iSelfTab;
004525            }
004526            pCol = pTab->aCol + iCol;
004527            testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
004528            iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
004529  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
004530            if( pCol->colFlags & COLFLAG_GENERATED ){
004531              if( pCol->colFlags & COLFLAG_BUSY ){
004532                sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
004533                                pCol->zCnName);
004534                return 0;
004535              }
004536              pCol->colFlags |= COLFLAG_BUSY;
004537              if( pCol->colFlags & COLFLAG_NOTAVAIL ){
004538                sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
004539              }
004540              pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
004541              return iSrc;
004542            }else
004543  #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
004544            if( pCol->affinity==SQLITE_AFF_REAL ){
004545              sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
004546              sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
004547              return target;
004548            }else{
004549              return iSrc;
004550            }
004551          }else{
004552            /* Coding an expression that is part of an index where column names
004553            ** in the index refer to the table to which the index belongs */
004554            iTab = pParse->iSelfTab - 1;
004555          }
004556        }
004557        else if( pParse->pIdxPartExpr 
004558         && 0!=(r1 = exprPartidxExprLookup(pParse, pExpr, target))
004559        ){
004560          return r1;
004561        }
004562        assert( ExprUseYTab(pExpr) );
004563        assert( pExpr->y.pTab!=0 );
004564        iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
004565                                 pExpr->iColumn, iTab, target,
004566                                 pExpr->op2);
004567        return iReg;
004568      }
004569      case TK_INTEGER: {
004570        codeInteger(pParse, pExpr, 0, target);
004571        return target;
004572      }
004573      case TK_TRUEFALSE: {
004574        sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
004575        return target;
004576      }
004577  #ifndef SQLITE_OMIT_FLOATING_POINT
004578      case TK_FLOAT: {
004579        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004580        codeReal(v, pExpr->u.zToken, 0, target);
004581        return target;
004582      }
004583  #endif
004584      case TK_STRING: {
004585        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004586        sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
004587        return target;
004588      }
004589      default: {
004590        /* Make NULL the default case so that if a bug causes an illegal
004591        ** Expr node to be passed into this function, it will be handled
004592        ** sanely and not crash.  But keep the assert() to bring the problem
004593        ** to the attention of the developers. */
004594        assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
004595        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004596        return target;
004597      }
004598  #ifndef SQLITE_OMIT_BLOB_LITERAL
004599      case TK_BLOB: {
004600        int n;
004601        const char *z;
004602        char *zBlob;
004603        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004604        assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
004605        assert( pExpr->u.zToken[1]=='\'' );
004606        z = &pExpr->u.zToken[2];
004607        n = sqlite3Strlen30(z) - 1;
004608        assert( z[n]=='\'' );
004609        zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
004610        sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
004611        return target;
004612      }
004613  #endif
004614      case TK_VARIABLE: {
004615        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004616        assert( pExpr->u.zToken!=0 );
004617        assert( pExpr->u.zToken[0]!=0 );
004618        sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
004619        if( pExpr->u.zToken[1]!=0 ){
004620          const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
004621          assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
004622          pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
004623          sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
004624        }
004625        return target;
004626      }
004627      case TK_REGISTER: {
004628        return pExpr->iTable;
004629      }
004630  #ifndef SQLITE_OMIT_CAST
004631      case TK_CAST: {
004632        /* Expressions of the form:   CAST(pLeft AS token) */
004633        sqlite3ExprCode(pParse, pExpr->pLeft, target);
004634        assert( inReg==target );
004635        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004636        sqlite3VdbeAddOp2(v, OP_Cast, target,
004637                          sqlite3AffinityType(pExpr->u.zToken, 0));
004638        return inReg;
004639      }
004640  #endif /* SQLITE_OMIT_CAST */
004641      case TK_IS:
004642      case TK_ISNOT:
004643        op = (op==TK_IS) ? TK_EQ : TK_NE;
004644        p5 = SQLITE_NULLEQ;
004645        /* fall-through */
004646      case TK_LT:
004647      case TK_LE:
004648      case TK_GT:
004649      case TK_GE:
004650      case TK_NE:
004651      case TK_EQ: {
004652        Expr *pLeft = pExpr->pLeft;
004653        if( sqlite3ExprIsVector(pLeft) ){
004654          codeVectorCompare(pParse, pExpr, target, op, p5);
004655        }else{
004656          r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
004657          r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
004658          sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
004659          codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
004660              sqlite3VdbeCurrentAddr(v)+2, p5,
004661              ExprHasProperty(pExpr,EP_Commuted));
004662          assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
004663          assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
004664          assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
004665          assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
004666          assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
004667          assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
004668          if( p5==SQLITE_NULLEQ ){
004669            sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
004670          }else{
004671            sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
004672          }
004673          testcase( regFree1==0 );
004674          testcase( regFree2==0 );
004675        }
004676        break;
004677      }
004678      case TK_AND:
004679      case TK_OR:
004680      case TK_PLUS:
004681      case TK_STAR:
004682      case TK_MINUS:
004683      case TK_REM:
004684      case TK_BITAND:
004685      case TK_BITOR:
004686      case TK_SLASH:
004687      case TK_LSHIFT:
004688      case TK_RSHIFT:
004689      case TK_CONCAT: {
004690        assert( TK_AND==OP_And );            testcase( op==TK_AND );
004691        assert( TK_OR==OP_Or );              testcase( op==TK_OR );
004692        assert( TK_PLUS==OP_Add );           testcase( op==TK_PLUS );
004693        assert( TK_MINUS==OP_Subtract );     testcase( op==TK_MINUS );
004694        assert( TK_REM==OP_Remainder );      testcase( op==TK_REM );
004695        assert( TK_BITAND==OP_BitAnd );      testcase( op==TK_BITAND );
004696        assert( TK_BITOR==OP_BitOr );        testcase( op==TK_BITOR );
004697        assert( TK_SLASH==OP_Divide );       testcase( op==TK_SLASH );
004698        assert( TK_LSHIFT==OP_ShiftLeft );   testcase( op==TK_LSHIFT );
004699        assert( TK_RSHIFT==OP_ShiftRight );  testcase( op==TK_RSHIFT );
004700        assert( TK_CONCAT==OP_Concat );      testcase( op==TK_CONCAT );
004701        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
004702        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
004703        sqlite3VdbeAddOp3(v, op, r2, r1, target);
004704        testcase( regFree1==0 );
004705        testcase( regFree2==0 );
004706        break;
004707      }
004708      case TK_UMINUS: {
004709        Expr *pLeft = pExpr->pLeft;
004710        assert( pLeft );
004711        if( pLeft->op==TK_INTEGER ){
004712          codeInteger(pParse, pLeft, 1, target);
004713          return target;
004714  #ifndef SQLITE_OMIT_FLOATING_POINT
004715        }else if( pLeft->op==TK_FLOAT ){
004716          assert( !ExprHasProperty(pExpr, EP_IntValue) );
004717          codeReal(v, pLeft->u.zToken, 1, target);
004718          return target;
004719  #endif
004720        }else{
004721          tempX.op = TK_INTEGER;
004722          tempX.flags = EP_IntValue|EP_TokenOnly;
004723          tempX.u.iValue = 0;
004724          ExprClearVVAProperties(&tempX);
004725          r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
004726          r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
004727          sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
004728          testcase( regFree2==0 );
004729        }
004730        break;
004731      }
004732      case TK_BITNOT:
004733      case TK_NOT: {
004734        assert( TK_BITNOT==OP_BitNot );   testcase( op==TK_BITNOT );
004735        assert( TK_NOT==OP_Not );         testcase( op==TK_NOT );
004736        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
004737        testcase( regFree1==0 );
004738        sqlite3VdbeAddOp2(v, op, r1, inReg);
004739        break;
004740      }
004741      case TK_TRUTH: {
004742        int isTrue;    /* IS TRUE or IS NOT TRUE */
004743        int bNormal;   /* IS TRUE or IS FALSE */
004744        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
004745        testcase( regFree1==0 );
004746        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
004747        bNormal = pExpr->op2==TK_IS;
004748        testcase( isTrue && bNormal);
004749        testcase( !isTrue && bNormal);
004750        sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
004751        break;
004752      }
004753      case TK_ISNULL:
004754      case TK_NOTNULL: {
004755        int addr;
004756        assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
004757        assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
004758        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
004759        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
004760        testcase( regFree1==0 );
004761        addr = sqlite3VdbeAddOp1(v, op, r1);
004762        VdbeCoverageIf(v, op==TK_ISNULL);
004763        VdbeCoverageIf(v, op==TK_NOTNULL);
004764        sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
004765        sqlite3VdbeJumpHere(v, addr);
004766        break;
004767      }
004768      case TK_AGG_FUNCTION: {
004769        AggInfo *pInfo = pExpr->pAggInfo;
004770        if( pInfo==0
004771         || NEVER(pExpr->iAgg<0)
004772         || NEVER(pExpr->iAgg>=pInfo->nFunc)
004773        ){
004774          assert( !ExprHasProperty(pExpr, EP_IntValue) );
004775          sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
004776        }else{
004777          return AggInfoFuncReg(pInfo, pExpr->iAgg);
004778        }
004779        break;
004780      }
004781      case TK_FUNCTION: {
004782        ExprList *pFarg;       /* List of function arguments */
004783        int nFarg;             /* Number of function arguments */
004784        FuncDef *pDef;         /* The function definition object */
004785        const char *zId;       /* The function name */
004786        u32 constMask = 0;     /* Mask of function arguments that are constant */
004787        int i;                 /* Loop counter */
004788        sqlite3 *db = pParse->db;  /* The database connection */
004789        u8 enc = ENC(db);      /* The text encoding used by this database */
004790        CollSeq *pColl = 0;    /* A collating sequence */
004791  
004792  #ifndef SQLITE_OMIT_WINDOWFUNC
004793        if( ExprHasProperty(pExpr, EP_WinFunc) ){
004794          return pExpr->y.pWin->regResult;
004795        }
004796  #endif
004797  
004798        if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
004799          /* SQL functions can be expensive. So try to avoid running them
004800          ** multiple times if we know they always give the same result */
004801          return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
004802        }
004803        assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
004804        assert( ExprUseXList(pExpr) );
004805        pFarg = pExpr->x.pList;
004806        nFarg = pFarg ? pFarg->nExpr : 0;
004807        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004808        zId = pExpr->u.zToken;
004809        pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
004810  #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
004811        if( pDef==0 && pParse->explain ){
004812          pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
004813        }
004814  #endif
004815        if( pDef==0 || pDef->xFinalize!=0 ){
004816          sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
004817          break;
004818        }
004819        if( (pDef->funcFlags & SQLITE_FUNC_INLINE)!=0 && ALWAYS(pFarg!=0) ){
004820          assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
004821          assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
004822          return exprCodeInlineFunction(pParse, pFarg,
004823               SQLITE_PTR_TO_INT(pDef->pUserData), target);
004824        }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
004825          sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
004826        }
004827  
004828        for(i=0; i<nFarg; i++){
004829          if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
004830            testcase( i==31 );
004831            constMask |= MASKBIT32(i);
004832          }
004833          if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
004834            pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
004835          }
004836        }
004837        if( pFarg ){
004838          if( constMask ){
004839            r1 = pParse->nMem+1;
004840            pParse->nMem += nFarg;
004841          }else{
004842            r1 = sqlite3GetTempRange(pParse, nFarg);
004843          }
004844  
004845          /* For length() and typeof() and octet_length() functions,
004846          ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
004847          ** or OPFLAG_TYPEOFARG or OPFLAG_BYTELENARG respectively, to avoid
004848          ** unnecessary data loading.
004849          */
004850          if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
004851            u8 exprOp;
004852            assert( nFarg==1 );
004853            assert( pFarg->a[0].pExpr!=0 );
004854            exprOp = pFarg->a[0].pExpr->op;
004855            if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
004856              assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
004857              assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
004858              assert( SQLITE_FUNC_BYTELEN==OPFLAG_BYTELENARG );
004859              assert( (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG)==OPFLAG_BYTELENARG );
004860              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_LENGTHARG );
004861              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_TYPEOFARG );
004862              testcase( (pDef->funcFlags & OPFLAG_BYTELENARG)==OPFLAG_BYTELENARG);
004863              pFarg->a[0].pExpr->op2 = pDef->funcFlags & OPFLAG_BYTELENARG;
004864            }
004865          }
004866  
004867          sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, SQLITE_ECEL_FACTOR);
004868        }else{
004869          r1 = 0;
004870        }
004871  #ifndef SQLITE_OMIT_VIRTUALTABLE
004872        /* Possibly overload the function if the first argument is
004873        ** a virtual table column.
004874        **
004875        ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
004876        ** second argument, not the first, as the argument to test to
004877        ** see if it is a column in a virtual table.  This is done because
004878        ** the left operand of infix functions (the operand we want to
004879        ** control overloading) ends up as the second argument to the
004880        ** function.  The expression "A glob B" is equivalent to
004881        ** "glob(B,A).  We want to use the A in "A glob B" to test
004882        ** for function overloading.  But we use the B term in "glob(B,A)".
004883        */
004884        if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
004885          pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
004886        }else if( nFarg>0 ){
004887          pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
004888        }
004889  #endif
004890        if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
004891          if( !pColl ) pColl = db->pDfltColl;
004892          sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
004893        }
004894        sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
004895                                   pDef, pExpr->op2);
004896        if( nFarg ){
004897          if( constMask==0 ){
004898            sqlite3ReleaseTempRange(pParse, r1, nFarg);
004899          }else{
004900            sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
004901          }
004902        }
004903        return target;
004904      }
004905  #ifndef SQLITE_OMIT_SUBQUERY
004906      case TK_EXISTS:
004907      case TK_SELECT: {
004908        int nCol;
004909        testcase( op==TK_EXISTS );
004910        testcase( op==TK_SELECT );
004911        if( pParse->db->mallocFailed ){
004912          return 0;
004913        }else if( op==TK_SELECT
004914               && ALWAYS( ExprUseXSelect(pExpr) )
004915               && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
004916        ){
004917          sqlite3SubselectError(pParse, nCol, 1);
004918        }else{
004919          return sqlite3CodeSubselect(pParse, pExpr);
004920        }
004921        break;
004922      }
004923      case TK_SELECT_COLUMN: {
004924        int n;
004925        Expr *pLeft = pExpr->pLeft;
004926        if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
004927          pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
004928          pLeft->op2 = pParse->withinRJSubrtn;
004929        }
004930        assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
004931        n = sqlite3ExprVectorSize(pLeft);
004932        if( pExpr->iTable!=n ){
004933          sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
004934                                  pExpr->iTable, n);
004935        }
004936        return pLeft->iTable + pExpr->iColumn;
004937      }
004938      case TK_IN: {
004939        int destIfFalse = sqlite3VdbeMakeLabel(pParse);
004940        int destIfNull = sqlite3VdbeMakeLabel(pParse);
004941        sqlite3VdbeAddOp2(v, OP_Null, 0, target);
004942        sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
004943        sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
004944        sqlite3VdbeResolveLabel(v, destIfFalse);
004945        sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
004946        sqlite3VdbeResolveLabel(v, destIfNull);
004947        return target;
004948      }
004949  #endif /* SQLITE_OMIT_SUBQUERY */
004950  
004951  
004952      /*
004953      **    x BETWEEN y AND z
004954      **
004955      ** This is equivalent to
004956      **
004957      **    x>=y AND x<=z
004958      **
004959      ** X is stored in pExpr->pLeft.
004960      ** Y is stored in pExpr->pList->a[0].pExpr.
004961      ** Z is stored in pExpr->pList->a[1].pExpr.
004962      */
004963      case TK_BETWEEN: {
004964        exprCodeBetween(pParse, pExpr, target, 0, 0);
004965        return target;
004966      }
004967      case TK_COLLATE: {
004968        if( !ExprHasProperty(pExpr, EP_Collate) ){
004969          /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
004970          ** "SOFT-COLLATE" that is added to constraints that are pushed down
004971          ** from outer queries into sub-queries by the push-down optimization.
004972          ** Clear subtypes as subtypes may not cross a subquery boundary.
004973          */
004974          assert( pExpr->pLeft );
004975          sqlite3ExprCode(pParse, pExpr->pLeft, target);
004976          sqlite3VdbeAddOp1(v, OP_ClrSubtype, target);
004977          return target;
004978        }else{
004979          pExpr = pExpr->pLeft;
004980          goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
004981        }
004982      }
004983      case TK_SPAN:
004984      case TK_UPLUS: {
004985        pExpr = pExpr->pLeft;
004986        goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
004987      }
004988  
004989      case TK_TRIGGER: {
004990        /* If the opcode is TK_TRIGGER, then the expression is a reference
004991        ** to a column in the new.* or old.* pseudo-tables available to
004992        ** trigger programs. In this case Expr.iTable is set to 1 for the
004993        ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
004994        ** is set to the column of the pseudo-table to read, or to -1 to
004995        ** read the rowid field.
004996        **
004997        ** The expression is implemented using an OP_Param opcode. The p1
004998        ** parameter is set to 0 for an old.rowid reference, or to (i+1)
004999        ** to reference another column of the old.* pseudo-table, where
005000        ** i is the index of the column. For a new.rowid reference, p1 is
005001        ** set to (n+1), where n is the number of columns in each pseudo-table.
005002        ** For a reference to any other column in the new.* pseudo-table, p1
005003        ** is set to (n+2+i), where n and i are as defined previously. For
005004        ** example, if the table on which triggers are being fired is
005005        ** declared as:
005006        **
005007        **   CREATE TABLE t1(a, b);
005008        **
005009        ** Then p1 is interpreted as follows:
005010        **
005011        **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
005012        **   p1==1   ->    old.a         p1==4   ->    new.a
005013        **   p1==2   ->    old.b         p1==5   ->    new.b      
005014        */
005015        Table *pTab;
005016        int iCol;
005017        int p1;
005018  
005019        assert( ExprUseYTab(pExpr) );
005020        pTab = pExpr->y.pTab;
005021        iCol = pExpr->iColumn;
005022        p1 = pExpr->iTable * (pTab->nCol+1) + 1
005023                       + sqlite3TableColumnToStorage(pTab, iCol);
005024  
005025        assert( pExpr->iTable==0 || pExpr->iTable==1 );
005026        assert( iCol>=-1 && iCol<pTab->nCol );
005027        assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
005028        assert( p1>=0 && p1<(pTab->nCol*2+2) );
005029  
005030        sqlite3VdbeAddOp2(v, OP_Param, p1, target);
005031        VdbeComment((v, "r[%d]=%s.%s", target,
005032          (pExpr->iTable ? "new" : "old"),
005033          (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
005034        ));
005035  
005036  #ifndef SQLITE_OMIT_FLOATING_POINT
005037        /* If the column has REAL affinity, it may currently be stored as an
005038        ** integer. Use OP_RealAffinity to make sure it is really real.
005039        **
005040        ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
005041        ** floating point when extracting it from the record.  */
005042        if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
005043          sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
005044        }
005045  #endif
005046        break;
005047      }
005048  
005049      case TK_VECTOR: {
005050        sqlite3ErrorMsg(pParse, "row value misused");
005051        break;
005052      }
005053  
005054      /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
005055      ** that derive from the right-hand table of a LEFT JOIN.  The
005056      ** Expr.iTable value is the table number for the right-hand table.
005057      ** The expression is only evaluated if that table is not currently
005058      ** on a LEFT JOIN NULL row.
005059      */
005060      case TK_IF_NULL_ROW: {
005061        int addrINR;
005062        u8 okConstFactor = pParse->okConstFactor;
005063        AggInfo *pAggInfo = pExpr->pAggInfo;
005064        if( pAggInfo ){
005065          assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
005066          if( !pAggInfo->directMode ){
005067            inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
005068            break;
005069          }
005070          if( pExpr->pAggInfo->useSortingIdx ){
005071            sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
005072                              pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
005073                              target);
005074            inReg = target;
005075            break;
005076          }
005077        }
005078        addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
005079        /* The OP_IfNullRow opcode above can overwrite the result register with
005080        ** NULL.  So we have to ensure that the result register is not a value
005081        ** that is suppose to be a constant.  Two defenses are needed:
005082        **   (1)  Temporarily disable factoring of constant expressions
005083        **   (2)  Make sure the computed value really is stored in register
005084        **        "target" and not someplace else.
005085        */
005086        pParse->okConstFactor = 0;   /* note (1) above */
005087        sqlite3ExprCode(pParse, pExpr->pLeft, target);
005088        assert( target==inReg );
005089        pParse->okConstFactor = okConstFactor;
005090        sqlite3VdbeJumpHere(v, addrINR);
005091        break;
005092      }
005093  
005094      /*
005095      ** Form A:
005096      **   CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
005097      **
005098      ** Form B:
005099      **   CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
005100      **
005101      ** Form A is can be transformed into the equivalent form B as follows:
005102      **   CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
005103      **        WHEN x=eN THEN rN ELSE y END
005104      **
005105      ** X (if it exists) is in pExpr->pLeft.
005106      ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
005107      ** odd.  The Y is also optional.  If the number of elements in x.pList
005108      ** is even, then Y is omitted and the "otherwise" result is NULL.
005109      ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
005110      **
005111      ** The result of the expression is the Ri for the first matching Ei,
005112      ** or if there is no matching Ei, the ELSE term Y, or if there is
005113      ** no ELSE term, NULL.
005114      */
005115      case TK_CASE: {
005116        int endLabel;                     /* GOTO label for end of CASE stmt */
005117        int nextCase;                     /* GOTO label for next WHEN clause */
005118        int nExpr;                        /* 2x number of WHEN terms */
005119        int i;                            /* Loop counter */
005120        ExprList *pEList;                 /* List of WHEN terms */
005121        struct ExprList_item *aListelem;  /* Array of WHEN terms */
005122        Expr opCompare;                   /* The X==Ei expression */
005123        Expr *pX;                         /* The X expression */
005124        Expr *pTest = 0;                  /* X==Ei (form A) or just Ei (form B) */
005125        Expr *pDel = 0;
005126        sqlite3 *db = pParse->db;
005127  
005128        assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
005129        assert(pExpr->x.pList->nExpr > 0);
005130        pEList = pExpr->x.pList;
005131        aListelem = pEList->a;
005132        nExpr = pEList->nExpr;
005133        endLabel = sqlite3VdbeMakeLabel(pParse);
005134        if( (pX = pExpr->pLeft)!=0 ){
005135          pDel = sqlite3ExprDup(db, pX, 0);
005136          if( db->mallocFailed ){
005137            sqlite3ExprDelete(db, pDel);
005138            break;
005139          }
005140          testcase( pX->op==TK_COLUMN );
005141          exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
005142          testcase( regFree1==0 );
005143          memset(&opCompare, 0, sizeof(opCompare));
005144          opCompare.op = TK_EQ;
005145          opCompare.pLeft = pDel;
005146          pTest = &opCompare;
005147          /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
005148          ** The value in regFree1 might get SCopy-ed into the file result.
005149          ** So make sure that the regFree1 register is not reused for other
005150          ** purposes and possibly overwritten.  */
005151          regFree1 = 0;
005152        }
005153        for(i=0; i<nExpr-1; i=i+2){
005154          if( pX ){
005155            assert( pTest!=0 );
005156            opCompare.pRight = aListelem[i].pExpr;
005157          }else{
005158            pTest = aListelem[i].pExpr;
005159          }
005160          nextCase = sqlite3VdbeMakeLabel(pParse);
005161          testcase( pTest->op==TK_COLUMN );
005162          sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
005163          testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
005164          sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
005165          sqlite3VdbeGoto(v, endLabel);
005166          sqlite3VdbeResolveLabel(v, nextCase);
005167        }
005168        if( (nExpr&1)!=0 ){
005169          sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
005170        }else{
005171          sqlite3VdbeAddOp2(v, OP_Null, 0, target);
005172        }
005173        sqlite3ExprDelete(db, pDel);
005174        setDoNotMergeFlagOnCopy(v);
005175        sqlite3VdbeResolveLabel(v, endLabel);
005176        break;
005177      }
005178  #ifndef SQLITE_OMIT_TRIGGER
005179      case TK_RAISE: {
005180        assert( pExpr->affExpr==OE_Rollback
005181             || pExpr->affExpr==OE_Abort
005182             || pExpr->affExpr==OE_Fail
005183             || pExpr->affExpr==OE_Ignore
005184        );
005185        if( !pParse->pTriggerTab && !pParse->nested ){
005186          sqlite3ErrorMsg(pParse,
005187                         "RAISE() may only be used within a trigger-program");
005188          return 0;
005189        }
005190        if( pExpr->affExpr==OE_Abort ){
005191          sqlite3MayAbort(pParse);
005192        }
005193        assert( !ExprHasProperty(pExpr, EP_IntValue) );
005194        if( pExpr->affExpr==OE_Ignore ){
005195          sqlite3VdbeAddOp4(
005196              v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
005197          VdbeCoverage(v);
005198        }else{
005199          sqlite3HaltConstraint(pParse,
005200               pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
005201               pExpr->affExpr, pExpr->u.zToken, 0, 0);
005202        }
005203  
005204        break;
005205      }
005206  #endif
005207    }
005208    sqlite3ReleaseTempReg(pParse, regFree1);
005209    sqlite3ReleaseTempReg(pParse, regFree2);
005210    return inReg;
005211  }
005212  
005213  /*
005214  ** Generate code that will evaluate expression pExpr just one time
005215  ** per prepared statement execution.
005216  **
005217  ** If the expression uses functions (that might throw an exception) then
005218  ** guard them with an OP_Once opcode to ensure that the code is only executed
005219  ** once. If no functions are involved, then factor the code out and put it at
005220  ** the end of the prepared statement in the initialization section.
005221  **
005222  ** If regDest>0 then the result is always stored in that register and the
005223  ** result is not reusable.  If regDest<0 then this routine is free to
005224  ** store the value wherever it wants.  The register where the expression
005225  ** is stored is returned.  When regDest<0, two identical expressions might
005226  ** code to the same register, if they do not contain function calls and hence
005227  ** are factored out into the initialization section at the end of the
005228  ** prepared statement.
005229  */
005230  int sqlite3ExprCodeRunJustOnce(
005231    Parse *pParse,    /* Parsing context */
005232    Expr *pExpr,      /* The expression to code when the VDBE initializes */
005233    int regDest       /* Store the value in this register */
005234  ){
005235    ExprList *p;
005236    assert( ConstFactorOk(pParse) );
005237    assert( regDest!=0 );
005238    p = pParse->pConstExpr;
005239    if( regDest<0 && p ){
005240      struct ExprList_item *pItem;
005241      int i;
005242      for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
005243        if( pItem->fg.reusable
005244         && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
005245        ){
005246          return pItem->u.iConstExprReg;
005247        }
005248      }
005249    }
005250    pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
005251    if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
005252      Vdbe *v = pParse->pVdbe;
005253      int addr;
005254      assert( v );
005255      addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
005256      pParse->okConstFactor = 0;
005257      if( !pParse->db->mallocFailed ){
005258        if( regDest<0 ) regDest = ++pParse->nMem;
005259        sqlite3ExprCode(pParse, pExpr, regDest);
005260      }
005261      pParse->okConstFactor = 1;
005262      sqlite3ExprDelete(pParse->db, pExpr);
005263      sqlite3VdbeJumpHere(v, addr);
005264    }else{
005265      p = sqlite3ExprListAppend(pParse, p, pExpr);
005266      if( p ){
005267         struct ExprList_item *pItem = &p->a[p->nExpr-1];
005268         pItem->fg.reusable = regDest<0;
005269         if( regDest<0 ) regDest = ++pParse->nMem;
005270         pItem->u.iConstExprReg = regDest;
005271      }
005272      pParse->pConstExpr = p;
005273    }
005274    return regDest;
005275  }
005276  
005277  /*
005278  ** Generate code to evaluate an expression and store the results
005279  ** into a register.  Return the register number where the results
005280  ** are stored.
005281  **
005282  ** If the register is a temporary register that can be deallocated,
005283  ** then write its number into *pReg.  If the result register is not
005284  ** a temporary, then set *pReg to zero.
005285  **
005286  ** If pExpr is a constant, then this routine might generate this
005287  ** code to fill the register in the initialization section of the
005288  ** VDBE program, in order to factor it out of the evaluation loop.
005289  */
005290  int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
005291    int r2;
005292    pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
005293    if( ConstFactorOk(pParse)
005294     && ALWAYS(pExpr!=0)
005295     && pExpr->op!=TK_REGISTER
005296     && sqlite3ExprIsConstantNotJoin(pExpr)
005297    ){
005298      *pReg  = 0;
005299      r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
005300    }else{
005301      int r1 = sqlite3GetTempReg(pParse);
005302      r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
005303      if( r2==r1 ){
005304        *pReg = r1;
005305      }else{
005306        sqlite3ReleaseTempReg(pParse, r1);
005307        *pReg = 0;
005308      }
005309    }
005310    return r2;
005311  }
005312  
005313  /*
005314  ** Generate code that will evaluate expression pExpr and store the
005315  ** results in register target.  The results are guaranteed to appear
005316  ** in register target.
005317  */
005318  void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
005319    int inReg;
005320  
005321    assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
005322    assert( target>0 && target<=pParse->nMem );
005323    assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
005324    if( pParse->pVdbe==0 ) return;
005325    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
005326    if( inReg!=target ){
005327      u8 op;
005328      Expr *pX = sqlite3ExprSkipCollateAndLikely(pExpr);
005329      testcase( pX!=pExpr );
005330      if( ALWAYS(pX)
005331       && (ExprHasProperty(pX,EP_Subquery) || pX->op==TK_REGISTER)
005332      ){
005333        op = OP_Copy;
005334      }else{
005335        op = OP_SCopy;
005336      }
005337      sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
005338    }
005339  }
005340  
005341  /*
005342  ** Make a transient copy of expression pExpr and then code it using
005343  ** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
005344  ** except that the input expression is guaranteed to be unchanged.
005345  */
005346  void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
005347    sqlite3 *db = pParse->db;
005348    pExpr = sqlite3ExprDup(db, pExpr, 0);
005349    if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
005350    sqlite3ExprDelete(db, pExpr);
005351  }
005352  
005353  /*
005354  ** Generate code that will evaluate expression pExpr and store the
005355  ** results in register target.  The results are guaranteed to appear
005356  ** in register target.  If the expression is constant, then this routine
005357  ** might choose to code the expression at initialization time.
005358  */
005359  void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
005360    if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
005361      sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
005362    }else{
005363      sqlite3ExprCodeCopy(pParse, pExpr, target);
005364    }
005365  }
005366  
005367  /*
005368  ** Generate code that pushes the value of every element of the given
005369  ** expression list into a sequence of registers beginning at target.
005370  **
005371  ** Return the number of elements evaluated.  The number returned will
005372  ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
005373  ** is defined.
005374  **
005375  ** The SQLITE_ECEL_DUP flag prevents the arguments from being
005376  ** filled using OP_SCopy.  OP_Copy must be used instead.
005377  **
005378  ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
005379  ** factored out into initialization code.
005380  **
005381  ** The SQLITE_ECEL_REF flag means that expressions in the list with
005382  ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
005383  ** in registers at srcReg, and so the value can be copied from there.
005384  ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
005385  ** are simply omitted rather than being copied from srcReg.
005386  */
005387  int sqlite3ExprCodeExprList(
005388    Parse *pParse,     /* Parsing context */
005389    ExprList *pList,   /* The expression list to be coded */
005390    int target,        /* Where to write results */
005391    int srcReg,        /* Source registers if SQLITE_ECEL_REF */
005392    u8 flags           /* SQLITE_ECEL_* flags */
005393  ){
005394    struct ExprList_item *pItem;
005395    int i, j, n;
005396    u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
005397    Vdbe *v = pParse->pVdbe;
005398    assert( pList!=0 );
005399    assert( target>0 );
005400    assert( pParse->pVdbe!=0 );  /* Never gets this far otherwise */
005401    n = pList->nExpr;
005402    if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
005403    for(pItem=pList->a, i=0; i<n; i++, pItem++){
005404      Expr *pExpr = pItem->pExpr;
005405  #ifdef SQLITE_ENABLE_SORTER_REFERENCES
005406      if( pItem->fg.bSorterRef ){
005407        i--;
005408        n--;
005409      }else
005410  #endif
005411      if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
005412        if( flags & SQLITE_ECEL_OMITREF ){
005413          i--;
005414          n--;
005415        }else{
005416          sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
005417        }
005418      }else if( (flags & SQLITE_ECEL_FACTOR)!=0
005419             && sqlite3ExprIsConstantNotJoin(pExpr)
005420      ){
005421        sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
005422      }else{
005423        int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
005424        if( inReg!=target+i ){
005425          VdbeOp *pOp;
005426          if( copyOp==OP_Copy
005427           && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
005428           && pOp->p1+pOp->p3+1==inReg
005429           && pOp->p2+pOp->p3+1==target+i
005430           && pOp->p5==0  /* The do-not-merge flag must be clear */
005431          ){
005432            pOp->p3++;
005433          }else{
005434            sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
005435          }
005436        }
005437      }
005438    }
005439    return n;
005440  }
005441  
005442  /*
005443  ** Generate code for a BETWEEN operator.
005444  **
005445  **    x BETWEEN y AND z
005446  **
005447  ** The above is equivalent to
005448  **
005449  **    x>=y AND x<=z
005450  **
005451  ** Code it as such, taking care to do the common subexpression
005452  ** elimination of x.
005453  **
005454  ** The xJumpIf parameter determines details:
005455  **
005456  **    NULL:                   Store the boolean result in reg[dest]
005457  **    sqlite3ExprIfTrue:      Jump to dest if true
005458  **    sqlite3ExprIfFalse:     Jump to dest if false
005459  **
005460  ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
005461  */
005462  static void exprCodeBetween(
005463    Parse *pParse,    /* Parsing and code generating context */
005464    Expr *pExpr,      /* The BETWEEN expression */
005465    int dest,         /* Jump destination or storage location */
005466    void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
005467    int jumpIfNull    /* Take the jump if the BETWEEN is NULL */
005468  ){
005469    Expr exprAnd;     /* The AND operator in  x>=y AND x<=z  */
005470    Expr compLeft;    /* The  x>=y  term */
005471    Expr compRight;   /* The  x<=z  term */
005472    int regFree1 = 0; /* Temporary use register */
005473    Expr *pDel = 0;
005474    sqlite3 *db = pParse->db;
005475  
005476    memset(&compLeft, 0, sizeof(Expr));
005477    memset(&compRight, 0, sizeof(Expr));
005478    memset(&exprAnd, 0, sizeof(Expr));
005479  
005480    assert( ExprUseXList(pExpr) );
005481    pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
005482    if( db->mallocFailed==0 ){
005483      exprAnd.op = TK_AND;
005484      exprAnd.pLeft = &compLeft;
005485      exprAnd.pRight = &compRight;
005486      compLeft.op = TK_GE;
005487      compLeft.pLeft = pDel;
005488      compLeft.pRight = pExpr->x.pList->a[0].pExpr;
005489      compRight.op = TK_LE;
005490      compRight.pLeft = pDel;
005491      compRight.pRight = pExpr->x.pList->a[1].pExpr;
005492      exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
005493      if( xJump ){
005494        xJump(pParse, &exprAnd, dest, jumpIfNull);
005495      }else{
005496        /* Mark the expression is being from the ON or USING clause of a join
005497        ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
005498        ** it into the Parse.pConstExpr list.  We should use a new bit for this,
005499        ** for clarity, but we are out of bits in the Expr.flags field so we
005500        ** have to reuse the EP_OuterON bit.  Bummer. */
005501        pDel->flags |= EP_OuterON;
005502        sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
005503      }
005504      sqlite3ReleaseTempReg(pParse, regFree1);
005505    }
005506    sqlite3ExprDelete(db, pDel);
005507  
005508    /* Ensure adequate test coverage */
005509    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1==0 );
005510    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull==0 && regFree1!=0 );
005511    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1==0 );
005512    testcase( xJump==sqlite3ExprIfTrue  && jumpIfNull!=0 && regFree1!=0 );
005513    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
005514    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
005515    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
005516    testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
005517    testcase( xJump==0 );
005518  }
005519  
005520  /*
005521  ** Generate code for a boolean expression such that a jump is made
005522  ** to the label "dest" if the expression is true but execution
005523  ** continues straight thru if the expression is false.
005524  **
005525  ** If the expression evaluates to NULL (neither true nor false), then
005526  ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
005527  **
005528  ** This code depends on the fact that certain token values (ex: TK_EQ)
005529  ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
005530  ** operation.  Special comments in vdbe.c and the mkopcodeh.awk script in
005531  ** the make process cause these values to align.  Assert()s in the code
005532  ** below verify that the numbers are aligned correctly.
005533  */
005534  void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
005535    Vdbe *v = pParse->pVdbe;
005536    int op = 0;
005537    int regFree1 = 0;
005538    int regFree2 = 0;
005539    int r1, r2;
005540  
005541    assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
005542    if( NEVER(v==0) )     return;  /* Existence of VDBE checked by caller */
005543    if( NEVER(pExpr==0) ) return;  /* No way this can happen */
005544    assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
005545    op = pExpr->op;
005546    switch( op ){
005547      case TK_AND:
005548      case TK_OR: {
005549        Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
005550        if( pAlt!=pExpr ){
005551          sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
005552        }else if( op==TK_AND ){
005553          int d2 = sqlite3VdbeMakeLabel(pParse);
005554          testcase( jumpIfNull==0 );
005555          sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
005556                             jumpIfNull^SQLITE_JUMPIFNULL);
005557          sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
005558          sqlite3VdbeResolveLabel(v, d2);
005559        }else{
005560          testcase( jumpIfNull==0 );
005561          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
005562          sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
005563        }
005564        break;
005565      }
005566      case TK_NOT: {
005567        testcase( jumpIfNull==0 );
005568        sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
005569        break;
005570      }
005571      case TK_TRUTH: {
005572        int isNot;      /* IS NOT TRUE or IS NOT FALSE */
005573        int isTrue;     /* IS TRUE or IS NOT TRUE */
005574        testcase( jumpIfNull==0 );
005575        isNot = pExpr->op2==TK_ISNOT;
005576        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
005577        testcase( isTrue && isNot );
005578        testcase( !isTrue && isNot );
005579        if( isTrue ^ isNot ){
005580          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
005581                            isNot ? SQLITE_JUMPIFNULL : 0);
005582        }else{
005583          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
005584                             isNot ? SQLITE_JUMPIFNULL : 0);
005585        }
005586        break;
005587      }
005588      case TK_IS:
005589      case TK_ISNOT:
005590        testcase( op==TK_IS );
005591        testcase( op==TK_ISNOT );
005592        op = (op==TK_IS) ? TK_EQ : TK_NE;
005593        jumpIfNull = SQLITE_NULLEQ;
005594        /* no break */ deliberate_fall_through
005595      case TK_LT:
005596      case TK_LE:
005597      case TK_GT:
005598      case TK_GE:
005599      case TK_NE:
005600      case TK_EQ: {
005601        if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
005602        testcase( jumpIfNull==0 );
005603        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005604        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
005605        codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
005606                    r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
005607        assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
005608        assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
005609        assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
005610        assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
005611        assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
005612        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
005613        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
005614        assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
005615        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
005616        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
005617        testcase( regFree1==0 );
005618        testcase( regFree2==0 );
005619        break;
005620      }
005621      case TK_ISNULL:
005622      case TK_NOTNULL: {
005623        assert( TK_ISNULL==OP_IsNull );   testcase( op==TK_ISNULL );
005624        assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
005625        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005626        sqlite3VdbeTypeofColumn(v, r1);
005627        sqlite3VdbeAddOp2(v, op, r1, dest);
005628        VdbeCoverageIf(v, op==TK_ISNULL);
005629        VdbeCoverageIf(v, op==TK_NOTNULL);
005630        testcase( regFree1==0 );
005631        break;
005632      }
005633      case TK_BETWEEN: {
005634        testcase( jumpIfNull==0 );
005635        exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
005636        break;
005637      }
005638  #ifndef SQLITE_OMIT_SUBQUERY
005639      case TK_IN: {
005640        int destIfFalse = sqlite3VdbeMakeLabel(pParse);
005641        int destIfNull = jumpIfNull ? dest : destIfFalse;
005642        sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
005643        sqlite3VdbeGoto(v, dest);
005644        sqlite3VdbeResolveLabel(v, destIfFalse);
005645        break;
005646      }
005647  #endif
005648      default: {
005649      default_expr:
005650        if( ExprAlwaysTrue(pExpr) ){
005651          sqlite3VdbeGoto(v, dest);
005652        }else if( ExprAlwaysFalse(pExpr) ){
005653          /* No-op */
005654        }else{
005655          r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
005656          sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
005657          VdbeCoverage(v);
005658          testcase( regFree1==0 );
005659          testcase( jumpIfNull==0 );
005660        }
005661        break;
005662      }
005663    }
005664    sqlite3ReleaseTempReg(pParse, regFree1);
005665    sqlite3ReleaseTempReg(pParse, regFree2); 
005666  }
005667  
005668  /*
005669  ** Generate code for a boolean expression such that a jump is made
005670  ** to the label "dest" if the expression is false but execution
005671  ** continues straight thru if the expression is true.
005672  **
005673  ** If the expression evaluates to NULL (neither true nor false) then
005674  ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
005675  ** is 0.
005676  */
005677  void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
005678    Vdbe *v = pParse->pVdbe;
005679    int op = 0;
005680    int regFree1 = 0;
005681    int regFree2 = 0;
005682    int r1, r2;
005683  
005684    assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
005685    if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
005686    if( pExpr==0 )    return;
005687    assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
005688  
005689    /* The value of pExpr->op and op are related as follows:
005690    **
005691    **       pExpr->op            op
005692    **       ---------          ----------
005693    **       TK_ISNULL          OP_NotNull
005694    **       TK_NOTNULL         OP_IsNull
005695    **       TK_NE              OP_Eq
005696    **       TK_EQ              OP_Ne
005697    **       TK_GT              OP_Le
005698    **       TK_LE              OP_Gt
005699    **       TK_GE              OP_Lt
005700    **       TK_LT              OP_Ge
005701    **
005702    ** For other values of pExpr->op, op is undefined and unused.
005703    ** The value of TK_ and OP_ constants are arranged such that we
005704    ** can compute the mapping above using the following expression.
005705    ** Assert()s verify that the computation is correct.
005706    */
005707    op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
005708  
005709    /* Verify correct alignment of TK_ and OP_ constants
005710    */
005711    assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
005712    assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
005713    assert( pExpr->op!=TK_NE || op==OP_Eq );
005714    assert( pExpr->op!=TK_EQ || op==OP_Ne );
005715    assert( pExpr->op!=TK_LT || op==OP_Ge );
005716    assert( pExpr->op!=TK_LE || op==OP_Gt );
005717    assert( pExpr->op!=TK_GT || op==OP_Le );
005718    assert( pExpr->op!=TK_GE || op==OP_Lt );
005719  
005720    switch( pExpr->op ){
005721      case TK_AND:
005722      case TK_OR: {
005723        Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
005724        if( pAlt!=pExpr ){
005725          sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
005726        }else if( pExpr->op==TK_AND ){
005727          testcase( jumpIfNull==0 );
005728          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
005729          sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
005730        }else{
005731          int d2 = sqlite3VdbeMakeLabel(pParse);
005732          testcase( jumpIfNull==0 );
005733          sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
005734                            jumpIfNull^SQLITE_JUMPIFNULL);
005735          sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
005736          sqlite3VdbeResolveLabel(v, d2);
005737        }
005738        break;
005739      }
005740      case TK_NOT: {
005741        testcase( jumpIfNull==0 );
005742        sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
005743        break;
005744      }
005745      case TK_TRUTH: {
005746        int isNot;   /* IS NOT TRUE or IS NOT FALSE */
005747        int isTrue;  /* IS TRUE or IS NOT TRUE */
005748        testcase( jumpIfNull==0 );
005749        isNot = pExpr->op2==TK_ISNOT;
005750        isTrue = sqlite3ExprTruthValue(pExpr->pRight);
005751        testcase( isTrue && isNot );
005752        testcase( !isTrue && isNot );
005753        if( isTrue ^ isNot ){
005754          /* IS TRUE and IS NOT FALSE */
005755          sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
005756                             isNot ? 0 : SQLITE_JUMPIFNULL);
005757  
005758        }else{
005759          /* IS FALSE and IS NOT TRUE */
005760          sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
005761                            isNot ? 0 : SQLITE_JUMPIFNULL);
005762        }
005763        break;
005764      }
005765      case TK_IS:
005766      case TK_ISNOT:
005767        testcase( pExpr->op==TK_IS );
005768        testcase( pExpr->op==TK_ISNOT );
005769        op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
005770        jumpIfNull = SQLITE_NULLEQ;
005771        /* no break */ deliberate_fall_through
005772      case TK_LT:
005773      case TK_LE:
005774      case TK_GT:
005775      case TK_GE:
005776      case TK_NE:
005777      case TK_EQ: {
005778        if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
005779        testcase( jumpIfNull==0 );
005780        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005781        r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
005782        codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
005783                    r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
005784        assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
005785        assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
005786        assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
005787        assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
005788        assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
005789        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
005790        VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
005791        assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
005792        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
005793        VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
005794        testcase( regFree1==0 );
005795        testcase( regFree2==0 );
005796        break;
005797      }
005798      case TK_ISNULL:
005799      case TK_NOTNULL: {
005800        r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
005801        sqlite3VdbeTypeofColumn(v, r1);
005802        sqlite3VdbeAddOp2(v, op, r1, dest);
005803        testcase( op==TK_ISNULL );   VdbeCoverageIf(v, op==TK_ISNULL);
005804        testcase( op==TK_NOTNULL );  VdbeCoverageIf(v, op==TK_NOTNULL);
005805        testcase( regFree1==0 );
005806        break;
005807      }
005808      case TK_BETWEEN: {
005809        testcase( jumpIfNull==0 );
005810        exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
005811        break;
005812      }
005813  #ifndef SQLITE_OMIT_SUBQUERY
005814      case TK_IN: {
005815        if( jumpIfNull ){
005816          sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
005817        }else{
005818          int destIfNull = sqlite3VdbeMakeLabel(pParse);
005819          sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
005820          sqlite3VdbeResolveLabel(v, destIfNull);
005821        }
005822        break;
005823      }
005824  #endif
005825      default: {
005826      default_expr:
005827        if( ExprAlwaysFalse(pExpr) ){
005828          sqlite3VdbeGoto(v, dest);
005829        }else if( ExprAlwaysTrue(pExpr) ){
005830          /* no-op */
005831        }else{
005832          r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
005833          sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
005834          VdbeCoverage(v);
005835          testcase( regFree1==0 );
005836          testcase( jumpIfNull==0 );
005837        }
005838        break;
005839      }
005840    }
005841    sqlite3ReleaseTempReg(pParse, regFree1);
005842    sqlite3ReleaseTempReg(pParse, regFree2);
005843  }
005844  
005845  /*
005846  ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
005847  ** code generation, and that copy is deleted after code generation. This
005848  ** ensures that the original pExpr is unchanged.
005849  */
005850  void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
005851    sqlite3 *db = pParse->db;
005852    Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
005853    if( db->mallocFailed==0 ){
005854      sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
005855    }
005856    sqlite3ExprDelete(db, pCopy);
005857  }
005858  
005859  /*
005860  ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
005861  ** type of expression.
005862  **
005863  ** If pExpr is a simple SQL value - an integer, real, string, blob
005864  ** or NULL value - then the VDBE currently being prepared is configured
005865  ** to re-prepare each time a new value is bound to variable pVar.
005866  **
005867  ** Additionally, if pExpr is a simple SQL value and the value is the
005868  ** same as that currently bound to variable pVar, non-zero is returned.
005869  ** Otherwise, if the values are not the same or if pExpr is not a simple
005870  ** SQL value, zero is returned.
005871  */
005872  static int exprCompareVariable(
005873    const Parse *pParse,
005874    const Expr *pVar,
005875    const Expr *pExpr
005876  ){
005877    int res = 0;
005878    int iVar;
005879    sqlite3_value *pL, *pR = 0;
005880   
005881    sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
005882    if( pR ){
005883      iVar = pVar->iColumn;
005884      sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
005885      pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
005886      if( pL ){
005887        if( sqlite3_value_type(pL)==SQLITE_TEXT ){
005888          sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
005889        }
005890        res =  0==sqlite3MemCompare(pL, pR, 0);
005891      }
005892      sqlite3ValueFree(pR);
005893      sqlite3ValueFree(pL);
005894    }
005895  
005896    return res;
005897  }
005898  
005899  /*
005900  ** Do a deep comparison of two expression trees.  Return 0 if the two
005901  ** expressions are completely identical.  Return 1 if they differ only
005902  ** by a COLLATE operator at the top level.  Return 2 if there are differences
005903  ** other than the top-level COLLATE operator.
005904  **
005905  ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
005906  ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
005907  **
005908  ** The pA side might be using TK_REGISTER.  If that is the case and pB is
005909  ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
005910  **
005911  ** Sometimes this routine will return 2 even if the two expressions
005912  ** really are equivalent.  If we cannot prove that the expressions are
005913  ** identical, we return 2 just to be safe.  So if this routine
005914  ** returns 2, then you do not really know for certain if the two
005915  ** expressions are the same.  But if you get a 0 or 1 return, then you
005916  ** can be sure the expressions are the same.  In the places where
005917  ** this routine is used, it does not hurt to get an extra 2 - that
005918  ** just might result in some slightly slower code.  But returning
005919  ** an incorrect 0 or 1 could lead to a malfunction.
005920  **
005921  ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
005922  ** pParse->pReprepare can be matched against literals in pB.  The
005923  ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
005924  ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
005925  ** Argument pParse should normally be NULL. If it is not NULL and pA or
005926  ** pB causes a return value of 2.
005927  */
005928  int sqlite3ExprCompare(
005929    const Parse *pParse,
005930    const Expr *pA,
005931    const Expr *pB,
005932    int iTab
005933  ){
005934    u32 combinedFlags;
005935    if( pA==0 || pB==0 ){
005936      return pB==pA ? 0 : 2;
005937    }
005938    if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
005939      return 0;
005940    }
005941    combinedFlags = pA->flags | pB->flags;
005942    if( combinedFlags & EP_IntValue ){
005943      if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
005944        return 0;
005945      }
005946      return 2;
005947    }
005948    if( pA->op!=pB->op || pA->op==TK_RAISE ){
005949      if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
005950        return 1;
005951      }
005952      if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
005953        return 1;
005954      }
005955      if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
005956       && pB->iTable<0 && pA->iTable==iTab
005957      ){
005958        /* fall through */
005959      }else{
005960        return 2;
005961      }
005962    }
005963    assert( !ExprHasProperty(pA, EP_IntValue) );
005964    assert( !ExprHasProperty(pB, EP_IntValue) );
005965    if( pA->u.zToken ){
005966      if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
005967        if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
005968  #ifndef SQLITE_OMIT_WINDOWFUNC
005969        assert( pA->op==pB->op );
005970        if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
005971          return 2;
005972        }
005973        if( ExprHasProperty(pA,EP_WinFunc) ){
005974          if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
005975            return 2;
005976          }
005977        }
005978  #endif
005979      }else if( pA->op==TK_NULL ){
005980        return 0;
005981      }else if( pA->op==TK_COLLATE ){
005982        if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
005983      }else
005984      if( pB->u.zToken!=0
005985       && pA->op!=TK_COLUMN
005986       && pA->op!=TK_AGG_COLUMN
005987       && strcmp(pA->u.zToken,pB->u.zToken)!=0
005988      ){
005989        return 2;
005990      }
005991    }
005992    if( (pA->flags & (EP_Distinct|EP_Commuted))
005993       != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
005994    if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
005995      if( combinedFlags & EP_xIsSelect ) return 2;
005996      if( (combinedFlags & EP_FixedCol)==0
005997       && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
005998      if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
005999      if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
006000      if( pA->op!=TK_STRING
006001       && pA->op!=TK_TRUEFALSE
006002       && ALWAYS((combinedFlags & EP_Reduced)==0)
006003      ){
006004        if( pA->iColumn!=pB->iColumn ) return 2;
006005        if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
006006        if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
006007          return 2;
006008        }
006009      }
006010    }
006011    return 0;
006012  }
006013  
006014  /*
006015  ** Compare two ExprList objects.  Return 0 if they are identical, 1
006016  ** if they are certainly different, or 2 if it is not possible to
006017  ** determine if they are identical or not.
006018  **
006019  ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
006020  ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
006021  **
006022  ** This routine might return non-zero for equivalent ExprLists.  The
006023  ** only consequence will be disabled optimizations.  But this routine
006024  ** must never return 0 if the two ExprList objects are different, or
006025  ** a malfunction will result.
006026  **
006027  ** Two NULL pointers are considered to be the same.  But a NULL pointer
006028  ** always differs from a non-NULL pointer.
006029  */
006030  int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
006031    int i;
006032    if( pA==0 && pB==0 ) return 0;
006033    if( pA==0 || pB==0 ) return 1;
006034    if( pA->nExpr!=pB->nExpr ) return 1;
006035    for(i=0; i<pA->nExpr; i++){
006036      int res;
006037      Expr *pExprA = pA->a[i].pExpr;
006038      Expr *pExprB = pB->a[i].pExpr;
006039      if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
006040      if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
006041    }
006042    return 0;
006043  }
006044  
006045  /*
006046  ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
006047  ** are ignored.
006048  */
006049  int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
006050    return sqlite3ExprCompare(0,
006051               sqlite3ExprSkipCollate(pA),
006052               sqlite3ExprSkipCollate(pB),
006053               iTab);
006054  }
006055  
006056  /*
006057  ** Return non-zero if Expr p can only be true if pNN is not NULL.
006058  **
006059  ** Or if seenNot is true, return non-zero if Expr p can only be
006060  ** non-NULL if pNN is not NULL
006061  */
006062  static int exprImpliesNotNull(
006063    const Parse *pParse,/* Parsing context */
006064    const Expr *p,      /* The expression to be checked */
006065    const Expr *pNN,    /* The expression that is NOT NULL */
006066    int iTab,           /* Table being evaluated */
006067    int seenNot         /* Return true only if p can be any non-NULL value */
006068  ){
006069    assert( p );
006070    assert( pNN );
006071    if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
006072      return pNN->op!=TK_NULL;
006073    }
006074    switch( p->op ){
006075      case TK_IN: {
006076        if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
006077        assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
006078        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006079      }
006080      case TK_BETWEEN: {
006081        ExprList *pList;
006082        assert( ExprUseXList(p) );
006083        pList = p->x.pList;
006084        assert( pList!=0 );
006085        assert( pList->nExpr==2 );
006086        if( seenNot ) return 0;
006087        if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
006088         || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
006089        ){
006090          return 1;
006091        }
006092        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006093      }
006094      case TK_EQ:
006095      case TK_NE:
006096      case TK_LT:
006097      case TK_LE:
006098      case TK_GT:
006099      case TK_GE:
006100      case TK_PLUS:
006101      case TK_MINUS:
006102      case TK_BITOR:
006103      case TK_LSHIFT:
006104      case TK_RSHIFT:
006105      case TK_CONCAT:
006106        seenNot = 1;
006107        /* no break */ deliberate_fall_through
006108      case TK_STAR:
006109      case TK_REM:
006110      case TK_BITAND:
006111      case TK_SLASH: {
006112        if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
006113        /* no break */ deliberate_fall_through
006114      }
006115      case TK_SPAN:
006116      case TK_COLLATE:
006117      case TK_UPLUS:
006118      case TK_UMINUS: {
006119        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
006120      }
006121      case TK_TRUTH: {
006122        if( seenNot ) return 0;
006123        if( p->op2!=TK_IS ) return 0;
006124        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006125      }
006126      case TK_BITNOT:
006127      case TK_NOT: {
006128        return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
006129      }
006130    }
006131    return 0;
006132  }
006133  
006134  /*
006135  ** Return true if we can prove the pE2 will always be true if pE1 is
006136  ** true.  Return false if we cannot complete the proof or if pE2 might
006137  ** be false.  Examples:
006138  **
006139  **     pE1: x==5       pE2: x==5             Result: true
006140  **     pE1: x>0        pE2: x==5             Result: false
006141  **     pE1: x=21       pE2: x=21 OR y=43     Result: true
006142  **     pE1: x!=123     pE2: x IS NOT NULL    Result: true
006143  **     pE1: x!=?1      pE2: x IS NOT NULL    Result: true
006144  **     pE1: x IS NULL  pE2: x IS NOT NULL    Result: false
006145  **     pE1: x IS ?2    pE2: x IS NOT NULL    Result: false
006146  **
006147  ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
006148  ** Expr.iTable<0 then assume a table number given by iTab.
006149  **
006150  ** If pParse is not NULL, then the values of bound variables in pE1 are
006151  ** compared against literal values in pE2 and pParse->pVdbe->expmask is
006152  ** modified to record which bound variables are referenced.  If pParse
006153  ** is NULL, then false will be returned if pE1 contains any bound variables.
006154  **
006155  ** When in doubt, return false.  Returning true might give a performance
006156  ** improvement.  Returning false might cause a performance reduction, but
006157  ** it will always give the correct answer and is hence always safe.
006158  */
006159  int sqlite3ExprImpliesExpr(
006160    const Parse *pParse,
006161    const Expr *pE1,
006162    const Expr *pE2,
006163    int iTab
006164  ){
006165    if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
006166      return 1;
006167    }
006168    if( pE2->op==TK_OR
006169     && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
006170               || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
006171    ){
006172      return 1;
006173    }
006174    if( pE2->op==TK_NOTNULL
006175     && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
006176    ){
006177      return 1;
006178    }
006179    return 0;
006180  }
006181  
006182  /* This is a helper function to impliesNotNullRow().  In this routine,
006183  ** set pWalker->eCode to one only if *both* of the input expressions
006184  ** separately have the implies-not-null-row property.
006185  */
006186  static void bothImplyNotNullRow(Walker *pWalker, Expr *pE1, Expr *pE2){
006187    if( pWalker->eCode==0 ){
006188      sqlite3WalkExpr(pWalker, pE1);
006189      if( pWalker->eCode ){
006190        pWalker->eCode = 0;
006191        sqlite3WalkExpr(pWalker, pE2);
006192      }
006193    }
006194  }
006195  
006196  /*
006197  ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
006198  ** If the expression node requires that the table at pWalker->iCur
006199  ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
006200  **
006201  ** pWalker->mWFlags is non-zero if this inquiry is being undertaking on
006202  ** behalf of a RIGHT JOIN (or FULL JOIN).  That makes a difference when
006203  ** evaluating terms in the ON clause of an inner join.
006204  **
006205  ** This routine controls an optimization.  False positives (setting
006206  ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
006207  ** (never setting pWalker->eCode) is a harmless missed optimization.
006208  */
006209  static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
006210    testcase( pExpr->op==TK_AGG_COLUMN );
006211    testcase( pExpr->op==TK_AGG_FUNCTION );
006212    if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
006213    if( ExprHasProperty(pExpr, EP_InnerON) && pWalker->mWFlags ){
006214      /* If iCur is used in an inner-join ON clause to the left of a
006215      ** RIGHT JOIN, that does *not* mean that the table must be non-null.
006216      ** But it is difficult to check for that condition precisely.
006217      ** To keep things simple, any use of iCur from any inner-join is
006218      ** ignored while attempting to simplify a RIGHT JOIN. */
006219      return WRC_Prune;
006220    }
006221    switch( pExpr->op ){
006222      case TK_ISNOT:
006223      case TK_ISNULL:
006224      case TK_NOTNULL:
006225      case TK_IS:
006226      case TK_VECTOR:
006227      case TK_FUNCTION:
006228      case TK_TRUTH:
006229      case TK_CASE:
006230        testcase( pExpr->op==TK_ISNOT );
006231        testcase( pExpr->op==TK_ISNULL );
006232        testcase( pExpr->op==TK_NOTNULL );
006233        testcase( pExpr->op==TK_IS );
006234        testcase( pExpr->op==TK_VECTOR );
006235        testcase( pExpr->op==TK_FUNCTION );
006236        testcase( pExpr->op==TK_TRUTH );
006237        testcase( pExpr->op==TK_CASE );
006238        return WRC_Prune;
006239  
006240      case TK_COLUMN:
006241        if( pWalker->u.iCur==pExpr->iTable ){
006242          pWalker->eCode = 1;
006243          return WRC_Abort;
006244        }
006245        return WRC_Prune;
006246  
006247      case TK_OR:
006248      case TK_AND:
006249        /* Both sides of an AND or OR must separately imply non-null-row.
006250        ** Consider these cases:
006251        **    1.  NOT (x AND y)
006252        **    2.  x OR y
006253        ** If only one of x or y is non-null-row, then the overall expression
006254        ** can be true if the other arm is false (case 1) or true (case 2).
006255        */
006256        testcase( pExpr->op==TK_OR );
006257        testcase( pExpr->op==TK_AND );
006258        bothImplyNotNullRow(pWalker, pExpr->pLeft, pExpr->pRight);
006259        return WRC_Prune;
006260         
006261      case TK_IN:
006262        /* Beware of "x NOT IN ()" and "x NOT IN (SELECT 1 WHERE false)",
006263        ** both of which can be true.  But apart from these cases, if
006264        ** the left-hand side of the IN is NULL then the IN itself will be
006265        ** NULL. */
006266        if( ExprUseXList(pExpr) && ALWAYS(pExpr->x.pList->nExpr>0) ){
006267          sqlite3WalkExpr(pWalker, pExpr->pLeft);
006268        }
006269        return WRC_Prune;
006270  
006271      case TK_BETWEEN:
006272        /* In "x NOT BETWEEN y AND z" either x must be non-null-row or else
006273        ** both y and z must be non-null row */
006274        assert( ExprUseXList(pExpr) );
006275        assert( pExpr->x.pList->nExpr==2 );
006276        sqlite3WalkExpr(pWalker, pExpr->pLeft);
006277        bothImplyNotNullRow(pWalker, pExpr->x.pList->a[0].pExpr,
006278                                     pExpr->x.pList->a[1].pExpr);
006279        return WRC_Prune;
006280  
006281      /* Virtual tables are allowed to use constraints like x=NULL.  So
006282      ** a term of the form x=y does not prove that y is not null if x
006283      ** is the column of a virtual table */
006284      case TK_EQ:
006285      case TK_NE:
006286      case TK_LT:
006287      case TK_LE:
006288      case TK_GT:
006289      case TK_GE: {
006290        Expr *pLeft = pExpr->pLeft;
006291        Expr *pRight = pExpr->pRight;
006292        testcase( pExpr->op==TK_EQ );
006293        testcase( pExpr->op==TK_NE );
006294        testcase( pExpr->op==TK_LT );
006295        testcase( pExpr->op==TK_LE );
006296        testcase( pExpr->op==TK_GT );
006297        testcase( pExpr->op==TK_GE );
006298        /* The y.pTab=0 assignment in wherecode.c always happens after the
006299        ** impliesNotNullRow() test */
006300        assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
006301        assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
006302        if( (pLeft->op==TK_COLUMN
006303             && ALWAYS(pLeft->y.pTab!=0)
006304             && IsVirtual(pLeft->y.pTab))
006305         || (pRight->op==TK_COLUMN
006306             && ALWAYS(pRight->y.pTab!=0)
006307             && IsVirtual(pRight->y.pTab))
006308        ){
006309          return WRC_Prune;
006310        }
006311        /* no break */ deliberate_fall_through
006312      }
006313      default:
006314        return WRC_Continue;
006315    }
006316  }
006317  
006318  /*
006319  ** Return true (non-zero) if expression p can only be true if at least
006320  ** one column of table iTab is non-null.  In other words, return true
006321  ** if expression p will always be NULL or false if every column of iTab
006322  ** is NULL.
006323  **
006324  ** False negatives are acceptable.  In other words, it is ok to return
006325  ** zero even if expression p will never be true of every column of iTab
006326  ** is NULL.  A false negative is merely a missed optimization opportunity.
006327  **
006328  ** False positives are not allowed, however.  A false positive may result
006329  ** in an incorrect answer.
006330  **
006331  ** Terms of p that are marked with EP_OuterON (and hence that come from
006332  ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
006333  **
006334  ** This routine is used to check if a LEFT JOIN can be converted into
006335  ** an ordinary JOIN.  The p argument is the WHERE clause.  If the WHERE
006336  ** clause requires that some column of the right table of the LEFT JOIN
006337  ** be non-NULL, then the LEFT JOIN can be safely converted into an
006338  ** ordinary join.
006339  */
006340  int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab, int isRJ){
006341    Walker w;
006342    p = sqlite3ExprSkipCollateAndLikely(p);
006343    if( p==0 ) return 0;
006344    if( p->op==TK_NOTNULL ){
006345      p = p->pLeft;
006346    }else{
006347      while( p->op==TK_AND ){
006348        if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab, isRJ) ) return 1;
006349        p = p->pRight;
006350      }
006351    }
006352    w.xExprCallback = impliesNotNullRow;
006353    w.xSelectCallback = 0;
006354    w.xSelectCallback2 = 0;
006355    w.eCode = 0;
006356    w.mWFlags = isRJ!=0;
006357    w.u.iCur = iTab;
006358    sqlite3WalkExpr(&w, p);
006359    return w.eCode;
006360  }
006361  
006362  /*
006363  ** An instance of the following structure is used by the tree walker
006364  ** to determine if an expression can be evaluated by reference to the
006365  ** index only, without having to do a search for the corresponding
006366  ** table entry.  The IdxCover.pIdx field is the index.  IdxCover.iCur
006367  ** is the cursor for the table.
006368  */
006369  struct IdxCover {
006370    Index *pIdx;     /* The index to be tested for coverage */
006371    int iCur;        /* Cursor number for the table corresponding to the index */
006372  };
006373  
006374  /*
006375  ** Check to see if there are references to columns in table
006376  ** pWalker->u.pIdxCover->iCur can be satisfied using the index
006377  ** pWalker->u.pIdxCover->pIdx.
006378  */
006379  static int exprIdxCover(Walker *pWalker, Expr *pExpr){
006380    if( pExpr->op==TK_COLUMN
006381     && pExpr->iTable==pWalker->u.pIdxCover->iCur
006382     && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
006383    ){
006384      pWalker->eCode = 1;
006385      return WRC_Abort;
006386    }
006387    return WRC_Continue;
006388  }
006389  
006390  /*
006391  ** Determine if an index pIdx on table with cursor iCur contains will
006392  ** the expression pExpr.  Return true if the index does cover the
006393  ** expression and false if the pExpr expression references table columns
006394  ** that are not found in the index pIdx.
006395  **
006396  ** An index covering an expression means that the expression can be
006397  ** evaluated using only the index and without having to lookup the
006398  ** corresponding table entry.
006399  */
006400  int sqlite3ExprCoveredByIndex(
006401    Expr *pExpr,        /* The index to be tested */
006402    int iCur,           /* The cursor number for the corresponding table */
006403    Index *pIdx         /* The index that might be used for coverage */
006404  ){
006405    Walker w;
006406    struct IdxCover xcov;
006407    memset(&w, 0, sizeof(w));
006408    xcov.iCur = iCur;
006409    xcov.pIdx = pIdx;
006410    w.xExprCallback = exprIdxCover;
006411    w.u.pIdxCover = &xcov;
006412    sqlite3WalkExpr(&w, pExpr);
006413    return !w.eCode;
006414  }
006415  
006416  
006417  /* Structure used to pass information throughout the Walker in order to
006418  ** implement sqlite3ReferencesSrcList().
006419  */
006420  struct RefSrcList {
006421    sqlite3 *db;         /* Database connection used for sqlite3DbRealloc() */
006422    SrcList *pRef;       /* Looking for references to these tables */
006423    i64 nExclude;        /* Number of tables to exclude from the search */
006424    int *aiExclude;      /* Cursor IDs for tables to exclude from the search */
006425  };
006426  
006427  /*
006428  ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
006429  **
006430  ** When entering a new subquery on the pExpr argument, add all FROM clause
006431  ** entries for that subquery to the exclude list.
006432  **
006433  ** When leaving the subquery, remove those entries from the exclude list.
006434  */
006435  static int selectRefEnter(Walker *pWalker, Select *pSelect){
006436    struct RefSrcList *p = pWalker->u.pRefSrcList;
006437    SrcList *pSrc = pSelect->pSrc;
006438    i64 i, j;
006439    int *piNew;
006440    if( pSrc->nSrc==0 ) return WRC_Continue;
006441    j = p->nExclude;
006442    p->nExclude += pSrc->nSrc;
006443    piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
006444    if( piNew==0 ){
006445      p->nExclude = 0;
006446      return WRC_Abort;
006447    }else{
006448      p->aiExclude = piNew;
006449    }
006450    for(i=0; i<pSrc->nSrc; i++, j++){
006451       p->aiExclude[j] = pSrc->a[i].iCursor;
006452    }
006453    return WRC_Continue;
006454  }
006455  static void selectRefLeave(Walker *pWalker, Select *pSelect){
006456    struct RefSrcList *p = pWalker->u.pRefSrcList;
006457    SrcList *pSrc = pSelect->pSrc;
006458    if( p->nExclude ){
006459      assert( p->nExclude>=pSrc->nSrc );
006460      p->nExclude -= pSrc->nSrc;
006461    }
006462  }
006463  
006464  /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
006465  **
006466  ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
006467  ** of the tables shown in RefSrcList.pRef.
006468  **
006469  ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
006470  ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
006471  */
006472  static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
006473    if( pExpr->op==TK_COLUMN
006474     || pExpr->op==TK_AGG_COLUMN
006475    ){
006476      int i;
006477      struct RefSrcList *p = pWalker->u.pRefSrcList;
006478      SrcList *pSrc = p->pRef;
006479      int nSrc = pSrc ? pSrc->nSrc : 0;
006480      for(i=0; i<nSrc; i++){
006481        if( pExpr->iTable==pSrc->a[i].iCursor ){
006482          pWalker->eCode |= 1;
006483          return WRC_Continue;
006484        }
006485      }
006486      for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
006487      if( i>=p->nExclude ){
006488        pWalker->eCode |= 2;
006489      }
006490    }
006491    return WRC_Continue;
006492  }
006493  
006494  /*
006495  ** Check to see if pExpr references any tables in pSrcList.
006496  ** Possible return values:
006497  **
006498  **    1         pExpr does references a table in pSrcList.
006499  **
006500  **    0         pExpr references some table that is not defined in either
006501  **              pSrcList or in subqueries of pExpr itself.
006502  **
006503  **   -1         pExpr only references no tables at all, or it only
006504  **              references tables defined in subqueries of pExpr itself.
006505  **
006506  ** As currently used, pExpr is always an aggregate function call.  That
006507  ** fact is exploited for efficiency.
006508  */
006509  int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
006510    Walker w;
006511    struct RefSrcList x;
006512    assert( pParse->db!=0 );
006513    memset(&w, 0, sizeof(w));
006514    memset(&x, 0, sizeof(x));
006515    w.xExprCallback = exprRefToSrcList;
006516    w.xSelectCallback = selectRefEnter;
006517    w.xSelectCallback2 = selectRefLeave;
006518    w.u.pRefSrcList = &x;
006519    x.db = pParse->db;
006520    x.pRef = pSrcList;
006521    assert( pExpr->op==TK_AGG_FUNCTION );
006522    assert( ExprUseXList(pExpr) );
006523    sqlite3WalkExprList(&w, pExpr->x.pList);
006524    if( pExpr->pLeft ){
006525      assert( pExpr->pLeft->op==TK_ORDER );
006526      assert( ExprUseXList(pExpr->pLeft) );
006527      assert( pExpr->pLeft->x.pList!=0 );
006528      sqlite3WalkExprList(&w, pExpr->pLeft->x.pList);
006529    }
006530  #ifndef SQLITE_OMIT_WINDOWFUNC
006531    if( ExprHasProperty(pExpr, EP_WinFunc) ){
006532      sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
006533    }
006534  #endif
006535    if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
006536    if( w.eCode & 0x01 ){
006537      return 1;
006538    }else if( w.eCode ){
006539      return 0;
006540    }else{
006541      return -1;
006542    }
006543  }
006544  
006545  /*
006546  ** This is a Walker expression node callback.
006547  **
006548  ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
006549  ** object that is referenced does not refer directly to the Expr.  If
006550  ** it does, make a copy.  This is done because the pExpr argument is
006551  ** subject to change.
006552  **
006553  ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
006554  ** which builds on the sqlite3ParserAddCleanup() mechanism.
006555  */
006556  static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
006557    if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
006558     && pExpr->pAggInfo!=0
006559    ){
006560      AggInfo *pAggInfo = pExpr->pAggInfo;
006561      int iAgg = pExpr->iAgg;
006562      Parse *pParse = pWalker->pParse;
006563      sqlite3 *db = pParse->db;
006564      assert( iAgg>=0 );
006565      if( pExpr->op!=TK_AGG_FUNCTION ){
006566        if( iAgg<pAggInfo->nColumn
006567         && pAggInfo->aCol[iAgg].pCExpr==pExpr
006568        ){
006569          pExpr = sqlite3ExprDup(db, pExpr, 0);
006570          if( pExpr ){
006571            pAggInfo->aCol[iAgg].pCExpr = pExpr;
006572            sqlite3ExprDeferredDelete(pParse, pExpr);
006573          }
006574        }
006575      }else{
006576        assert( pExpr->op==TK_AGG_FUNCTION );
006577        if( ALWAYS(iAgg<pAggInfo->nFunc)
006578         && pAggInfo->aFunc[iAgg].pFExpr==pExpr
006579        ){
006580          pExpr = sqlite3ExprDup(db, pExpr, 0);
006581          if( pExpr ){
006582            pAggInfo->aFunc[iAgg].pFExpr = pExpr;
006583            sqlite3ExprDeferredDelete(pParse, pExpr);
006584          }
006585        }
006586      }
006587    }
006588    return WRC_Continue;
006589  }
006590  
006591  /*
006592  ** Initialize a Walker object so that will persist AggInfo entries referenced
006593  ** by the tree that is walked.
006594  */
006595  void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
006596    memset(pWalker, 0, sizeof(*pWalker));
006597    pWalker->pParse = pParse;
006598    pWalker->xExprCallback = agginfoPersistExprCb;
006599    pWalker->xSelectCallback = sqlite3SelectWalkNoop;
006600  }
006601  
006602  /*
006603  ** Add a new element to the pAggInfo->aCol[] array.  Return the index of
006604  ** the new element.  Return a negative number if malloc fails.
006605  */
006606  static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
006607    int i;
006608    pInfo->aCol = sqlite3ArrayAllocate(
006609         db,
006610         pInfo->aCol,
006611         sizeof(pInfo->aCol[0]),
006612         &pInfo->nColumn,
006613         &i
006614    );
006615    return i;
006616  }   
006617  
006618  /*
006619  ** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
006620  ** the new element.  Return a negative number if malloc fails.
006621  */
006622  static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
006623    int i;
006624    pInfo->aFunc = sqlite3ArrayAllocate(
006625         db,
006626         pInfo->aFunc,
006627         sizeof(pInfo->aFunc[0]),
006628         &pInfo->nFunc,
006629         &i
006630    );
006631    return i;
006632  }
006633  
006634  /*
006635  ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
006636  ** Return the index in aCol[] of the entry that describes that column.
006637  **
006638  ** If no prior entry is found, create a new one and return -1.  The
006639  ** new column will have an index of pAggInfo->nColumn-1.
006640  */
006641  static void findOrCreateAggInfoColumn(
006642    Parse *pParse,       /* Parsing context */
006643    AggInfo *pAggInfo,   /* The AggInfo object to search and/or modify */
006644    Expr *pExpr          /* Expr describing the column to find or insert */
006645  ){
006646    struct AggInfo_col *pCol;
006647    int k;
006648  
006649    assert( pAggInfo->iFirstReg==0 );
006650    pCol = pAggInfo->aCol;
006651    for(k=0; k<pAggInfo->nColumn; k++, pCol++){
006652      if( pCol->pCExpr==pExpr ) return;
006653      if( pCol->iTable==pExpr->iTable
006654       && pCol->iColumn==pExpr->iColumn
006655       && pExpr->op!=TK_IF_NULL_ROW
006656      ){
006657        goto fix_up_expr;
006658      }
006659    }
006660    k = addAggInfoColumn(pParse->db, pAggInfo);
006661    if( k<0 ){
006662      /* OOM on resize */
006663      assert( pParse->db->mallocFailed );
006664      return;
006665    }
006666    pCol = &pAggInfo->aCol[k];
006667    assert( ExprUseYTab(pExpr) );
006668    pCol->pTab = pExpr->y.pTab;
006669    pCol->iTable = pExpr->iTable;
006670    pCol->iColumn = pExpr->iColumn;
006671    pCol->iSorterColumn = -1;
006672    pCol->pCExpr = pExpr;
006673    if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
006674      int j, n;
006675      ExprList *pGB = pAggInfo->pGroupBy;
006676      struct ExprList_item *pTerm = pGB->a;
006677      n = pGB->nExpr;
006678      for(j=0; j<n; j++, pTerm++){
006679        Expr *pE = pTerm->pExpr;
006680        if( pE->op==TK_COLUMN
006681         && pE->iTable==pExpr->iTable
006682         && pE->iColumn==pExpr->iColumn
006683        ){
006684          pCol->iSorterColumn = j;
006685          break;
006686        }
006687      }
006688    }
006689    if( pCol->iSorterColumn<0 ){
006690      pCol->iSorterColumn = pAggInfo->nSortingColumn++;
006691    }
006692  fix_up_expr:
006693    ExprSetVVAProperty(pExpr, EP_NoReduce);
006694    assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
006695    pExpr->pAggInfo = pAggInfo;
006696    if( pExpr->op==TK_COLUMN ){
006697      pExpr->op = TK_AGG_COLUMN;
006698    }
006699    pExpr->iAgg = (i16)k;
006700  }
006701  
006702  /*
006703  ** This is the xExprCallback for a tree walker.  It is used to
006704  ** implement sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
006705  ** for additional information.
006706  */
006707  static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
006708    int i;
006709    NameContext *pNC = pWalker->u.pNC;
006710    Parse *pParse = pNC->pParse;
006711    SrcList *pSrcList = pNC->pSrcList;
006712    AggInfo *pAggInfo = pNC->uNC.pAggInfo;
006713  
006714    assert( pNC->ncFlags & NC_UAggInfo );
006715    assert( pAggInfo->iFirstReg==0 );
006716    switch( pExpr->op ){
006717      default: {
006718        IndexedExpr *pIEpr;
006719        Expr tmp;
006720        assert( pParse->iSelfTab==0 );
006721        if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
006722        if( pParse->pIdxEpr==0 ) break;
006723        for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
006724          int iDataCur = pIEpr->iDataCur;
006725          if( iDataCur<0 ) continue;
006726          if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
006727        }
006728        if( pIEpr==0 ) break;
006729        if( NEVER(!ExprUseYTab(pExpr)) ) break;
006730        for(i=0; i<pSrcList->nSrc; i++){
006731           if( pSrcList->a[0].iCursor==pIEpr->iDataCur ) break;
006732        }
006733        if( i>=pSrcList->nSrc ) break;
006734        if( NEVER(pExpr->pAggInfo!=0) ) break; /* Resolved by outer context */
006735        if( pParse->nErr ){ return WRC_Abort; }
006736  
006737        /* If we reach this point, it means that expression pExpr can be
006738        ** translated into a reference to an index column as described by
006739        ** pIEpr.
006740        */
006741        memset(&tmp, 0, sizeof(tmp));
006742        tmp.op = TK_AGG_COLUMN;
006743        tmp.iTable = pIEpr->iIdxCur;
006744        tmp.iColumn = pIEpr->iIdxCol;
006745        findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
006746        if( pParse->nErr ){ return WRC_Abort; }
006747        assert( pAggInfo->aCol!=0 );
006748        assert( tmp.iAgg<pAggInfo->nColumn );
006749        pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
006750        pExpr->pAggInfo = pAggInfo;
006751        pExpr->iAgg = tmp.iAgg;
006752        return WRC_Prune;
006753      }
006754      case TK_IF_NULL_ROW:
006755      case TK_AGG_COLUMN:
006756      case TK_COLUMN: {
006757        testcase( pExpr->op==TK_AGG_COLUMN );
006758        testcase( pExpr->op==TK_COLUMN );
006759        testcase( pExpr->op==TK_IF_NULL_ROW );
006760        /* Check to see if the column is in one of the tables in the FROM
006761        ** clause of the aggregate query */
006762        if( ALWAYS(pSrcList!=0) ){
006763          SrcItem *pItem = pSrcList->a;
006764          for(i=0; i<pSrcList->nSrc; i++, pItem++){
006765            assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
006766            if( pExpr->iTable==pItem->iCursor ){
006767              findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
006768              break;
006769            } /* endif pExpr->iTable==pItem->iCursor */
006770          } /* end loop over pSrcList */
006771        }
006772        return WRC_Continue;
006773      }
006774      case TK_AGG_FUNCTION: {
006775        if( (pNC->ncFlags & NC_InAggFunc)==0
006776         && pWalker->walkerDepth==pExpr->op2
006777         && pExpr->pAggInfo==0
006778        ){
006779          /* Check to see if pExpr is a duplicate of another aggregate
006780          ** function that is already in the pAggInfo structure
006781          */
006782          struct AggInfo_func *pItem = pAggInfo->aFunc;
006783          for(i=0; i<pAggInfo->nFunc; i++, pItem++){
006784            if( NEVER(pItem->pFExpr==pExpr) ) break;
006785            if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
006786              break;
006787            }
006788          }
006789          if( i>=pAggInfo->nFunc ){
006790            /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
006791            */
006792            u8 enc = ENC(pParse->db);
006793            i = addAggInfoFunc(pParse->db, pAggInfo);
006794            if( i>=0 ){
006795              int nArg;
006796              assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
006797              pItem = &pAggInfo->aFunc[i];
006798              pItem->pFExpr = pExpr;
006799              assert( ExprUseUToken(pExpr) );
006800              nArg = pExpr->x.pList ? pExpr->x.pList->nExpr : 0;
006801              pItem->pFunc = sqlite3FindFunction(pParse->db,
006802                                           pExpr->u.zToken, nArg, enc, 0);
006803              assert( pItem->bOBUnique==0 );
006804              if( pExpr->pLeft
006805               && (pItem->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)==0
006806              ){
006807                /* The NEEDCOLL test above causes any ORDER BY clause on
006808                ** aggregate min() or max() to be ignored. */
006809                ExprList *pOBList;
006810                assert( nArg>0 );
006811                assert( pExpr->pLeft->op==TK_ORDER );
006812                assert( ExprUseXList(pExpr->pLeft) );
006813                pItem->iOBTab = pParse->nTab++;
006814                pOBList = pExpr->pLeft->x.pList;
006815                assert( pOBList->nExpr>0 );
006816                assert( pItem->bOBUnique==0 );
006817                if( pOBList->nExpr==1
006818                 && nArg==1
006819                 && sqlite3ExprCompare(0,pOBList->a[0].pExpr,
006820                                 pExpr->x.pList->a[0].pExpr,0)==0
006821                ){
006822                  pItem->bOBPayload = 0;
006823                  pItem->bOBUnique = ExprHasProperty(pExpr, EP_Distinct);
006824                }else{
006825                  pItem->bOBPayload = 1;
006826                }
006827                pItem->bUseSubtype =
006828                      (pItem->pFunc->funcFlags & SQLITE_SUBTYPE)!=0;
006829              }else{
006830                pItem->iOBTab = -1;
006831              }
006832              if( ExprHasProperty(pExpr, EP_Distinct) && !pItem->bOBUnique ){
006833                pItem->iDistinct = pParse->nTab++;
006834              }else{
006835                pItem->iDistinct = -1;
006836              }
006837            }
006838          }
006839          /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
006840          */
006841          assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
006842          ExprSetVVAProperty(pExpr, EP_NoReduce);
006843          pExpr->iAgg = (i16)i;
006844          pExpr->pAggInfo = pAggInfo;
006845          return WRC_Prune;
006846        }else{
006847          return WRC_Continue;
006848        }
006849      }
006850    }
006851    return WRC_Continue;
006852  }
006853  
006854  /*
006855  ** Analyze the pExpr expression looking for aggregate functions and
006856  ** for variables that need to be added to AggInfo object that pNC->pAggInfo
006857  ** points to.  Additional entries are made on the AggInfo object as
006858  ** necessary.
006859  **
006860  ** This routine should only be called after the expression has been
006861  ** analyzed by sqlite3ResolveExprNames().
006862  */
006863  void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
006864    Walker w;
006865    w.xExprCallback = analyzeAggregate;
006866    w.xSelectCallback = sqlite3WalkerDepthIncrease;
006867    w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
006868    w.walkerDepth = 0;
006869    w.u.pNC = pNC;
006870    w.pParse = 0;
006871    assert( pNC->pSrcList!=0 );
006872    sqlite3WalkExpr(&w, pExpr);
006873  }
006874  
006875  /*
006876  ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
006877  ** expression list.  Return the number of errors.
006878  **
006879  ** If an error is found, the analysis is cut short.
006880  */
006881  void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
006882    struct ExprList_item *pItem;
006883    int i;
006884    if( pList ){
006885      for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
006886        sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
006887      }
006888    }
006889  }
006890  
006891  /*
006892  ** Allocate a single new register for use to hold some intermediate result.
006893  */
006894  int sqlite3GetTempReg(Parse *pParse){
006895    if( pParse->nTempReg==0 ){
006896      return ++pParse->nMem;
006897    }
006898    return pParse->aTempReg[--pParse->nTempReg];
006899  }
006900  
006901  /*
006902  ** Deallocate a register, making available for reuse for some other
006903  ** purpose.
006904  */
006905  void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
006906    if( iReg ){
006907      sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
006908      if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
006909        pParse->aTempReg[pParse->nTempReg++] = iReg;
006910      }
006911    }
006912  }
006913  
006914  /*
006915  ** Allocate or deallocate a block of nReg consecutive registers.
006916  */
006917  int sqlite3GetTempRange(Parse *pParse, int nReg){
006918    int i, n;
006919    if( nReg==1 ) return sqlite3GetTempReg(pParse);
006920    i = pParse->iRangeReg;
006921    n = pParse->nRangeReg;
006922    if( nReg<=n ){
006923      pParse->iRangeReg += nReg;
006924      pParse->nRangeReg -= nReg;
006925    }else{
006926      i = pParse->nMem+1;
006927      pParse->nMem += nReg;
006928    }
006929    return i;
006930  }
006931  void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
006932    if( nReg==1 ){
006933      sqlite3ReleaseTempReg(pParse, iReg);
006934      return;
006935    }
006936    sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
006937    if( nReg>pParse->nRangeReg ){
006938      pParse->nRangeReg = nReg;
006939      pParse->iRangeReg = iReg;
006940    }
006941  }
006942  
006943  /*
006944  ** Mark all temporary registers as being unavailable for reuse.
006945  **
006946  ** Always invoke this procedure after coding a subroutine or co-routine
006947  ** that might be invoked from other parts of the code, to ensure that
006948  ** the sub/co-routine does not use registers in common with the code that
006949  ** invokes the sub/co-routine.
006950  */
006951  void sqlite3ClearTempRegCache(Parse *pParse){
006952    pParse->nTempReg = 0;
006953    pParse->nRangeReg = 0;
006954  }
006955  
006956  /*
006957  ** Make sure sufficient registers have been allocated so that
006958  ** iReg is a valid register number.
006959  */
006960  void sqlite3TouchRegister(Parse *pParse, int iReg){
006961    if( pParse->nMem<iReg ) pParse->nMem = iReg;
006962  }
006963  
006964  #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
006965  /*
006966  ** Return the latest reusable register in the set of all registers.
006967  ** The value returned is no less than iMin.  If any register iMin or
006968  ** greater is in permanent use, then return one more than that last
006969  ** permanent register.
006970  */
006971  int sqlite3FirstAvailableRegister(Parse *pParse, int iMin){
006972    const ExprList *pList = pParse->pConstExpr;
006973    if( pList ){
006974      int i;
006975      for(i=0; i<pList->nExpr; i++){
006976        if( pList->a[i].u.iConstExprReg>=iMin ){
006977          iMin = pList->a[i].u.iConstExprReg + 1;
006978        }
006979      }
006980    }
006981    pParse->nTempReg = 0;
006982    pParse->nRangeReg = 0;
006983    return iMin;
006984  }
006985  #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
006986  
006987  /*
006988  ** Validate that no temporary register falls within the range of
006989  ** iFirst..iLast, inclusive.  This routine is only call from within assert()
006990  ** statements.
006991  */
006992  #ifdef SQLITE_DEBUG
006993  int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
006994    int i;
006995    if( pParse->nRangeReg>0
006996     && pParse->iRangeReg+pParse->nRangeReg > iFirst
006997     && pParse->iRangeReg <= iLast
006998    ){
006999       return 0;
007000    }
007001    for(i=0; i<pParse->nTempReg; i++){
007002      if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
007003        return 0;
007004      }
007005    }
007006    if( pParse->pConstExpr ){
007007      ExprList *pList = pParse->pConstExpr;
007008      for(i=0; i<pList->nExpr; i++){
007009        int iReg = pList->a[i].u.iConstExprReg;
007010        if( iReg==0 ) continue;
007011        if( iReg>=iFirst && iReg<=iLast ) return 0;
007012      }
007013    }
007014    return 1;
007015  }
007016  #endif /* SQLITE_DEBUG */