000001 # 2010 July 16 000002 # 000003 # The author disclaims copyright to this source code. In place of 000004 # a legal notice, here is a blessing: 000005 # 000006 # May you do good and not evil. 000007 # May you find forgiveness for yourself and forgive others. 000008 # May you share freely, never taking more than you give. 000009 # 000010 #*********************************************************************** 000011 # 000012 # This file implements tests to verify that the "testable statements" in 000013 # the lang_select.html document are correct. 000014 # 000015 000016 set testdir [file dirname $argv0] 000017 source $testdir/tester.tcl 000018 000019 ifcapable !compound { 000020 finish_test 000021 return 000022 } 000023 000024 do_execsql_test e_select-1.0 { 000025 CREATE TABLE t1(a, b); 000026 INSERT INTO t1 VALUES('a', 'one'); 000027 INSERT INTO t1 VALUES('b', 'two'); 000028 INSERT INTO t1 VALUES('c', 'three'); 000029 000030 CREATE TABLE t2(a, b); 000031 INSERT INTO t2 VALUES('a', 'I'); 000032 INSERT INTO t2 VALUES('b', 'II'); 000033 INSERT INTO t2 VALUES('c', 'III'); 000034 000035 CREATE TABLE t3(a, c); 000036 INSERT INTO t3 VALUES('a', 1); 000037 INSERT INTO t3 VALUES('b', 2); 000038 000039 CREATE TABLE t4(a, c); 000040 INSERT INTO t4 VALUES('a', NULL); 000041 INSERT INTO t4 VALUES('b', 2); 000042 } {} 000043 set t1_cross_t2 [list \ 000044 a one a I a one b II \ 000045 a one c III b two a I \ 000046 b two b II b two c III \ 000047 c three a I c three b II \ 000048 c three c III \ 000049 ] 000050 set t1_cross_t1 [list \ 000051 a one a one a one b two \ 000052 a one c three b two a one \ 000053 b two b two b two c three \ 000054 c three a one c three b two \ 000055 c three c three \ 000056 ] 000057 000058 000059 # This proc is a specialized version of [do_execsql_test]. 000060 # 000061 # The second argument to this proc must be a SELECT statement that 000062 # features a cross join of some time. Instead of the usual ",", 000063 # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be 000064 # substituted. 000065 # 000066 # This test runs the SELECT three times - once with: 000067 # 000068 # * s/%JOIN%/,/ 000069 # * s/%JOIN%/JOIN/ 000070 # * s/%JOIN%/INNER JOIN/ 000071 # * s/%JOIN%/CROSS JOIN/ 000072 # 000073 # and checks that each time the results of the SELECT are $res. 000074 # 000075 proc do_join_test {tn select res} { 000076 foreach {tn2 joinop} [list 1 , 2 "CROSS JOIN" 3 "INNER JOIN"] { 000077 set S [string map [list %JOIN% $joinop] $select] 000078 uplevel do_execsql_test $tn.$tn2 [list $S] [list $res] 000079 } 000080 } 000081 000082 #------------------------------------------------------------------------- 000083 # The following tests check that all paths on the syntax diagrams on 000084 # the lang_select.html page may be taken. 000085 # 000086 # -- syntax diagram join-constraint 000087 # 000088 do_join_test e_select-0.1.1 { 000089 SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a) 000090 } {3} 000091 do_join_test e_select-0.1.2 { 000092 SELECT count(*) FROM t1 %JOIN% t2 USING (a) 000093 } {3} 000094 do_join_test e_select-0.1.3 { 000095 SELECT count(*) FROM t1 %JOIN% t2 000096 } {9} 000097 do_catchsql_test e_select-0.1.4 { 000098 SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a) 000099 } {1 {near "USING": syntax error}} 000100 do_catchsql_test e_select-0.1.5 { 000101 SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a) 000102 } {1 {near "ON": syntax error}} 000103 000104 # -- syntax diagram select-core 000105 # 000106 # 0: SELECT ... 000107 # 1: SELECT DISTINCT ... 000108 # 2: SELECT ALL ... 000109 # 000110 # 0: No FROM clause 000111 # 1: Has FROM clause 000112 # 000113 # 0: No WHERE clause 000114 # 1: Has WHERE clause 000115 # 000116 # 0: No GROUP BY clause 000117 # 1: Has GROUP BY clause 000118 # 2: Has GROUP BY and HAVING clauses 000119 # 000120 do_select_tests e_select-0.2 { 000121 0000.1 "SELECT 1, 2, 3 " {1 2 3} 000122 1000.1 "SELECT DISTINCT 1, 2, 3 " {1 2 3} 000123 2000.1 "SELECT ALL 1, 2, 3 " {1 2 3} 000124 000125 0100.1 "SELECT a, b, a||b FROM t1 " { 000126 a one aone b two btwo c three cthree 000127 } 000128 1100.1 "SELECT DISTINCT a, b, a||b FROM t1 " { 000129 a one aone b two btwo c three cthree 000130 } 000131 1200.1 "SELECT ALL a, b, a||b FROM t1 " { 000132 a one aone b two btwo c three cthree 000133 } 000134 000135 0010.1 "SELECT 1, 2, 3 WHERE 1 " {1 2 3} 000136 0010.2 "SELECT 1, 2, 3 WHERE 0 " {} 000137 0010.3 "SELECT 1, 2, 3 WHERE NULL " {} 000138 000139 1010.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3} 000140 000141 2010.1 "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3} 000142 000143 0110.1 "SELECT a, b, a||b FROM t1 WHERE a!='x' " { 000144 a one aone b two btwo c three cthree 000145 } 000146 0110.2 "SELECT a, b, a||b FROM t1 WHERE a=='x'" {} 000147 000148 1110.1 "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " { 000149 a one aone b two btwo c three cthree 000150 } 000151 000152 2110.0 "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {} 000153 000154 0001.1 "SELECT 1, 2, 3 GROUP BY 2" {1 2 3} 000155 0002.1 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 000156 0002.2 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 000157 000158 1001.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3} 000159 1002.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 000160 1002.2 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 000161 000162 2001.1 "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3} 000163 2002.1 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3} 000164 2002.2 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {} 000165 000166 0101.1 "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 000167 0102.1 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" { 000168 1 a 1 c 1 b 000169 } 000170 0102.2 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" {} 000171 000172 1101.1 "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 000173 1102.1 "SELECT DISTINCT count(*), max(a) FROM t1 000174 GROUP BY b HAVING count(*)=1" { 000175 1 a 1 c 1 b 000176 } 000177 1102.2 "SELECT DISTINCT count(*), max(a) FROM t1 000178 GROUP BY b HAVING count(*)=2" {} 000179 000180 2101.1 "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b} 000181 2102.1 "SELECT ALL count(*), max(a) FROM t1 000182 GROUP BY b HAVING count(*)=1" { 000183 1 a 1 c 1 b 000184 } 000185 2102.2 "SELECT ALL count(*), max(a) FROM t1 000186 GROUP BY b HAVING count(*)=2" {} 000187 000188 0011.1 "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 000189 0012.1 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 000190 0012.2 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {} 000191 000192 1011.1 "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {} 000193 1012.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1" 000194 {1 2 3} 000195 1012.2 "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {} 000196 000197 2011.1 "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3} 000198 2012.1 "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {} 000199 2012.2 "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {} 000200 000201 0111.1 "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a} 000202 0112.1 "SELECT count(*), max(a) FROM t1 000203 WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c} 000204 0112.2 "SELECT count(*), max(a) FROM t1 000205 WHERE 0 GROUP BY b HAVING count(*)=2" {} 000206 1111.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b" 000207 {1 a 1 b} 000208 1112.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a' 000209 GROUP BY b HAVING count(*)=1" { 000210 1 c 1 b 000211 } 000212 1112.2 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0 000213 GROUP BY b HAVING count(*)=2" {} 000214 000215 2111.1 "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b" 000216 {1 c 1 b} 000217 2112.1 "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b' 000218 GROUP BY b HAVING count(*)=1" { 000219 1 a 1 c 000220 } 000221 2112.2 "SELECT ALL count(*), max(a) FROM t1 000222 WHERE 0 GROUP BY b HAVING count(*)=2" {} 000223 } 000224 000225 000226 # -- syntax diagram result-column 000227 # 000228 do_select_tests e_select-0.3 { 000229 1 "SELECT * FROM t1" {a one b two c three} 000230 2 "SELECT t1.* FROM t1" {a one b two c three} 000231 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx} 000232 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx} 000233 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx} 000234 } 000235 000236 # -- syntax diagram join-source 000237 # 000238 # -- syntax diagram join-op 000239 # 000240 do_select_tests e_select-0.4 { 000241 1 "SELECT t1.rowid FROM t1" {1 2 3} 000242 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3} 000243 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 000244 000245 4 "SELECT t1.rowid FROM t1" {1 2 3} 000246 5 "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3} 000247 6 "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3" 000248 {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3} 000249 000250 7 "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2} 000251 8 "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3} 000252 9 "SELECT t1.rowid FROM t1 NATURAL LEFT JOIN t3" {1 2 3} 000253 10 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2} 000254 11 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2} 000255 000256 12 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3} 000257 13 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3} 000258 14 "SELECT t1.rowid FROM t1 LEFT JOIN t3" {1 1 2 2 3 3} 000259 15 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3} 000260 16 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3} 000261 } 000262 000263 # -- syntax diagram compound-operator 000264 # 000265 do_select_tests e_select-0.5 { 000266 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4} 000267 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4} 000268 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3} 000269 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2} 000270 } 000271 000272 # -- syntax diagram ordering-term 000273 # 000274 do_select_tests e_select-0.6 { 000275 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob} 000276 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob} 000277 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob} 000278 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea} 000279 } 000280 000281 # -- syntax diagram select-stmt 000282 # 000283 do_select_tests e_select-0.7 { 000284 1 "SELECT * FROM t1" {a one b two c three} 000285 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two} 000286 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two} 000287 000288 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three} 000289 5 "SELECT * FROM t1 LIMIT 10 OFFSET 5" {} 000290 6 "SELECT * FROM t1 LIMIT 10, 5" {} 000291 000292 7 "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three} 000293 8 "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {} 000294 9 "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {} 000295 000296 10 "SELECT * FROM t1 UNION SELECT b, a FROM t1" 000297 {a one b two c three one a three c two b} 000298 11 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b" 000299 {one a two b three c a one c three b two} 000300 12 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a" 000301 {one a two b three c a one c three b two} 000302 13 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10" 000303 {a one b two c three one a three c two b} 000304 14 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5" 000305 {two b} 000306 15 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5" 000307 {} 000308 16 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10" 000309 {a one b two c three one a three c two b} 000310 17 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5" 000311 {b two} 000312 18 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5" 000313 {} 000314 } 000315 000316 #------------------------------------------------------------------------- 000317 # The following tests focus on FROM clause (join) processing. 000318 # 000319 000320 # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple 000321 # SELECT statement, then the input data is implicitly a single row zero 000322 # columns wide 000323 # 000324 do_select_tests e_select-1.1 { 000325 1 "SELECT 'abc'" {abc} 000326 2 "SELECT 'abc' WHERE NULL" {} 000327 3 "SELECT NULL" {{}} 000328 4 "SELECT count(*)" {1} 000329 5 "SELECT count(*) WHERE 0" {0} 000330 6 "SELECT count(*) WHERE 1" {1} 000331 } 000332 000333 # EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery 000334 # in the FROM clause, then the input data used by the SELECT statement 000335 # is the contents of the named table. 000336 # 000337 # The results of the SELECT queries suggest that they are operating on the 000338 # contents of the table 'xx'. 000339 # 000340 do_execsql_test e_select-1.2.0 { 000341 CREATE TABLE xx(x, y); 000342 INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2'); 000343 INSERT INTO xx VALUES(NULL, -16.87); 000344 INSERT INTO xx VALUES(-17.89, 'linguistically'); 000345 } {} 000346 do_select_tests e_select-1.2 { 000347 1 "SELECT quote(x), quote(y) FROM xx" { 000348 'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2' 000349 NULL -16.87 000350 -17.89 'linguistically' 000351 } 000352 000353 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 000354 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} 000355 } 000356 000357 # EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery 000358 # in FROM clause then the contents of all tables and/or subqueries are 000359 # joined into a single dataset for the simple SELECT statement to 000360 # operate on. 000361 # 000362 # There are more detailed tests for subsequent requirements that add 000363 # more detail to this idea. We just add a single test that shows that 000364 # data is coming from each of the three tables following the FROM clause 000365 # here to show that the statement, vague as it is, is not incorrect. 000366 # 000367 do_select_tests e_select-1.3 { 000368 1 "SELECT * FROM t1, t2, t3" { 000369 a one a I a 1 a one a I b 2 a one b II a 1 000370 a one b II b 2 a one c III a 1 a one c III b 2 000371 b two a I a 1 b two a I b 2 b two b II a 1 000372 b two b II b 2 b two c III a 1 b two c III b 2 000373 c three a I a 1 c three a I b 2 c three b II a 1 000374 c three b II b 2 c three c III a 1 c three c III b 2 000375 } 000376 } 000377 000378 # 000379 # The following block of tests - e_select-1.4.* - test that the description 000380 # of cartesian joins in the SELECT documentation is consistent with SQLite. 000381 # In doing so, we test the following three requirements as a side-effect: 000382 # 000383 # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN", 000384 # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING 000385 # clause, then the result of the join is simply the cartesian product of 000386 # the left and right-hand datasets. 000387 # 000388 # The tests are built on this assertion. Really, they test that the output 000389 # of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result 000390 # of calculating the cartesian product of the left and right-hand datasets. 000391 # 000392 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER 000393 # JOIN", "JOIN" and "," join operators. 000394 # 000395 # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the 000396 # same result as the "INNER JOIN", "JOIN" and "," operators 000397 # 000398 # All tests are run 4 times, with the only difference in each run being 000399 # which of the 4 equivalent cartesian product join operators are used. 000400 # Since the output data is the same in all cases, we consider that this 000401 # qualifies as testing the two statements above. 000402 # 000403 do_execsql_test e_select-1.4.0 { 000404 CREATE TABLE x1(a, b); 000405 CREATE TABLE x2(c, d, e); 000406 CREATE TABLE x3(f, g, h, i); 000407 000408 -- x1: 3 rows, 2 columns 000409 INSERT INTO x1 VALUES(24, 'converging'); 000410 INSERT INTO x1 VALUES(NULL, X'CB71'); 000411 INSERT INTO x1 VALUES('blonds', 'proprietary'); 000412 000413 -- x2: 2 rows, 3 columns 000414 INSERT INTO x2 VALUES(-60.06, NULL, NULL); 000415 INSERT INTO x2 VALUES(-58, NULL, 1.21); 000416 000417 -- x3: 5 rows, 4 columns 000418 INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1); 000419 INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified'); 000420 INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL); 000421 INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3); 000422 INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL); 000423 } {} 000424 000425 # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product 000426 # dataset are, in order, all the columns of the left-hand dataset 000427 # followed by all the columns of the right-hand dataset. 000428 # 000429 do_join_test e_select-1.4.1.1 { 000430 SELECT * FROM x1 %JOIN% x2 LIMIT 1 000431 } [concat {24 converging} {-60.06 {} {}}] 000432 000433 do_join_test e_select-1.4.1.2 { 000434 SELECT * FROM x2 %JOIN% x1 LIMIT 1 000435 } [concat {-60.06 {} {}} {24 converging}] 000436 000437 do_join_test e_select-1.4.1.3 { 000438 SELECT * FROM x3 %JOIN% x2 LIMIT 1 000439 } [concat {-39.24 {} encompass -1} {-60.06 {} {}}] 000440 000441 do_join_test e_select-1.4.1.4 { 000442 SELECT * FROM x2 %JOIN% x3 LIMIT 1 000443 } [concat {-60.06 {} {}} {-39.24 {} encompass -1}] 000444 000445 # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product 000446 # dataset formed by combining each unique combination of a row from the 000447 # left-hand and right-hand datasets. 000448 # 000449 do_join_test e_select-1.4.2.1 { 000450 SELECT * FROM x2 %JOIN% x3 ORDER BY +c, +f 000451 } [list -60.06 {} {} -39.24 {} encompass -1 \ 000452 -60.06 {} {} alerting {} -93.79 {} \ 000453 -60.06 {} {} coldest -96 dramatists 82.3 \ 000454 -60.06 {} {} conducting -87.24 37.56 {} \ 000455 -60.06 {} {} presenting 51 reformation dignified \ 000456 -58 {} 1.21 -39.24 {} encompass -1 \ 000457 -58 {} 1.21 alerting {} -93.79 {} \ 000458 -58 {} 1.21 coldest -96 dramatists 82.3 \ 000459 -58 {} 1.21 conducting -87.24 37.56 {} \ 000460 -58 {} 1.21 presenting 51 reformation dignified \ 000461 ] 000462 # TODO: Come back and add a few more like the above. 000463 000464 # EVIDENCE-OF: R-18439-38548 In other words, if the left-hand dataset 000465 # consists of Nleft rows of Mleft columns, and the right-hand dataset of 000466 # Nright rows of Mright columns, then the cartesian product is a dataset 000467 # of Nleft×Nright rows, each containing Mleft+Mright columns. 000468 # 000469 # x1, x2 (Nlhs=3, Nrhs=2) (Mlhs=2, Mrhs=3) 000470 do_join_test e_select-1.4.3.1 { 000471 SELECT count(*) FROM x1 %JOIN% x2 000472 } [expr 3*2] 000473 do_test e_select-1.4.3.2 { 000474 expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6} 000475 } [expr 2+3] 000476 000477 # x2, x3 (Nlhs=2, Nrhs=5) (Mlhs=3, Mrhs=4) 000478 do_join_test e_select-1.4.3.3 { 000479 SELECT count(*) FROM x2 %JOIN% x3 000480 } [expr 2*5] 000481 do_test e_select-1.4.3.4 { 000482 expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10} 000483 } [expr 3+4] 000484 000485 # x3, x1 (Nlhs=5, Nrhs=3) (Mlhs=4, Mrhs=2) 000486 do_join_test e_select-1.4.3.5 { 000487 SELECT count(*) FROM x3 %JOIN% x1 000488 } [expr 5*3] 000489 do_test e_select-1.4.3.6 { 000490 expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15} 000491 } [expr 4+2] 000492 000493 # x3, x3 (Nlhs=5, Nrhs=5) (Mlhs=4, Mrhs=4) 000494 do_join_test e_select-1.4.3.7 { 000495 SELECT count(*) FROM x3 %JOIN% x3 000496 } [expr 5*5] 000497 do_test e_select-1.4.3.8 { 000498 expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25} 000499 } [expr 4+4] 000500 000501 # Some extra cartesian product tests using tables t1 and t2. 000502 # 000503 do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2 000504 do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1 000505 000506 do_select_tests e_select-1.4.5 [list \ 000507 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 000508 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 000509 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 000510 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ 000511 ] 000512 000513 # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON 000514 # expression is evaluated for each row of the cartesian product as a 000515 # boolean expression. Only rows for which the expression evaluates to 000516 # true are included from the dataset. 000517 # 000518 foreach {tn select res} [list \ 000519 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \ 000520 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \ 000521 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \ 000522 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \ 000523 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \ 000524 6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) } $t1_cross_t2 \ 000525 7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') } $t1_cross_t2 \ 000526 8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) } [list] \ 000527 \ 000528 9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) } \ 000529 {one I two II three III} \ 000530 10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') } \ 000531 {one I one II one III} \ 000532 11 { SELECT t1.b, t2.b 000533 FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ 000534 {two I two II two III three I three II three III} \ 000535 ] { 000536 do_join_test e_select-1.3.$tn $select $res 000537 } 000538 000539 # EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the 000540 # column names specified must exist in the datasets to both the left and 000541 # right of the join-operator. 000542 # 000543 do_select_tests e_select-1.4 -error { 000544 cannot join using column %s - column not present in both tables 000545 } { 000546 1 { SELECT * FROM t1, t3 USING (b) } "b" 000547 2 { SELECT * FROM t3, t1 USING (c) } "c" 000548 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a" 000549 } 000550 000551 # EVIDENCE-OF: R-22776-52830 For each pair of named columns, the 000552 # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian 000553 # product as a boolean expression. Only rows for which all such 000554 # expressions evaluates to true are included from the result set. 000555 # 000556 do_select_tests e_select-1.5 { 000557 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2} 000558 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2} 000559 } 000560 000561 # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a 000562 # USING clause, the normal rules for handling affinities, collation 000563 # sequences and NULL values in comparisons apply. 000564 # 000565 # EVIDENCE-OF: R-38422-04402 The column from the dataset on the 000566 # left-hand side of the join-operator is considered to be on the 000567 # left-hand side of the comparison operator (=) for the purposes of 000568 # collation sequence and affinity precedence. 000569 # 000570 do_execsql_test e_select-1.6.0 { 000571 CREATE TABLE t5(a COLLATE nocase, b COLLATE binary); 000572 INSERT INTO t5 VALUES('AA', 'cc'); 000573 INSERT INTO t5 VALUES('BB', 'dd'); 000574 INSERT INTO t5 VALUES(NULL, NULL); 000575 CREATE TABLE t6(a COLLATE binary, b COLLATE nocase); 000576 INSERT INTO t6 VALUES('aa', 'cc'); 000577 INSERT INTO t6 VALUES('bb', 'DD'); 000578 INSERT INTO t6 VALUES(NULL, NULL); 000579 } {} 000580 foreach {tn select res} { 000581 1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD} 000582 2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {} 000583 3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) } 000584 {aa cc cc bb DD dd} 000585 4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc} 000586 5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {} 000587 } { 000588 do_join_test e_select-1.6.$tn $select $res 000589 } 000590 000591 # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a 000592 # USING clause, the column from the right-hand dataset is omitted from 000593 # the joined dataset. 000594 # 000595 # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING 000596 # clause and its equivalent ON constraint. 000597 # 000598 foreach {tn select res} { 000599 1a { SELECT * FROM t1 %JOIN% t2 USING (a) } 000600 {a one I b two II c three III} 000601 1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) } 000602 {a one a I b two b II c three c III} 000603 000604 2a { SELECT * FROM t3 %JOIN% t4 USING (a) } 000605 {a 1 {} b 2 2} 000606 2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) } 000607 {a 1 a {} b 2 b 2} 000608 000609 3a { SELECT * FROM t3 %JOIN% t4 USING (a,c) } {b 2} 000610 3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2} 000611 000612 4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 000613 %JOIN% t5 USING (a) } 000614 {aa cc cc bb DD dd} 000615 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x 000616 %JOIN% t5 ON (x.a=t5.a) } 000617 {aa cc AA cc bb DD BB dd} 000618 } { 000619 do_join_test e_select-1.7.$tn $select $res 000620 } 000621 000622 # EVIDENCE-OF: R-24610-05866 If the join-operator is a "LEFT JOIN" or 000623 # "LEFT OUTER JOIN", then after the ON or USING filtering clauses have 000624 # been applied, an extra row is added to the output for each row in the 000625 # original left-hand input dataset that does not match any row in the 000626 # right-hand dataset. 000627 # 000628 do_execsql_test e_select-1.8.0 { 000629 CREATE TABLE t7(a, b, c); 000630 CREATE TABLE t8(a, d, e); 000631 000632 INSERT INTO t7 VALUES('x', 'ex', 24); 000633 INSERT INTO t7 VALUES('y', 'why', 25); 000634 000635 INSERT INTO t8 VALUES('x', 'abc', 24); 000636 INSERT INTO t8 VALUES('z', 'ghi', 26); 000637 } {} 000638 000639 do_select_tests e_select-1.8 { 000640 1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1} 000641 1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2} 000642 2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1} 000643 2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2} 000644 } 000645 000646 000647 # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the 000648 # columns that would normally contain values copied from the right-hand 000649 # input dataset. 000650 # 000651 do_select_tests e_select-1.9 { 000652 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 000653 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" 000654 {x ex 24 x abc 24 y why 25 {} {} {}} 000655 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 000656 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 000657 } 000658 000659 # EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the 000660 # join-operator then an implicit USING clause is added to the 000661 # join-constraints. The implicit USING clause contains each of the 000662 # column names that appear in both the left and right-hand input 000663 # datasets. 000664 # 000665 do_select_tests e_select-1-10 { 000666 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 000667 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24} 000668 000669 2a "SELECT * FROM t8 JOIN t7 USING (a)" {x abc 24 ex 24} 000670 2b "SELECT * FROM t8 NATURAL JOIN t7" {x abc 24 ex 24} 000671 000672 3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} 000673 3b "SELECT * FROM t7 NATURAL LEFT JOIN t8" {x ex 24 abc 24 y why 25 {} {}} 000674 000675 4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)" {x abc 24 ex 24 z ghi 26 {} {}} 000676 4b "SELECT * FROM t8 NATURAL LEFT JOIN t7" {x abc 24 ex 24 z ghi 26 {} {}} 000677 000678 5a "SELECT * FROM t3 JOIN t4 USING (a,c)" {b 2} 000679 5b "SELECT * FROM t3 NATURAL JOIN t4" {b 2} 000680 000681 6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2} 000682 6b "SELECT * FROM t3 NATURAL LEFT JOIN t4" {a 1 b 2} 000683 } 000684 000685 # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets 000686 # feature no common column names, then the NATURAL keyword has no effect 000687 # on the results of the join. 000688 # 000689 do_execsql_test e_select-1.11.0 { 000690 CREATE TABLE t10(x, y); 000691 INSERT INTO t10 VALUES(1, 'true'); 000692 INSERT INTO t10 VALUES(0, 'false'); 000693 } {} 000694 do_select_tests e_select-1-11 { 000695 1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 000696 1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0} 000697 } 000698 000699 # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a 000700 # join that specifies the NATURAL keyword. 000701 # 000702 foreach {tn sql} { 000703 1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)} 000704 2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)} 000705 3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)} 000706 } { 000707 do_catchsql_test e_select-1.12.$tn " 000708 $sql 000709 " {1 {a NATURAL join may not have an ON or USING clause}} 000710 } 000711 000712 #------------------------------------------------------------------------- 000713 # The next block of tests - e_select-3.* - concentrate on verifying 000714 # statements made regarding WHERE clause processing. 000715 # 000716 drop_all_tables 000717 do_execsql_test e_select-3.0 { 000718 CREATE TABLE x1(k, x, y, z); 000719 INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43); 000720 INSERT INTO x1 VALUES(2, X'A8E8D66F', X'07CF', -81); 000721 INSERT INTO x1 VALUES(3, -22, -27.57, NULL); 000722 INSERT INTO x1 VALUES(4, NULL, 'bygone', 'picky'); 000723 INSERT INTO x1 VALUES(5, NULL, 96.28, NULL); 000724 INSERT INTO x1 VALUES(6, 0, 1, 2); 000725 000726 CREATE TABLE x2(k, x, y2); 000727 INSERT INTO x2 VALUES(1, 50, X'B82838'); 000728 INSERT INTO x2 VALUES(5, 84.79, 65.88); 000729 INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393'); 000730 INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized'); 000731 } {} 000732 000733 # EVIDENCE-OF: R-60775-64916 If a WHERE clause is specified, the WHERE 000734 # expression is evaluated for each row in the input data as a boolean 000735 # expression. Only rows for which the WHERE clause expression evaluates 000736 # to true are included from the dataset before continuing. 000737 # 000738 do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x } {3} 000739 do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y } {3 5 6} 000740 do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z } {1 2 6} 000741 do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z } {1 2 4 6} 000742 do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5} 000743 do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6} 000744 000745 do_execsql_test e_select-3.2.1a { 000746 SELECT k FROM x1 LEFT JOIN x2 USING(k) 000747 } {1 2 3 4 5 6} 000748 do_execsql_test e_select-3.2.1b { 000749 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k ORDER BY +k 000750 } {1 3 5} 000751 do_execsql_test e_select-3.2.2 { 000752 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL 000753 } {2 4 6} 000754 000755 do_execsql_test e_select-3.2.3 { 000756 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k 000757 } {3} 000758 do_execsql_test e_select-3.2.4 { 000759 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3 000760 } {} 000761 000762 #------------------------------------------------------------------------- 000763 # Tests below this point are focused on verifying the testable statements 000764 # related to caculating the result rows of a simple SELECT statement. 000765 # 000766 000767 drop_all_tables 000768 do_execsql_test e_select-4.0 { 000769 CREATE TABLE z1(a, b, c); 000770 CREATE TABLE z2(d, e); 000771 CREATE TABLE z3(a, b); 000772 000773 INSERT INTO z1 VALUES(51.65, -59.58, 'belfries'); 000774 INSERT INTO z1 VALUES(-5, NULL, 75); 000775 INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters'); 000776 INSERT INTO z1 VALUES(NULL, 67, 'quartets'); 000777 INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen'); 000778 INSERT INTO z1 VALUES(63, 'born', -26); 000779 000780 INSERT INTO z2 VALUES(NULL, 21); 000781 INSERT INTO z2 VALUES(36, 6); 000782 000783 INSERT INTO z3 VALUES('subsistence', 'gauze'); 000784 INSERT INTO z3 VALUES(49.17, -67); 000785 } {} 000786 000787 # EVIDENCE-OF: R-36327-17224 If a result expression is the special 000788 # expression "*" then all columns in the input data are substituted for 000789 # that one expression. 000790 # 000791 # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table 000792 # or subquery in the FROM clause followed by ".*" then all columns from 000793 # the named table or subquery are substituted for the single expression. 000794 # 000795 do_select_tests e_select-4.1 { 000796 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries} 000797 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21} 000798 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries} 000799 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21} 000800 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries} 000801 000802 6 "SELECT count(*), * FROM z1" {6 51.65 -59.58 belfries} 000803 7 "SELECT max(a), * FROM z1" {63 63 born -26} 000804 8 "SELECT *, min(a) FROM z1" {-5 {} 75 -5} 000805 000806 9 "SELECT *,* FROM z1,z2 LIMIT 1" { 000807 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21 000808 } 000809 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" { 000810 51.65 -59.58 belfries 51.65 -59.58 belfries 000811 } 000812 } 000813 000814 # EVIDENCE-OF: R-38023-18396 It is an error to use a "*" or "alias.*" 000815 # expression in any context other than a result expression list. 000816 # 000817 # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or 000818 # "alias.*" expression in a simple SELECT query that does not have a 000819 # FROM clause. 000820 # 000821 foreach {tn select err} { 000822 1.1 "SELECT a, b, c FROM z1 WHERE *" {near "*": syntax error} 000823 1.2 "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error} 000824 1.3 "SELECT 1 + * FROM z1" {near "*": syntax error} 000825 1.4 "SELECT * + 1 FROM z1" {near "+": syntax error} 000826 000827 2.1 "SELECT *" {no tables specified} 000828 2.2 "SELECT * WHERE 1" {no tables specified} 000829 2.3 "SELECT * WHERE 0" {no tables specified} 000830 2.4 "SELECT count(*), *" {no tables specified} 000831 } { 000832 do_catchsql_test e_select-4.2.$tn $select [list 1 $err] 000833 } 000834 000835 # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned 000836 # by a simple SELECT statement is equal to the number of expressions in 000837 # the result expression list after substitution of * and alias.* 000838 # expressions. 000839 # 000840 foreach {tn select nCol} { 000841 1 "SELECT * FROM z1" 3 000842 2 "SELECT * FROM z1 NATURAL JOIN z3" 3 000843 3 "SELECT z1.* FROM z1 NATURAL JOIN z3" 3 000844 4 "SELECT z3.* FROM z1 NATURAL JOIN z3" 2 000845 5 "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3" 5 000846 6 "SELECT 1, 2, z1.* FROM z1" 5 000847 7 "SELECT a, *, b, c FROM z1" 6 000848 } { 000849 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 000850 do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol 000851 sqlite3_finalize $::stmt 000852 } 000853 000854 000855 000856 # In lang_select.html, a non-aggregate query is defined as any simple SELECT 000857 # that has no GROUP BY clause and no aggregate expressions in the result 000858 # expression list. Other queries are aggregate queries. Test cases 000859 # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of 000860 # simple SELECT that is different for aggregate and non-aggregate queries 000861 # verify (in a way) that these definitions are consistent: 000862 # 000863 # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate 000864 # query if it contains either a GROUP BY clause or one or more aggregate 000865 # functions in the result-set. 000866 # 000867 # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no 000868 # aggregate functions or a GROUP BY clause, it is a non-aggregate query. 000869 # 000870 000871 # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate 000872 # query, then each expression in the result expression list is evaluated 000873 # for each row in the dataset filtered by the WHERE clause. 000874 # 000875 do_select_tests e_select-4.4 { 000876 1 "SELECT a, b FROM z1" 000877 {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born} 000878 000879 2 "SELECT a IS NULL, b+1, * FROM z1" { 000880 0 -58.58 51.65 -59.58 belfries 000881 0 {} -5 {} 75 000882 0 -22.18 -2.2 -23.18 suiters 000883 1 68 {} 67 quartets 000884 0 -31.3 -1.04 -32.3 aspen 000885 0 1 63 born -26 000886 } 000887 000888 3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366} 000889 } 000890 000891 000892 # Test cases e_select-4.5.* and e_select-4.6.* together show that: 000893 # 000894 # EVIDENCE-OF: R-51988-01124 The single row of result-set data created 000895 # by evaluating the aggregate and non-aggregate expressions in the 000896 # result-set forms the result of an aggregate query without a GROUP BY 000897 # clause. 000898 # 000899 000900 # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate 000901 # query without a GROUP BY clause, then each aggregate expression in the 000902 # result-set is evaluated once across the entire dataset. 000903 # 000904 do_select_tests e_select-4.5 { 000905 1 "SELECT count(a), max(a), count(b), max(b) FROM z1" {5 63 5 born} 000906 2 "SELECT count(*), max(1)" {1 1} 000907 000908 3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3" {-43.06} 000909 4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3" {-38.06} 000910 5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5} 000911 } 000912 000913 # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the 000914 # result-set is evaluated once for an arbitrarily selected row of the 000915 # dataset. 000916 # 000917 # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used 000918 # for each non-aggregate expression. 000919 # 000920 # Note: The results of many of the queries in this block of tests are 000921 # technically undefined, as the documentation does not specify which row 000922 # SQLite will arbitrarily select to use for the evaluation of the 000923 # non-aggregate expressions. 000924 # 000925 drop_all_tables 000926 do_execsql_test e_select-4.6.0 { 000927 CREATE TABLE a1(one PRIMARY KEY, two); 000928 INSERT INTO a1 VALUES(1, 1); 000929 INSERT INTO a1 VALUES(2, 3); 000930 INSERT INTO a1 VALUES(3, 6); 000931 INSERT INTO a1 VALUES(4, 10); 000932 000933 CREATE TABLE a2(one PRIMARY KEY, three); 000934 INSERT INTO a2 VALUES(1, 1); 000935 INSERT INTO a2 VALUES(3, 2); 000936 INSERT INTO a2 VALUES(6, 3); 000937 INSERT INTO a2 VALUES(10, 4); 000938 } {} 000939 do_select_tests e_select-4.6 { 000940 1 "SELECT one, two, count(*) FROM a1" {1 1 4} 000941 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {1 1 2} 000942 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1} 000943 4 "SELECT *, count(*) FROM a1 JOIN a2" {1 1 1 1 16} 000944 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {1 1 1 3} 000945 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {1 1 1 3} 000946 7 "SELECT string_agg(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 1 1} 000947 } 000948 000949 # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then 000950 # each non-aggregate expression is evaluated against a row consisting 000951 # entirely of NULL values. 000952 # 000953 do_select_tests e_select-4.7 { 000954 1 "SELECT one, two, count(*) FROM a1 WHERE 0" {{} {} 0} 000955 2 "SELECT sum(two), * FROM a1, a2 WHERE three>5" {{} {} {} {} {}} 000956 3 "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" { 000957 1 1 1 000958 } 000959 } 000960 000961 # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY 000962 # clause always returns exactly one row of data, even if there are zero 000963 # rows of input data. 000964 # 000965 foreach {tn select} { 000966 8.1 "SELECT count(*) FROM a1" 000967 8.2 "SELECT count(*) FROM a1 WHERE 0" 000968 8.3 "SELECT count(*) FROM a1 WHERE 1" 000969 8.4 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1" 000970 8.5 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0" 000971 } { 000972 # Set $nRow to the number of rows returned by $select: 000973 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY] 000974 set nRow 0 000975 while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow } 000976 set rc [sqlite3_finalize $::stmt] 000977 000978 # Test that $nRow==1 and that statement execution was successful 000979 # (rc==SQLITE_OK). 000980 do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1} 000981 } 000982 000983 drop_all_tables 000984 do_execsql_test e_select-4.9.0 { 000985 CREATE TABLE b1(one PRIMARY KEY, two); 000986 INSERT INTO b1 VALUES(1, 'o'); 000987 INSERT INTO b1 VALUES(4, 'f'); 000988 INSERT INTO b1 VALUES(3, 't'); 000989 INSERT INTO b1 VALUES(2, 't'); 000990 INSERT INTO b1 VALUES(5, 'f'); 000991 INSERT INTO b1 VALUES(7, 's'); 000992 INSERT INTO b1 VALUES(6, 's'); 000993 000994 CREATE TABLE b2(x, y); 000995 INSERT INTO b2 VALUES(NULL, 0); 000996 INSERT INTO b2 VALUES(NULL, 1); 000997 INSERT INTO b2 VALUES('xyz', 2); 000998 INSERT INTO b2 VALUES('abc', 3); 000999 INSERT INTO b2 VALUES('xyz', 4); 001000 001001 CREATE TABLE b3(a COLLATE nocase, b COLLATE binary); 001002 INSERT INTO b3 VALUES('abc', 'abc'); 001003 INSERT INTO b3 VALUES('aBC', 'aBC'); 001004 INSERT INTO b3 VALUES('Def', 'Def'); 001005 INSERT INTO b3 VALUES('dEF', 'dEF'); 001006 } {} 001007 001008 # EVIDENCE-OF: R-40855-36147 If the SELECT statement is an aggregate 001009 # query with a GROUP BY clause, then each of the expressions specified 001010 # as part of the GROUP BY clause is evaluated for each row of the 001011 # dataset according to the processing rules stated below for ORDER BY 001012 # expressions. Each row is then assigned to a "group" based on the 001013 # results; rows for which the results of evaluating the GROUP BY 001014 # expressions are the same get assigned to the same group. 001015 # 001016 # These tests also show that the following is not untrue: 001017 # 001018 # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do 001019 # not have to be expressions that appear in the result. 001020 # 001021 do_select_tests e_select-4.9 { 001022 1 "SELECT group_concat(one), two FROM b1 GROUP BY two" { 001023 /#,# f 1 o #,# s #,# t/ 001024 } 001025 2 "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" { 001026 1,2,3,4 10 5,6,7 18 001027 } 001028 3 "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" { 001029 4 1,5 2,6 3,7 001030 } 001031 4 "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" { 001032 4,3,5,7,6 1,2 001033 } 001034 } 001035 001036 # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL 001037 # values are considered equal. 001038 # 001039 do_select_tests e_select-4.10 { 001040 1 "SELECT group_concat(y) FROM b2 GROUP BY x" {/#,# 3 #,#/} 001041 2 "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1} 001042 } 001043 001044 # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation 001045 # sequence with which to compare text values apply when evaluating 001046 # expressions in a GROUP BY clause. 001047 # 001048 do_select_tests e_select-4.11 { 001049 1 "SELECT count(*) FROM b3 GROUP BY b" {1 1 1 1} 001050 2 "SELECT count(*) FROM b3 GROUP BY a" {2 2} 001051 3 "SELECT count(*) FROM b3 GROUP BY +b" {1 1 1 1} 001052 4 "SELECT count(*) FROM b3 GROUP BY +a" {2 2} 001053 5 "SELECT count(*) FROM b3 GROUP BY b||''" {1 1 1 1} 001054 6 "SELECT count(*) FROM b3 GROUP BY a||''" {1 1 1 1} 001055 } 001056 001057 # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may 001058 # not be aggregate expressions. 001059 # 001060 foreach {tn select} { 001061 12.1 "SELECT * FROM b3 GROUP BY count(*)" 001062 12.2 "SELECT max(a) FROM b3 GROUP BY max(b)" 001063 12.3 "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)" 001064 } { 001065 set res {1 {aggregate functions are not allowed in the GROUP BY clause}} 001066 do_catchsql_test e_select-4.$tn $select $res 001067 } 001068 001069 # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is 001070 # evaluated once for each group of rows as a boolean expression. If the 001071 # result of evaluating the HAVING clause is false, the group is 001072 # discarded. 001073 # 001074 # This requirement is tested by all e_select-4.13.* tests. 001075 # 001076 # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate 001077 # expression, it is evaluated across all rows in the group. 001078 # 001079 # Tested by e_select-4.13.1.* 001080 # 001081 # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate 001082 # expression, it is evaluated with respect to an arbitrarily selected 001083 # row from the group. 001084 # 001085 # Tested by e_select-4.13.2.* 001086 # 001087 # Tests in this block also show that this is not untrue: 001088 # 001089 # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values, 001090 # even aggregate functions, that are not in the result. 001091 # 001092 do_execsql_test e_select-4.13.0 { 001093 CREATE TABLE c1(up, down); 001094 INSERT INTO c1 VALUES('x', 1); 001095 INSERT INTO c1 VALUES('x', 2); 001096 INSERT INTO c1 VALUES('x', 4); 001097 INSERT INTO c1 VALUES('x', 8); 001098 INSERT INTO c1 VALUES('y', 16); 001099 INSERT INTO c1 VALUES('y', 32); 001100 001101 CREATE TABLE c2(i, j); 001102 INSERT INTO c2 VALUES(1, 0); 001103 INSERT INTO c2 VALUES(2, 1); 001104 INSERT INTO c2 VALUES(3, 3); 001105 INSERT INTO c2 VALUES(4, 6); 001106 INSERT INTO c2 VALUES(5, 10); 001107 INSERT INTO c2 VALUES(6, 15); 001108 INSERT INTO c2 VALUES(7, 21); 001109 INSERT INTO c2 VALUES(8, 28); 001110 INSERT INTO c2 VALUES(9, 36); 001111 001112 CREATE TABLE c3(i PRIMARY KEY, k TEXT); 001113 INSERT INTO c3 VALUES(1, 'hydrogen'); 001114 INSERT INTO c3 VALUES(2, 'helium'); 001115 INSERT INTO c3 VALUES(3, 'lithium'); 001116 INSERT INTO c3 VALUES(4, 'beryllium'); 001117 INSERT INTO c3 VALUES(5, 'boron'); 001118 INSERT INTO c3 VALUES(94, 'plutonium'); 001119 } {} 001120 001121 do_select_tests e_select-4.13 { 001122 1.1 "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x} 001123 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y} 001124 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x} 001125 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4} 001126 001127 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y} 001128 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y} 001129 001130 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING j>6" {5 10} 001131 } 001132 001133 # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then 001134 # evaluated once for each group of rows. 001135 # 001136 # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate 001137 # expression, it is evaluated across all rows in the group. 001138 # 001139 do_select_tests e_select-4.15 { 001140 1 "SELECT sum(down) FROM c1 GROUP BY up" {15 48} 001141 2 "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)" {54 36 27 21 39 28} 001142 3 "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)" {80 36 40 21} 001143 4 "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22} 001144 5 "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2" 001145 {3 4.33 1 2.0} 001146 } 001147 001148 # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single 001149 # arbitrarily chosen row from within the group. 001150 # 001151 # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate 001152 # expression in the result-set, then all such expressions are evaluated 001153 # for the same row. 001154 # 001155 do_select_tests e_select-4.15 { 001156 1 "SELECT i, j FROM c2 GROUP BY i%2" {2 1 1 0} 001157 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {2 1 1 0} 001158 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {} 001159 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {} 001160 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)" 001161 {2 4 beryllium 2 1 hydrogen 1 3 lithium} 001162 } 001163 001164 # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows 001165 # contributes a single row to the set of result rows. 001166 # 001167 # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the 001168 # DISTINCT keyword, the number of rows returned by an aggregate query 001169 # with a GROUP BY clause is the same as the number of groups of rows 001170 # produced by applying the GROUP BY and HAVING clauses to the filtered 001171 # input dataset. 001172 # 001173 do_select_tests e_select.4.16 -count { 001174 1 "SELECT i, j FROM c2 GROUP BY i%2" 2 001175 2 "SELECT i, j FROM c2 GROUP BY i" 9 001176 3 "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4 001177 } 001178 001179 #------------------------------------------------------------------------- 001180 # The following tests attempt to verify statements made regarding the ALL 001181 # and DISTINCT keywords. 001182 # 001183 drop_all_tables 001184 do_execsql_test e_select-5.1.0 { 001185 CREATE TABLE h1(a, b); 001186 INSERT INTO h1 VALUES(1, 'one'); 001187 INSERT INTO h1 VALUES(1, 'I'); 001188 INSERT INTO h1 VALUES(1, 'i'); 001189 INSERT INTO h1 VALUES(4, 'four'); 001190 INSERT INTO h1 VALUES(4, 'IV'); 001191 INSERT INTO h1 VALUES(4, 'iv'); 001192 001193 CREATE TABLE h2(x COLLATE nocase); 001194 INSERT INTO h2 VALUES('One'); 001195 INSERT INTO h2 VALUES('Two'); 001196 INSERT INTO h2 VALUES('Three'); 001197 INSERT INTO h2 VALUES('Four'); 001198 INSERT INTO h2 VALUES('one'); 001199 INSERT INTO h2 VALUES('two'); 001200 INSERT INTO h2 VALUES('three'); 001201 INSERT INTO h2 VALUES('four'); 001202 001203 CREATE TABLE h3(c, d); 001204 INSERT INTO h3 VALUES(1, NULL); 001205 INSERT INTO h3 VALUES(2, NULL); 001206 INSERT INTO h3 VALUES(3, NULL); 001207 INSERT INTO h3 VALUES(4, '2'); 001208 INSERT INTO h3 VALUES(5, NULL); 001209 INSERT INTO h3 VALUES(6, '2,3'); 001210 INSERT INTO h3 VALUES(7, NULL); 001211 INSERT INTO h3 VALUES(8, '2,4'); 001212 INSERT INTO h3 VALUES(9, '3'); 001213 } {} 001214 001215 # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may 001216 # follow the SELECT keyword in a simple SELECT statement. 001217 # 001218 do_select_tests e_select-5.1 { 001219 1 "SELECT ALL a FROM h1" {1 1 1 4 4 4} 001220 2 "SELECT DISTINCT a FROM h1" {1 4} 001221 } 001222 001223 # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then 001224 # the entire set of result rows are returned by the SELECT. 001225 # 001226 # EVIDENCE-OF: R-01256-01950 If neither ALL or DISTINCT are present, 001227 # then the behavior is as if ALL were specified. 001228 # 001229 # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT, 001230 # then duplicate rows are removed from the set of result rows before it 001231 # is returned. 001232 # 001233 # The three testable statements above are tested by e_select-5.2.*, 001234 # 5.3.* and 5.4.* respectively. 001235 # 001236 do_select_tests e_select-5 { 001237 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four} 001238 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four} 001239 001240 3.1 "SELECT x FROM h2" {One Two Three Four one two three four} 001241 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four} 001242 001243 4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four} 001244 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four} 001245 } 001246 001247 # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate 001248 # rows, two NULL values are considered to be equal. 001249 # 001250 do_select_tests e_select-5.5 { 001251 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3} 001252 } 001253 001254 # EVIDENCE-OF: R-47709-27231 The usual rules apply for selecting a 001255 # collation sequence to compare text values. 001256 # 001257 do_select_tests e_select-5.6 { 001258 1 "SELECT DISTINCT b FROM h1" {one I i four IV iv} 001259 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {one I four IV} 001260 3 "SELECT DISTINCT x FROM h2" {One Two Three Four} 001261 4 "SELECT DISTINCT x COLLATE binary FROM h2" { 001262 One Two Three Four one two three four 001263 } 001264 } 001265 001266 #------------------------------------------------------------------------- 001267 # The following tests - e_select-7.* - test that statements made to do 001268 # with compound SELECT statements are correct. 001269 # 001270 001271 # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent 001272 # SELECTs must return the same number of result columns. 001273 # 001274 # All the other tests in this section use compound SELECTs created 001275 # using component SELECTs that do return the same number of columns. 001276 # So the tests here just show that it is an error to attempt otherwise. 001277 # 001278 drop_all_tables 001279 do_execsql_test e_select-7.1.0 { 001280 CREATE TABLE j1(a, b, c); 001281 CREATE TABLE j2(e, f); 001282 CREATE TABLE j3(g); 001283 } {} 001284 do_select_tests e_select-7.1 -error { 001285 SELECTs to the left and right of %s do not have the same number of result columns 001286 } { 001287 1 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 001288 2 "SELECT * FROM j1 UNION ALL SELECT * FROM j3" {{UNION ALL}} 001289 3 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}} 001290 4 "SELECT a, b FROM j1 UNION ALL SELECT * FROM j3,j2" {{UNION ALL}} 001291 5 "SELECT * FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}} 001292 001293 6 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 001294 7 "SELECT * FROM j1 UNION SELECT * FROM j3" {UNION} 001295 8 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION} 001296 9 "SELECT a, b FROM j1 UNION SELECT * FROM j3,j2" {UNION} 001297 10 "SELECT * FROM j3,j2 UNION SELECT a, b FROM j1" {UNION} 001298 001299 11 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 001300 12 "SELECT * FROM j1 INTERSECT SELECT * FROM j3" {INTERSECT} 001301 13 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT} 001302 14 "SELECT a, b FROM j1 INTERSECT SELECT * FROM j3,j2" {INTERSECT} 001303 15 "SELECT * FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT} 001304 001305 16 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 001306 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j3" {EXCEPT} 001307 18 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT} 001308 19 "SELECT a, b FROM j1 EXCEPT SELECT * FROM j3,j2" {EXCEPT} 001309 20 "SELECT * FROM j3,j2 EXCEPT SELECT a, b FROM j1" {EXCEPT} 001310 } 001311 001312 # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must 001313 # be simple SELECT statements, they may not contain ORDER BY or LIMIT 001314 # clauses. 001315 # 001316 foreach {tn select op1 op2} { 001317 1 "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3" 001318 {ORDER BY} {UNION ALL} 001319 2 "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2" 001320 {ORDER BY} {UNION ALL} 001321 3 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2" 001322 {ORDER BY} {UNION ALL} 001323 4 "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3" 001324 LIMIT {UNION ALL} 001325 5 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3" 001326 LIMIT {UNION ALL} 001327 6 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3" 001328 LIMIT {UNION ALL} 001329 001330 7 "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3" 001331 {ORDER BY} {UNION} 001332 8 "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2" 001333 {ORDER BY} {UNION} 001334 9 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2" 001335 {ORDER BY} {UNION} 001336 10 "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3" 001337 LIMIT {UNION} 001338 11 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3" 001339 LIMIT {UNION} 001340 12 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3" 001341 LIMIT {UNION} 001342 001343 13 "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3" 001344 {ORDER BY} {EXCEPT} 001345 14 "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2" 001346 {ORDER BY} {EXCEPT} 001347 15 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2" 001348 {ORDER BY} {EXCEPT} 001349 16 "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3" 001350 LIMIT {EXCEPT} 001351 17 "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3" 001352 LIMIT {EXCEPT} 001353 18 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3" 001354 LIMIT {EXCEPT} 001355 001356 19 "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3" 001357 {ORDER BY} {INTERSECT} 001358 20 "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2" 001359 {ORDER BY} {INTERSECT} 001360 21 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2" 001361 {ORDER BY} {INTERSECT} 001362 22 "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3" 001363 LIMIT {INTERSECT} 001364 23 "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3" 001365 LIMIT {INTERSECT} 001366 24 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3" 001367 LIMIT {INTERSECT} 001368 } { 001369 set err "$op1 clause should come after $op2 not before" 001370 do_catchsql_test e_select-7.2.$tn $select [list 1 $err] 001371 } 001372 001373 # EVIDENCE-OF: R-45440-25633 ORDER BY and LIMIT clauses may only occur 001374 # at the end of the entire compound SELECT, and then only if the final 001375 # element of the compound is not a VALUES clause. 001376 # 001377 foreach {tn select} { 001378 1 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a" 001379 2 "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1" 001380 3 "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3" 001381 4 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10" 001382 5 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 001383 6 "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)" 001384 001385 7 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a" 001386 8 "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1" 001387 8b "VALUES('8b') UNION SELECT max(e) FROM j2 ORDER BY 1" 001388 9 "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3" 001389 10 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10" 001390 11 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 001391 12 "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)" 001392 001393 13 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a" 001394 14 "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1" 001395 15 "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3" 001396 16 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10" 001397 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 001398 18 "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 001399 001400 19 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a" 001401 20 "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1" 001402 21 "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3" 001403 22 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10" 001404 23 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5" 001405 24 "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)" 001406 } { 001407 do_test e_select-7.3.$tn { catch {execsql $select} msg } 0 001408 } 001409 foreach {tn select} { 001410 50 "SELECT * FROM j1 ORDER BY 1 UNION ALL SELECT * FROM j2,j3" 001411 51 "SELECT * FROM j1 LIMIT 1 UNION ALL SELECT * FROM j2,j3" 001412 52 "SELECT count(*) FROM j1 UNION ALL VALUES(11) ORDER BY 1" 001413 53 "SELECT count(*) FROM j1 UNION ALL VALUES(11) LIMIT 1" 001414 } { 001415 do_test e_select-7.3.$tn { catch {execsql $select} msg } 1 001416 } 001417 001418 # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL 001419 # operator returns all the rows from the SELECT to the left of the UNION 001420 # ALL operator, and all the rows from the SELECT to the right of it. 001421 # 001422 drop_all_tables 001423 do_execsql_test e_select-7.4.0 { 001424 CREATE TABLE q1(a TEXT, b INTEGER, c); 001425 CREATE TABLE q2(d NUMBER, e BLOB); 001426 CREATE TABLE q3(f REAL, g); 001427 001428 INSERT INTO q1 VALUES(16, -87.66, NULL); 001429 INSERT INTO q1 VALUES('legible', 94, -42.47); 001430 INSERT INTO q1 VALUES('beauty', 36, NULL); 001431 001432 INSERT INTO q2 VALUES('legible', 1); 001433 INSERT INTO q2 VALUES('beauty', 2); 001434 INSERT INTO q2 VALUES(-65.91, 4); 001435 INSERT INTO q2 VALUES('emanating', -16.56); 001436 001437 INSERT INTO q3 VALUES('beauty', 2); 001438 INSERT INTO q3 VALUES('beauty', 2); 001439 } {} 001440 do_select_tests e_select-7.4 { 001441 1 {SELECT a FROM q1 UNION ALL SELECT d FROM q2} 001442 {16 legible beauty legible beauty -65.91 emanating} 001443 001444 2 {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1} 001445 {16 -87.66 {} x legible 1} 001446 001447 3 {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2} 001448 {3 -16.56} 001449 001450 4 {SELECT * FROM q2 UNION ALL SELECT * FROM q3} 001451 {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2} 001452 } 001453 001454 # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as 001455 # UNION ALL, except that duplicate rows are removed from the final 001456 # result set. 001457 # 001458 do_select_tests e_select-7.5 { 001459 1 {SELECT a FROM q1 UNION SELECT d FROM q2} 001460 {-65.91 16 beauty emanating legible} 001461 001462 2 {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1} 001463 {16 -87.66 {} x legible 1} 001464 001465 3 {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2} 001466 {-16.56 3} 001467 001468 4 {SELECT * FROM q2 UNION SELECT * FROM q3} 001469 {-65.91 4 beauty 2 emanating -16.56 legible 1} 001470 } 001471 001472 # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the 001473 # intersection of the results of the left and right SELECTs. 001474 # 001475 do_select_tests e_select-7.6 { 001476 1 {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible} 001477 2 {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2} 001478 } 001479 001480 # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of 001481 # rows returned by the left SELECT that are not also returned by the 001482 # right-hand SELECT. 001483 # 001484 do_select_tests e_select-7.7 { 001485 1 {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16} 001486 001487 2 {SELECT * FROM q2 EXCEPT SELECT * FROM q3} 001488 {-65.91 4 emanating -16.56 legible 1} 001489 } 001490 001491 # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results 001492 # of INTERSECT and EXCEPT operators before the result set is returned. 001493 # 001494 do_select_tests e_select-7.8 { 001495 0 {SELECT * FROM q3} {beauty 2 beauty 2} 001496 001497 1 {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2} 001498 2 {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1} {beauty 2} 001499 } 001500 001501 # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate 001502 # rows for the results of compound SELECT operators, NULL values are 001503 # considered equal to other NULL values and distinct from all non-NULL 001504 # values. 001505 # 001506 db nullvalue null 001507 do_select_tests e_select-7.9 { 001508 1 {SELECT NULL UNION ALL SELECT NULL} {null null} 001509 2 {SELECT NULL UNION SELECT NULL} {null} 001510 3 {SELECT NULL INTERSECT SELECT NULL} {null} 001511 4 {SELECT NULL EXCEPT SELECT NULL} {} 001512 001513 5 {SELECT NULL UNION ALL SELECT 'ab'} {null ab} 001514 6 {SELECT NULL UNION SELECT 'ab'} {null ab} 001515 7 {SELECT NULL INTERSECT SELECT 'ab'} {} 001516 8 {SELECT NULL EXCEPT SELECT 'ab'} {null} 001517 001518 9 {SELECT NULL UNION ALL SELECT 0} {null 0} 001519 10 {SELECT NULL UNION SELECT 0} {null 0} 001520 11 {SELECT NULL INTERSECT SELECT 0} {} 001521 12 {SELECT NULL EXCEPT SELECT 0} {null} 001522 001523 13 {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2} 001524 14 {SELECT c FROM q1 UNION SELECT g FROM q3} {null -42.47 2} 001525 15 {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {} 001526 16 {SELECT c FROM q1 EXCEPT SELECT g FROM q3} {null -42.47} 001527 } 001528 db nullvalue {} 001529 001530 # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two 001531 # text values is determined as if the columns of the left and right-hand 001532 # SELECT statements were the left and right-hand operands of the equals 001533 # (=) operator, except that greater precedence is not assigned to a 001534 # collation sequence specified with the postfix COLLATE operator. 001535 # 001536 drop_all_tables 001537 do_execsql_test e_select-7.10.0 { 001538 CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c); 001539 INSERT INTO y1 VALUES('Abc', 'abc', 'aBC'); 001540 } {} 001541 do_select_tests e_select-7.10 { 001542 1 {SELECT 'abc' UNION SELECT 'ABC'} {ABC abc} 001543 2 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC} 001544 3 {SELECT 'abc' UNION SELECT 'ABC' COLLATE nocase} {ABC} 001545 4 {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc} 001546 5 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC} 001547 001548 6 {SELECT a FROM y1 UNION SELECT b FROM y1} {abc} 001549 7 {SELECT b FROM y1 UNION SELECT a FROM y1} {Abc abc} 001550 8 {SELECT a FROM y1 UNION SELECT c FROM y1} {aBC} 001551 001552 9 {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC} 001553 } 001554 001555 # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to 001556 # any values when comparing rows as part of a compound SELECT. 001557 # 001558 drop_all_tables 001559 do_execsql_test e_select-7.10.0 { 001560 CREATE TABLE w1(a TEXT, b NUMBER); 001561 CREATE TABLE w2(a, b TEXT); 001562 001563 INSERT INTO w1 VALUES('1', 4.1); 001564 INSERT INTO w2 VALUES(1, 4.1); 001565 } {} 001566 001567 do_select_tests e_select-7.11 { 001568 1 { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1} 001569 2 { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1} 001570 3 { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1} 001571 4 { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1} 001572 001573 5 { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {} 001574 6 { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {} 001575 7 { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {} 001576 8 { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {} 001577 001578 9 { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1} 001579 10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1} 001580 11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1} 001581 12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1} 001582 } 001583 001584 001585 # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are 001586 # connected into a compound SELECT, they group from left to right. In 001587 # other words, if "A", "B" and "C" are all simple SELECT statements, (A 001588 # op B op C) is processed as ((A op B) op C). 001589 # 001590 # e_select-7.12.1: Precedence of UNION vs. INTERSECT 001591 # e_select-7.12.2: Precedence of UNION vs. UNION ALL 001592 # e_select-7.12.3: Precedence of UNION vs. EXCEPT 001593 # e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL 001594 # e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT 001595 # e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT 001596 # e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as 001597 # "(a EXCEPT b) EXCEPT c". 001598 # 001599 # The INTERSECT and EXCEPT operations are mutually commutative. So 001600 # the e_select-7.12.5 test cases do not prove very much. 001601 # 001602 drop_all_tables 001603 do_execsql_test e_select-7.12.0 { 001604 CREATE TABLE t1(x); 001605 INSERT INTO t1 VALUES(1); 001606 INSERT INTO t1 VALUES(2); 001607 INSERT INTO t1 VALUES(3); 001608 } {} 001609 foreach {tn select res} { 001610 1a "(1,2) INTERSECT (1) UNION (3)" {1 3} 001611 1b "(3) UNION (1,2) INTERSECT (1)" {1} 001612 001613 2a "(1,2) UNION (3) UNION ALL (1)" {1 2 3 1} 001614 2b "(1) UNION ALL (3) UNION (1,2)" {1 2 3} 001615 001616 3a "(1,2) UNION (3) EXCEPT (1)" {2 3} 001617 3b "(1,2) EXCEPT (3) UNION (1)" {1 2} 001618 001619 4a "(1,2) INTERSECT (1) UNION ALL (3)" {1 3} 001620 4b "(3) UNION (1,2) INTERSECT (1)" {1} 001621 001622 5a "(1,2) INTERSECT (2) EXCEPT (2)" {} 001623 5b "(2,3) EXCEPT (2) INTERSECT (2)" {} 001624 001625 6a "(2) UNION ALL (2) EXCEPT (2)" {} 001626 6b "(2) EXCEPT (2) UNION ALL (2)" {2} 001627 001628 7 "(2,3) EXCEPT (2) EXCEPT (3)" {} 001629 } { 001630 set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select] 001631 do_execsql_test e_select-7.12.$tn $select [list {*}$res] 001632 } 001633 001634 001635 #------------------------------------------------------------------------- 001636 # ORDER BY clauses 001637 # 001638 001639 drop_all_tables 001640 do_execsql_test e_select-8.1.0 { 001641 CREATE TABLE d1(x, y, z); 001642 001643 INSERT INTO d1 VALUES(1, 2, 3); 001644 INSERT INTO d1 VALUES(2, 5, -1); 001645 INSERT INTO d1 VALUES(1, 2, 8); 001646 INSERT INTO d1 VALUES(1, 2, 7); 001647 INSERT INTO d1 VALUES(2, 4, 93); 001648 INSERT INTO d1 VALUES(1, 2, -20); 001649 INSERT INTO d1 VALUES(1, 4, 93); 001650 INSERT INTO d1 VALUES(1, 5, -1); 001651 001652 CREATE TABLE d2(a, b); 001653 INSERT INTO d2 VALUES('gently', 'failings'); 001654 INSERT INTO d2 VALUES('commercials', 'bathrobe'); 001655 INSERT INTO d2 VALUES('iterate', 'sexton'); 001656 INSERT INTO d2 VALUES('babied', 'charitableness'); 001657 INSERT INTO d2 VALUES('solemnness', 'annexed'); 001658 INSERT INTO d2 VALUES('rejoicing', 'liabilities'); 001659 INSERT INTO d2 VALUES('pragmatist', 'guarded'); 001660 INSERT INTO d2 VALUES('barked', 'interrupted'); 001661 INSERT INTO d2 VALUES('reemphasizes', 'reply'); 001662 INSERT INTO d2 VALUES('lad', 'relenting'); 001663 } {} 001664 001665 # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results 001666 # of evaluating the left-most expression in the ORDER BY list, then ties 001667 # are broken by evaluating the second left-most expression and so on. 001668 # 001669 do_select_tests e_select-8.1 { 001670 1 "SELECT * FROM d1 ORDER BY x, y, z" { 001671 1 2 -20 1 2 3 1 2 7 1 2 8 001672 1 4 93 1 5 -1 2 4 93 2 5 -1 001673 } 001674 } 001675 001676 # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally 001677 # followed by one of the keywords ASC (smaller values are returned 001678 # first) or DESC (larger values are returned first). 001679 # 001680 # Test cases e_select-8.2.* test the above. 001681 # 001682 # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows 001683 # are sorted in ascending (smaller values first) order by default. 001684 # 001685 # Test cases e_select-8.3.* test the above. All 8.3 test cases are 001686 # copies of 8.2 test cases with the explicit "ASC" removed. 001687 # 001688 do_select_tests e_select-8 { 001689 2.1 "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" { 001690 1 2 -20 1 2 3 1 2 7 1 2 8 001691 1 4 93 1 5 -1 2 4 93 2 5 -1 001692 } 001693 2.2 "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" { 001694 2 5 -1 2 4 93 1 5 -1 1 4 93 001695 1 2 8 1 2 7 1 2 3 1 2 -20 001696 } 001697 2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" { 001698 2 4 93 2 5 -1 1 2 8 1 2 7 001699 1 2 3 1 2 -20 1 4 93 1 5 -1 001700 } 001701 2.4 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" { 001702 2 4 93 2 5 -1 1 2 -20 1 2 3 001703 1 2 7 1 2 8 1 4 93 1 5 -1 001704 } 001705 001706 3.1 "SELECT * FROM d1 ORDER BY x, y, z" { 001707 1 2 -20 1 2 3 1 2 7 1 2 8 001708 1 4 93 1 5 -1 2 4 93 2 5 -1 001709 } 001710 3.3 "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" { 001711 2 4 93 2 5 -1 1 2 8 1 2 7 001712 1 2 3 1 2 -20 1 4 93 1 5 -1 001713 } 001714 3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" { 001715 2 4 93 2 5 -1 1 2 -20 1 2 3 001716 1 2 7 1 2 8 1 4 93 1 5 -1 001717 } 001718 } 001719 001720 # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant 001721 # integer K then the expression is considered an alias for the K-th 001722 # column of the result set (columns are numbered from left to right 001723 # starting with 1). 001724 # 001725 do_select_tests e_select-8.4 { 001726 1 "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" { 001727 1 2 -20 1 2 3 1 2 7 1 2 8 001728 1 4 93 1 5 -1 2 4 93 2 5 -1 001729 } 001730 2 "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" { 001731 2 5 -1 2 4 93 1 5 -1 1 4 93 001732 1 2 8 1 2 7 1 2 3 1 2 -20 001733 } 001734 3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" { 001735 2 4 93 2 5 -1 1 2 8 1 2 7 001736 1 2 3 1 2 -20 1 4 93 1 5 -1 001737 } 001738 4 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" { 001739 2 4 93 2 5 -1 1 2 -20 1 2 3 001740 1 2 7 1 2 8 1 4 93 1 5 -1 001741 } 001742 5 "SELECT * FROM d1 ORDER BY 1, 2, 3" { 001743 1 2 -20 1 2 3 1 2 7 1 2 8 001744 1 4 93 1 5 -1 2 4 93 2 5 -1 001745 } 001746 6 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" { 001747 2 4 93 2 5 -1 1 2 8 1 2 7 001748 1 2 3 1 2 -20 1 4 93 1 5 -1 001749 } 001750 7 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" { 001751 2 4 93 2 5 -1 1 2 -20 1 2 3 001752 1 2 7 1 2 8 1 4 93 1 5 -1 001753 } 001754 8 "SELECT z, x FROM d1 ORDER BY 2" { 001755 /# 1 # 1 # 1 # 1 001756 # 1 # 1 # 2 # 2/ 001757 } 001758 9 "SELECT z, x FROM d1 ORDER BY 1" { 001759 /-20 1 -1 # -1 # 3 1 001760 7 1 8 1 93 # 93 #/ 001761 } 001762 } 001763 001764 # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier 001765 # that corresponds to the alias of one of the output columns, then the 001766 # expression is considered an alias for that column. 001767 # 001768 do_select_tests e_select-8.5 { 001769 1 "SELECT z+1 AS abc FROM d1 ORDER BY abc" { 001770 -19 0 0 4 8 9 94 94 001771 } 001772 2 "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" { 001773 94 94 9 8 4 0 0 -19 001774 } 001775 3 "SELECT z AS x, x AS z FROM d1 ORDER BY z" { 001776 /# 1 # 1 # 1 # 1 # 1 # 1 # 2 # 2/ 001777 } 001778 4 "SELECT z AS x, x AS z FROM d1 ORDER BY x" { 001779 /-20 1 -1 # -1 # 3 1 7 1 8 1 93 # 93 #/ 001780 } 001781 } 001782 001783 # EVIDENCE-OF: R-65068-27207 Otherwise, if the ORDER BY expression is 001784 # any other expression, it is evaluated and the returned value used to 001785 # order the output rows. 001786 # 001787 # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT, 001788 # then an ORDER BY may contain any arbitrary expressions. 001789 # 001790 do_select_tests e_select-8.6 { 001791 1 "SELECT * FROM d1 ORDER BY x+y+z" { 001792 1 2 -20 1 5 -1 1 2 3 2 5 -1 001793 1 2 7 1 2 8 1 4 93 2 4 93 001794 } 001795 2 "SELECT * FROM d1 ORDER BY x*z" { 001796 1 2 -20 2 5 -1 1 5 -1 1 2 3 001797 1 2 7 1 2 8 1 4 93 2 4 93 001798 } 001799 3 "SELECT * FROM d1 ORDER BY y*z" { 001800 1 2 -20 2 5 -1 1 5 -1 1 2 3 001801 1 2 7 1 2 8 2 4 93 1 4 93 001802 } 001803 } 001804 001805 # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound 001806 # SELECT, then ORDER BY expressions that are not aliases to output 001807 # columns must be exactly the same as an expression used as an output 001808 # column. 001809 # 001810 do_select_tests e_select-8.7.1 -error { 001811 %s ORDER BY term does not match any column in the result set 001812 } { 001813 1 "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" 1st 001814 2 "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd 001815 } 001816 001817 do_select_tests e_select-8.7.2 { 001818 1 "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" { 001819 -20 -2 -1 3 7 8 93 186 babied barked commercials gently 001820 iterate lad pragmatist reemphasizes rejoicing solemnness 001821 } 001822 2 "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" { 001823 1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0 001824 babied charitableness barked interrupted commercials bathrobe gently 001825 failings iterate sexton lad relenting pragmatist guarded reemphasizes reply 001826 rejoicing liabilities solemnness annexed 001827 } 001828 } 001829 001830 do_execsql_test e_select-8.8.0 { 001831 CREATE TABLE d3(a); 001832 INSERT INTO d3 VALUES('text'); 001833 INSERT INTO d3 VALUES(14.1); 001834 INSERT INTO d3 VALUES(13); 001835 INSERT INTO d3 VALUES(X'78787878'); 001836 INSERT INTO d3 VALUES(15); 001837 INSERT INTO d3 VALUES(12.9); 001838 INSERT INTO d3 VALUES(null); 001839 001840 CREATE TABLE d4(x COLLATE nocase); 001841 INSERT INTO d4 VALUES('abc'); 001842 INSERT INTO d4 VALUES('ghi'); 001843 INSERT INTO d4 VALUES('DEF'); 001844 INSERT INTO d4 VALUES('JKL'); 001845 } {} 001846 001847 # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values 001848 # are compared in the same way as for comparison expressions. 001849 # 001850 # The following tests verify that values of different types are sorted 001851 # correctly, and that mixed real and integer values are compared properly. 001852 # 001853 do_execsql_test e_select-8.8.1 { 001854 SELECT a FROM d3 ORDER BY a 001855 } {{} 12.9 13 14.1 15 text xxxx} 001856 do_execsql_test e_select-8.8.2 { 001857 SELECT a FROM d3 ORDER BY a DESC 001858 } {xxxx text 15 14.1 13 12.9 {}} 001859 001860 001861 # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a 001862 # collation sequence using the postfix COLLATE operator, then the 001863 # specified collation sequence is used. 001864 # 001865 do_execsql_test e_select-8.9.1 { 001866 SELECT x FROM d4 ORDER BY 1 COLLATE binary 001867 } {DEF JKL abc ghi} 001868 do_execsql_test e_select-8.9.2 { 001869 SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase 001870 } {abc DEF ghi JKL} 001871 001872 # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is 001873 # an alias to an expression that has been assigned a collation sequence 001874 # using the postfix COLLATE operator, then the collation sequence 001875 # assigned to the aliased expression is used. 001876 # 001877 # In the test 8.10.2, the only result-column expression has no alias. So the 001878 # ORDER BY expression is not a reference to it and therefore does not inherit 001879 # the collation sequence. In test 8.10.3, "x" is the alias (as well as the 001880 # column name), so the ORDER BY expression is interpreted as an alias and the 001881 # collation sequence attached to the result column is used for sorting. 001882 # 001883 do_execsql_test e_select-8.10.1 { 001884 SELECT x COLLATE binary FROM d4 ORDER BY 1 001885 } {DEF JKL abc ghi} 001886 do_execsql_test e_select-8.10.2 { 001887 SELECT x COLLATE binary FROM d4 ORDER BY x 001888 } {abc DEF ghi JKL} 001889 do_execsql_test e_select-8.10.3 { 001890 SELECT x COLLATE binary AS x FROM d4 ORDER BY x 001891 } {DEF JKL abc ghi} 001892 001893 # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a 001894 # column or an alias of an expression that is a column, then the default 001895 # collation sequence for the column is used. 001896 # 001897 do_execsql_test e_select-8.11.1 { 001898 SELECT x AS y FROM d4 ORDER BY y 001899 } {abc DEF ghi JKL} 001900 do_execsql_test e_select-8.11.2 { 001901 SELECT x||'' FROM d4 ORDER BY x 001902 } {abc DEF ghi JKL} 001903 001904 # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is 001905 # used. 001906 # 001907 do_execsql_test e_select-8.12.1 { 001908 SELECT x FROM d4 ORDER BY x||'' 001909 } {DEF JKL abc ghi} 001910 001911 # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer 001912 # alias, then SQLite searches the left-most SELECT in the compound for a 001913 # result column that matches either the second or third rules above. If 001914 # a match is found, the search stops and the expression is handled as an 001915 # alias for the result column that it has been matched against. 001916 # Otherwise, the next SELECT to the right is tried, and so on. 001917 # 001918 do_execsql_test e_select-8.13.0 { 001919 CREATE TABLE d5(a, b); 001920 CREATE TABLE d6(c, d); 001921 CREATE TABLE d7(e, f); 001922 001923 INSERT INTO d5 VALUES(1, 'f'); 001924 INSERT INTO d6 VALUES(2, 'e'); 001925 INSERT INTO d7 VALUES(3, 'd'); 001926 INSERT INTO d5 VALUES(4, 'c'); 001927 INSERT INTO d6 VALUES(5, 'b'); 001928 INSERT INTO d7 VALUES(6, 'a'); 001929 001930 CREATE TABLE d8(x COLLATE nocase); 001931 CREATE TABLE d9(y COLLATE nocase); 001932 001933 INSERT INTO d8 VALUES('a'); 001934 INSERT INTO d9 VALUES('B'); 001935 INSERT INTO d8 VALUES('c'); 001936 INSERT INTO d9 VALUES('D'); 001937 } {} 001938 do_select_tests e_select-8.13 { 001939 1 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 001940 ORDER BY a 001941 } {1 2 3 4 5 6} 001942 2 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 001943 ORDER BY c 001944 } {1 2 3 4 5 6} 001945 3 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 001946 ORDER BY e 001947 } {1 2 3 4 5 6} 001948 4 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7 001949 ORDER BY 1 001950 } {1 2 3 4 5 6} 001951 001952 5 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b } 001953 {f 1 c 4 4 c 1 f} 001954 6 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 } 001955 {f 1 c 4 4 c 1 f} 001956 001957 7 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a } 001958 {1 f 4 c c 4 f 1} 001959 8 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 } 001960 {1 f 4 c c 4 f 1} 001961 001962 9 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 001963 {f 2 c 5 4 c 1 f} 001964 10 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 } 001965 {f 2 c 5 4 c 1 f} 001966 001967 11 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 } 001968 {2 f 5 c c 5 f 2} 001969 12 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 } 001970 {2 f 5 c c 5 f 2} 001971 } 001972 001973 # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in 001974 # the result columns of any constituent SELECT, it is an error. 001975 # 001976 do_select_tests e_select-8.14 -error { 001977 %s ORDER BY term does not match any column in the result set 001978 } { 001979 1 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 } 1st 001980 2 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 } 2nd 001981 3 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' } 1st 001982 4 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah } 1st 001983 5 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d } 3rd 001984 6 { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b } 4th 001985 } 001986 001987 # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is 001988 # processed separately and may be matched against result columns from 001989 # different SELECT statements in the compound. 001990 # 001991 do_select_tests e_select-8.15 { 001992 1 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d } 001993 {1 e 1 f 4 b 4 c} 001994 2 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b } 001995 {1 e 1 f 4 b 4 c} 001996 3 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 } 001997 {1 e 1 f 4 b 4 c} 001998 } 001999 002000 002001 #------------------------------------------------------------------------- 002002 # Tests related to statements made about the LIMIT/OFFSET clause. 002003 # 002004 do_execsql_test e_select-9.0 { 002005 CREATE TABLE f1(a, b); 002006 INSERT INTO f1 VALUES(26, 'z'); 002007 INSERT INTO f1 VALUES(25, 'y'); 002008 INSERT INTO f1 VALUES(24, 'x'); 002009 INSERT INTO f1 VALUES(23, 'w'); 002010 INSERT INTO f1 VALUES(22, 'v'); 002011 INSERT INTO f1 VALUES(21, 'u'); 002012 INSERT INTO f1 VALUES(20, 't'); 002013 INSERT INTO f1 VALUES(19, 's'); 002014 INSERT INTO f1 VALUES(18, 'r'); 002015 INSERT INTO f1 VALUES(17, 'q'); 002016 INSERT INTO f1 VALUES(16, 'p'); 002017 INSERT INTO f1 VALUES(15, 'o'); 002018 INSERT INTO f1 VALUES(14, 'n'); 002019 INSERT INTO f1 VALUES(13, 'm'); 002020 INSERT INTO f1 VALUES(12, 'l'); 002021 INSERT INTO f1 VALUES(11, 'k'); 002022 INSERT INTO f1 VALUES(10, 'j'); 002023 INSERT INTO f1 VALUES(9, 'i'); 002024 INSERT INTO f1 VALUES(8, 'h'); 002025 INSERT INTO f1 VALUES(7, 'g'); 002026 INSERT INTO f1 VALUES(6, 'f'); 002027 INSERT INTO f1 VALUES(5, 'e'); 002028 INSERT INTO f1 VALUES(4, 'd'); 002029 INSERT INTO f1 VALUES(3, 'c'); 002030 INSERT INTO f1 VALUES(2, 'b'); 002031 INSERT INTO f1 VALUES(1, 'a'); 002032 } {} 002033 002034 # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the 002035 # LIMIT clause, so long as it evaluates to an integer or a value that 002036 # can be losslessly converted to an integer. 002037 # 002038 do_select_tests e_select-9.1 { 002039 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e} 002040 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e} 002041 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') } 002042 {a b c d e} 002043 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e} 002044 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e} 002045 } 002046 002047 # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value 002048 # or any other value that cannot be losslessly converted to an integer, 002049 # an error is returned. 002050 # 002051 002052 do_select_tests e_select-9.2 -error "datatype mismatch" { 002053 1 { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {} 002054 2 { SELECT b FROM f1 ORDER BY a LIMIT NULL } {} 002055 3 { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {} 002056 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {} 002057 5 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {} 002058 } 002059 002060 # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a 002061 # negative value, then there is no upper bound on the number of rows 002062 # returned. 002063 # 002064 do_select_tests e_select-9.4 { 002065 1 { SELECT b FROM f1 ORDER BY a LIMIT -1 } 002066 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 002067 2 { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 } 002068 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 002069 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 } 002070 {a b c d e f g h i j k l m n o p q r s t u v w x y z} 002071 } 002072 002073 # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N 002074 # rows of its result set only, where N is the value that the LIMIT 002075 # expression evaluates to. 002076 # 002077 do_select_tests e_select-9.5 { 002078 1 { SELECT b FROM f1 ORDER BY a LIMIT 0 } {} 002079 2 { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w} 002080 3 { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s} 002081 4 { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o} 002082 } 002083 002084 # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return 002085 # less than N rows without a LIMIT clause, then the entire result set is 002086 # returned. 002087 # 002088 do_select_tests e_select-9.6 { 002089 1 { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z} 002090 2 { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5} 002091 } 002092 002093 002094 # EVIDENCE-OF: R-24188-24349 The expression attached to the optional 002095 # OFFSET clause that may follow a LIMIT clause must also evaluate to an 002096 # integer, or a value that can be losslessly converted to an integer. 002097 # 002098 foreach {tn select} { 002099 1 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' } 002100 2 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL } 002101 3 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' } 002102 4 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 } 002103 5 { SELECT b FROM f1 ORDER BY a 002104 LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1) 002105 } 002106 } { 002107 do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}} 002108 } 002109 002110 # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then 002111 # the first M rows are omitted from the result set returned by the 002112 # SELECT statement and the next N rows are returned, where M and N are 002113 # the values that the OFFSET and LIMIT clauses evaluate to, 002114 # respectively. 002115 # 002116 do_select_tests e_select-9.8 { 002117 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o} 002118 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o} 002119 3 { SELECT b FROM f1 ORDER BY a 002120 LIMIT (SELECT a FROM f1 WHERE b='j') 002121 OFFSET (SELECT a FROM f1 WHERE b='b') 002122 } {c d e f g h i j k l} 002123 4 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h} 002124 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e} 002125 6 { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {} 002126 7 { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r} 002127 } 002128 002129 # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than 002130 # M+N rows if it did not have a LIMIT clause, then the first M rows are 002131 # skipped and the remaining rows (if any) are returned. 002132 # 002133 do_select_tests e_select-9.9 { 002134 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z} 002135 2 { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1} 002136 } 002137 002138 002139 # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a 002140 # negative value, the results are the same as if it had evaluated to 002141 # zero. 002142 # 002143 do_select_tests e_select-9.10 { 002144 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e} 002145 2 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e} 002146 3 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0 } {a b c d e} 002147 } 002148 002149 # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the 002150 # LIMIT clause may specify two scalar expressions separated by a comma. 002151 # 002152 # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used 002153 # as the OFFSET expression and the second as the LIMIT expression. 002154 # 002155 do_select_tests e_select-9.11 { 002156 1 { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o} 002157 2 { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o} 002158 3 { SELECT b FROM f1 ORDER BY a 002159 LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j') 002160 } {c d e f g h i j k l} 002161 4 { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h} 002162 5 { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e} 002163 6 { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {} 002164 7 { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r} 002165 002166 8 { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z} 002167 9 { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1} 002168 002169 10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e} 002170 11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e} 002171 12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e} 002172 } 002173 002174 finish_test