000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This module contains C code that generates VDBE code used to process 000013 ** the WHERE clause of SQL statements. This module is responsible for 000014 ** generating the code that loops through a table looking for applicable 000015 ** rows. Indices are selected and used to speed the search when doing 000016 ** so is applicable. Because this module is responsible for selecting 000017 ** indices, you might also think of this module as the "query optimizer". 000018 */ 000019 #include "sqliteInt.h" 000020 #include "whereInt.h" 000021 000022 /* 000023 ** Extra information appended to the end of sqlite3_index_info but not 000024 ** visible to the xBestIndex function, at least not directly. The 000025 ** sqlite3_vtab_collation() interface knows how to reach it, however. 000026 ** 000027 ** This object is not an API and can be changed from one release to the 000028 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 000029 ** agree on the structure, all will be well. 000030 */ 000031 typedef struct HiddenIndexInfo HiddenIndexInfo; 000032 struct HiddenIndexInfo { 000033 WhereClause *pWC; /* The Where clause being analyzed */ 000034 Parse *pParse; /* The parsing context */ 000035 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 000036 u32 mIn; /* Mask of terms that are <col> IN (...) */ 000037 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 000038 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 000039 ** because extra space is allocated to hold up 000040 ** to nTerm such values */ 000041 }; 000042 000043 /* Forward declaration of methods */ 000044 static int whereLoopResize(sqlite3*, WhereLoop*, int); 000045 000046 /* 000047 ** Return the estimated number of output rows from a WHERE clause 000048 */ 000049 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 000050 return pWInfo->nRowOut; 000051 } 000052 000053 /* 000054 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 000055 ** WHERE clause returns outputs for DISTINCT processing. 000056 */ 000057 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 000058 return pWInfo->eDistinct; 000059 } 000060 000061 /* 000062 ** Return the number of ORDER BY terms that are satisfied by the 000063 ** WHERE clause. A return of 0 means that the output must be 000064 ** completely sorted. A return equal to the number of ORDER BY 000065 ** terms means that no sorting is needed at all. A return that 000066 ** is positive but less than the number of ORDER BY terms means that 000067 ** block sorting is required. 000068 */ 000069 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 000070 return pWInfo->nOBSat<0 ? 0 : pWInfo->nOBSat; 000071 } 000072 000073 /* 000074 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 000075 ** to emit rows in increasing order, and if the last row emitted by the 000076 ** inner-most loop did not fit within the sorter, then we can skip all 000077 ** subsequent rows for the current iteration of the inner loop (because they 000078 ** will not fit in the sorter either) and continue with the second inner 000079 ** loop - the loop immediately outside the inner-most. 000080 ** 000081 ** When a row does not fit in the sorter (because the sorter already 000082 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 000083 ** label returned by this function. 000084 ** 000085 ** If the ORDER BY LIMIT optimization applies, the jump destination should 000086 ** be the continuation for the second-inner-most loop. If the ORDER BY 000087 ** LIMIT optimization does not apply, then the jump destination should 000088 ** be the continuation for the inner-most loop. 000089 ** 000090 ** It is always safe for this routine to return the continuation of the 000091 ** inner-most loop, in the sense that a correct answer will result. 000092 ** Returning the continuation the second inner loop is an optimization 000093 ** that might make the code run a little faster, but should not change 000094 ** the final answer. 000095 */ 000096 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 000097 WhereLevel *pInner; 000098 if( !pWInfo->bOrderedInnerLoop ){ 000099 /* The ORDER BY LIMIT optimization does not apply. Jump to the 000100 ** continuation of the inner-most loop. */ 000101 return pWInfo->iContinue; 000102 } 000103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 000104 assert( pInner->addrNxt!=0 ); 000105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 000106 } 000107 000108 /* 000109 ** While generating code for the min/max optimization, after handling 000110 ** the aggregate-step call to min() or max(), check to see if any 000111 ** additional looping is required. If the output order is such that 000112 ** we are certain that the correct answer has already been found, then 000113 ** code an OP_Goto to by pass subsequent processing. 000114 ** 000115 ** Any extra OP_Goto that is coded here is an optimization. The 000116 ** correct answer should be obtained regardless. This OP_Goto just 000117 ** makes the answer appear faster. 000118 */ 000119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 000120 WhereLevel *pInner; 000121 int i; 000122 if( !pWInfo->bOrderedInnerLoop ) return; 000123 if( pWInfo->nOBSat==0 ) return; 000124 for(i=pWInfo->nLevel-1; i>=0; i--){ 000125 pInner = &pWInfo->a[i]; 000126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 000127 sqlite3VdbeGoto(v, pInner->addrNxt); 000128 return; 000129 } 000130 } 000131 sqlite3VdbeGoto(v, pWInfo->iBreak); 000132 } 000133 000134 /* 000135 ** Return the VDBE address or label to jump to in order to continue 000136 ** immediately with the next row of a WHERE clause. 000137 */ 000138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 000139 assert( pWInfo->iContinue!=0 ); 000140 return pWInfo->iContinue; 000141 } 000142 000143 /* 000144 ** Return the VDBE address or label to jump to in order to break 000145 ** out of a WHERE loop. 000146 */ 000147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 000148 return pWInfo->iBreak; 000149 } 000150 000151 /* 000152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 000153 ** operate directly on the rowids returned by a WHERE clause. Return 000154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 000155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 000156 ** optimization can be used on multiple 000157 ** 000158 ** If the ONEPASS optimization is used (if this routine returns true) 000159 ** then also write the indices of open cursors used by ONEPASS 000160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 000161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 000162 ** Either value may be -1, indicating that cursor is not used. 000163 ** Any cursors returned will have been opened for writing. 000164 ** 000165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 000166 ** unable to use the ONEPASS optimization. 000167 */ 000168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 000169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 000170 #ifdef WHERETRACE_ENABLED 000171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 000172 sqlite3DebugPrintf("%s cursors: %d %d\n", 000173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 000174 aiCur[0], aiCur[1]); 000175 } 000176 #endif 000177 return pWInfo->eOnePass; 000178 } 000179 000180 /* 000181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 000182 ** the data cursor to the row selected by the index cursor. 000183 */ 000184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 000185 return pWInfo->bDeferredSeek; 000186 } 000187 000188 /* 000189 ** Move the content of pSrc into pDest 000190 */ 000191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 000192 pDest->n = pSrc->n; 000193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 000194 } 000195 000196 /* 000197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 000198 ** 000199 ** The new entry might overwrite an existing entry, or it might be 000200 ** appended, or it might be discarded. Do whatever is the right thing 000201 ** so that pSet keeps the N_OR_COST best entries seen so far. 000202 */ 000203 static int whereOrInsert( 000204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 000205 Bitmask prereq, /* Prerequisites of the new entry */ 000206 LogEst rRun, /* Run-cost of the new entry */ 000207 LogEst nOut /* Number of outputs for the new entry */ 000208 ){ 000209 u16 i; 000210 WhereOrCost *p; 000211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 000212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 000213 goto whereOrInsert_done; 000214 } 000215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 000216 return 0; 000217 } 000218 } 000219 if( pSet->n<N_OR_COST ){ 000220 p = &pSet->a[pSet->n++]; 000221 p->nOut = nOut; 000222 }else{ 000223 p = pSet->a; 000224 for(i=1; i<pSet->n; i++){ 000225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 000226 } 000227 if( p->rRun<=rRun ) return 0; 000228 } 000229 whereOrInsert_done: 000230 p->prereq = prereq; 000231 p->rRun = rRun; 000232 if( p->nOut>nOut ) p->nOut = nOut; 000233 return 1; 000234 } 000235 000236 /* 000237 ** Return the bitmask for the given cursor number. Return 0 if 000238 ** iCursor is not in the set. 000239 */ 000240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 000241 int i; 000242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 000243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 000244 assert( iCursor>=-1 ); 000245 if( pMaskSet->ix[0]==iCursor ){ 000246 return 1; 000247 } 000248 for(i=1; i<pMaskSet->n; i++){ 000249 if( pMaskSet->ix[i]==iCursor ){ 000250 return MASKBIT(i); 000251 } 000252 } 000253 return 0; 000254 } 000255 000256 /* Allocate memory that is automatically freed when pWInfo is freed. 000257 */ 000258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 000259 WhereMemBlock *pBlock; 000260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 000261 if( pBlock ){ 000262 pBlock->pNext = pWInfo->pMemToFree; 000263 pBlock->sz = nByte; 000264 pWInfo->pMemToFree = pBlock; 000265 pBlock++; 000266 } 000267 return (void*)pBlock; 000268 } 000269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 000270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 000271 if( pNew && pOld ){ 000272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 000273 pOldBlk--; 000274 assert( pOldBlk->sz<nByte ); 000275 memcpy(pNew, pOld, pOldBlk->sz); 000276 } 000277 return pNew; 000278 } 000279 000280 /* 000281 ** Create a new mask for cursor iCursor. 000282 ** 000283 ** There is one cursor per table in the FROM clause. The number of 000284 ** tables in the FROM clause is limited by a test early in the 000285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 000286 ** array will never overflow. 000287 */ 000288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 000289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 000290 pMaskSet->ix[pMaskSet->n++] = iCursor; 000291 } 000292 000293 /* 000294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 000295 ** a pointer to the right-hand branch. Otherwise, return NULL. 000296 */ 000297 static Expr *whereRightSubexprIsColumn(Expr *p){ 000298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 000299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 000300 return p; 000301 } 000302 return 0; 000303 } 000304 000305 /* 000306 ** Term pTerm is guaranteed to be a WO_IN term. It may be a component term 000307 ** of a vector IN expression of the form "(x, y, ...) IN (SELECT ...)". 000308 ** This function checks to see if the term is compatible with an index 000309 ** column with affinity idxaff (one of the SQLITE_AFF_XYZ values). If so, 000310 ** it returns a pointer to the name of the collation sequence (e.g. "BINARY" 000311 ** or "NOCASE") used by the comparison in pTerm. If it is not compatible 000312 ** with affinity idxaff, NULL is returned. 000313 */ 000314 static SQLITE_NOINLINE const char *indexInAffinityOk( 000315 Parse *pParse, 000316 WhereTerm *pTerm, 000317 u8 idxaff 000318 ){ 000319 Expr *pX = pTerm->pExpr; 000320 Expr inexpr; 000321 000322 assert( pTerm->eOperator & WO_IN ); 000323 000324 if( sqlite3ExprIsVector(pX->pLeft) ){ 000325 int iField = pTerm->u.x.iField - 1; 000326 inexpr.flags = 0; 000327 inexpr.op = TK_EQ; 000328 inexpr.pLeft = pX->pLeft->x.pList->a[iField].pExpr; 000329 assert( ExprUseXSelect(pX) ); 000330 inexpr.pRight = pX->x.pSelect->pEList->a[iField].pExpr; 000331 pX = &inexpr; 000332 } 000333 000334 if( sqlite3IndexAffinityOk(pX, idxaff) ){ 000335 CollSeq *pRet = sqlite3ExprCompareCollSeq(pParse, pX); 000336 return pRet ? pRet->zName : sqlite3StrBINARY; 000337 } 000338 return 0; 000339 } 000340 000341 /* 000342 ** Advance to the next WhereTerm that matches according to the criteria 000343 ** established when the pScan object was initialized by whereScanInit(). 000344 ** Return NULL if there are no more matching WhereTerms. 000345 */ 000346 static WhereTerm *whereScanNext(WhereScan *pScan){ 000347 int iCur; /* The cursor on the LHS of the term */ 000348 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 000349 Expr *pX; /* An expression being tested */ 000350 WhereClause *pWC; /* Shorthand for pScan->pWC */ 000351 WhereTerm *pTerm; /* The term being tested */ 000352 int k = pScan->k; /* Where to start scanning */ 000353 000354 assert( pScan->iEquiv<=pScan->nEquiv ); 000355 pWC = pScan->pWC; 000356 while(1){ 000357 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 000358 iCur = pScan->aiCur[pScan->iEquiv-1]; 000359 assert( pWC!=0 ); 000360 assert( iCur>=0 ); 000361 do{ 000362 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 000363 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 000364 if( pTerm->leftCursor==iCur 000365 && pTerm->u.x.leftColumn==iColumn 000366 && (iColumn!=XN_EXPR 000367 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 000368 pScan->pIdxExpr,iCur)==0) 000369 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 000370 ){ 000371 if( (pTerm->eOperator & WO_EQUIV)!=0 000372 && pScan->nEquiv<ArraySize(pScan->aiCur) 000373 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 000374 ){ 000375 int j; 000376 for(j=0; j<pScan->nEquiv; j++){ 000377 if( pScan->aiCur[j]==pX->iTable 000378 && pScan->aiColumn[j]==pX->iColumn ){ 000379 break; 000380 } 000381 } 000382 if( j==pScan->nEquiv ){ 000383 pScan->aiCur[j] = pX->iTable; 000384 pScan->aiColumn[j] = pX->iColumn; 000385 pScan->nEquiv++; 000386 } 000387 } 000388 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 000389 /* Verify the affinity and collating sequence match */ 000390 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 000391 const char *zCollName; 000392 Parse *pParse = pWC->pWInfo->pParse; 000393 pX = pTerm->pExpr; 000394 000395 if( (pTerm->eOperator & WO_IN) ){ 000396 zCollName = indexInAffinityOk(pParse, pTerm, pScan->idxaff); 000397 if( !zCollName ) continue; 000398 }else{ 000399 CollSeq *pColl; 000400 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 000401 continue; 000402 } 000403 assert(pX->pLeft); 000404 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 000405 zCollName = pColl ? pColl->zName : sqlite3StrBINARY; 000406 } 000407 000408 if( sqlite3StrICmp(zCollName, pScan->zCollName) ){ 000409 continue; 000410 } 000411 } 000412 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 000413 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 000414 && pX->op==TK_COLUMN 000415 && pX->iTable==pScan->aiCur[0] 000416 && pX->iColumn==pScan->aiColumn[0] 000417 ){ 000418 testcase( pTerm->eOperator & WO_IS ); 000419 continue; 000420 } 000421 pScan->pWC = pWC; 000422 pScan->k = k+1; 000423 #ifdef WHERETRACE_ENABLED 000424 if( sqlite3WhereTrace & 0x20000 ){ 000425 int ii; 000426 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 000427 pTerm, pScan->nEquiv); 000428 for(ii=0; ii<pScan->nEquiv; ii++){ 000429 sqlite3DebugPrintf(" {%d:%d}", 000430 pScan->aiCur[ii], pScan->aiColumn[ii]); 000431 } 000432 sqlite3DebugPrintf("\n"); 000433 } 000434 #endif 000435 return pTerm; 000436 } 000437 } 000438 } 000439 pWC = pWC->pOuter; 000440 k = 0; 000441 }while( pWC!=0 ); 000442 if( pScan->iEquiv>=pScan->nEquiv ) break; 000443 pWC = pScan->pOrigWC; 000444 k = 0; 000445 pScan->iEquiv++; 000446 } 000447 return 0; 000448 } 000449 000450 /* 000451 ** This is whereScanInit() for the case of an index on an expression. 000452 ** It is factored out into a separate tail-recursion subroutine so that 000453 ** the normal whereScanInit() routine, which is a high-runner, does not 000454 ** need to push registers onto the stack as part of its prologue. 000455 */ 000456 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 000457 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 000458 return whereScanNext(pScan); 000459 } 000460 000461 /* 000462 ** Initialize a WHERE clause scanner object. Return a pointer to the 000463 ** first match. Return NULL if there are no matches. 000464 ** 000465 ** The scanner will be searching the WHERE clause pWC. It will look 000466 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 000467 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 000468 ** must be one of the indexes of table iCur. 000469 ** 000470 ** The <op> must be one of the operators described by opMask. 000471 ** 000472 ** If the search is for X and the WHERE clause contains terms of the 000473 ** form X=Y then this routine might also return terms of the form 000474 ** "Y <op> <expr>". The number of levels of transitivity is limited, 000475 ** but is enough to handle most commonly occurring SQL statements. 000476 ** 000477 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 000478 ** index pIdx. 000479 */ 000480 static WhereTerm *whereScanInit( 000481 WhereScan *pScan, /* The WhereScan object being initialized */ 000482 WhereClause *pWC, /* The WHERE clause to be scanned */ 000483 int iCur, /* Cursor to scan for */ 000484 int iColumn, /* Column to scan for */ 000485 u32 opMask, /* Operator(s) to scan for */ 000486 Index *pIdx /* Must be compatible with this index */ 000487 ){ 000488 pScan->pOrigWC = pWC; 000489 pScan->pWC = pWC; 000490 pScan->pIdxExpr = 0; 000491 pScan->idxaff = 0; 000492 pScan->zCollName = 0; 000493 pScan->opMask = opMask; 000494 pScan->k = 0; 000495 pScan->aiCur[0] = iCur; 000496 pScan->nEquiv = 1; 000497 pScan->iEquiv = 1; 000498 if( pIdx ){ 000499 int j = iColumn; 000500 iColumn = pIdx->aiColumn[j]; 000501 if( iColumn==pIdx->pTable->iPKey ){ 000502 iColumn = XN_ROWID; 000503 }else if( iColumn>=0 ){ 000504 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 000505 pScan->zCollName = pIdx->azColl[j]; 000506 }else if( iColumn==XN_EXPR ){ 000507 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 000508 pScan->zCollName = pIdx->azColl[j]; 000509 pScan->aiColumn[0] = XN_EXPR; 000510 return whereScanInitIndexExpr(pScan); 000511 } 000512 }else if( iColumn==XN_EXPR ){ 000513 return 0; 000514 } 000515 pScan->aiColumn[0] = iColumn; 000516 return whereScanNext(pScan); 000517 } 000518 000519 /* 000520 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 000521 ** where X is a reference to the iColumn of table iCur or of index pIdx 000522 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 000523 ** the op parameter. Return a pointer to the term. Return 0 if not found. 000524 ** 000525 ** If pIdx!=0 then it must be one of the indexes of table iCur. 000526 ** Search for terms matching the iColumn-th column of pIdx 000527 ** rather than the iColumn-th column of table iCur. 000528 ** 000529 ** The term returned might by Y=<expr> if there is another constraint in 000530 ** the WHERE clause that specifies that X=Y. Any such constraints will be 000531 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 000532 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 000533 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 000534 ** other equivalent values. Hence a search for X will return <expr> if X=A1 000535 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 000536 ** 000537 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 000538 ** then try for the one with no dependencies on <expr> - in other words where 000539 ** <expr> is a constant expression of some kind. Only return entries of 000540 ** the form "X <op> Y" where Y is a column in another table if no terms of 000541 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 000542 ** exist, try to return a term that does not use WO_EQUIV. 000543 */ 000544 WhereTerm *sqlite3WhereFindTerm( 000545 WhereClause *pWC, /* The WHERE clause to be searched */ 000546 int iCur, /* Cursor number of LHS */ 000547 int iColumn, /* Column number of LHS */ 000548 Bitmask notReady, /* RHS must not overlap with this mask */ 000549 u32 op, /* Mask of WO_xx values describing operator */ 000550 Index *pIdx /* Must be compatible with this index, if not NULL */ 000551 ){ 000552 WhereTerm *pResult = 0; 000553 WhereTerm *p; 000554 WhereScan scan; 000555 000556 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 000557 op &= WO_EQ|WO_IS; 000558 while( p ){ 000559 if( (p->prereqRight & notReady)==0 ){ 000560 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 000561 testcase( p->eOperator & WO_IS ); 000562 return p; 000563 } 000564 if( pResult==0 ) pResult = p; 000565 } 000566 p = whereScanNext(&scan); 000567 } 000568 return pResult; 000569 } 000570 000571 /* 000572 ** This function searches pList for an entry that matches the iCol-th column 000573 ** of index pIdx. 000574 ** 000575 ** If such an expression is found, its index in pList->a[] is returned. If 000576 ** no expression is found, -1 is returned. 000577 */ 000578 static int findIndexCol( 000579 Parse *pParse, /* Parse context */ 000580 ExprList *pList, /* Expression list to search */ 000581 int iBase, /* Cursor for table associated with pIdx */ 000582 Index *pIdx, /* Index to match column of */ 000583 int iCol /* Column of index to match */ 000584 ){ 000585 int i; 000586 const char *zColl = pIdx->azColl[iCol]; 000587 000588 for(i=0; i<pList->nExpr; i++){ 000589 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 000590 if( ALWAYS(p!=0) 000591 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 000592 && p->iColumn==pIdx->aiColumn[iCol] 000593 && p->iTable==iBase 000594 ){ 000595 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 000596 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 000597 return i; 000598 } 000599 } 000600 } 000601 000602 return -1; 000603 } 000604 000605 /* 000606 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 000607 */ 000608 static int indexColumnNotNull(Index *pIdx, int iCol){ 000609 int j; 000610 assert( pIdx!=0 ); 000611 assert( iCol>=0 && iCol<pIdx->nColumn ); 000612 j = pIdx->aiColumn[iCol]; 000613 if( j>=0 ){ 000614 return pIdx->pTable->aCol[j].notNull; 000615 }else if( j==(-1) ){ 000616 return 1; 000617 }else{ 000618 assert( j==(-2) ); 000619 return 0; /* Assume an indexed expression can always yield a NULL */ 000620 000621 } 000622 } 000623 000624 /* 000625 ** Return true if the DISTINCT expression-list passed as the third argument 000626 ** is redundant. 000627 ** 000628 ** A DISTINCT list is redundant if any subset of the columns in the 000629 ** DISTINCT list are collectively unique and individually non-null. 000630 */ 000631 static int isDistinctRedundant( 000632 Parse *pParse, /* Parsing context */ 000633 SrcList *pTabList, /* The FROM clause */ 000634 WhereClause *pWC, /* The WHERE clause */ 000635 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 000636 ){ 000637 Table *pTab; 000638 Index *pIdx; 000639 int i; 000640 int iBase; 000641 000642 /* If there is more than one table or sub-select in the FROM clause of 000643 ** this query, then it will not be possible to show that the DISTINCT 000644 ** clause is redundant. */ 000645 if( pTabList->nSrc!=1 ) return 0; 000646 iBase = pTabList->a[0].iCursor; 000647 pTab = pTabList->a[0].pTab; 000648 000649 /* If any of the expressions is an IPK column on table iBase, then return 000650 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 000651 ** current SELECT is a correlated sub-query. 000652 */ 000653 for(i=0; i<pDistinct->nExpr; i++){ 000654 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 000655 if( NEVER(p==0) ) continue; 000656 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 000657 if( p->iTable==iBase && p->iColumn<0 ) return 1; 000658 } 000659 000660 /* Loop through all indices on the table, checking each to see if it makes 000661 ** the DISTINCT qualifier redundant. It does so if: 000662 ** 000663 ** 1. The index is itself UNIQUE, and 000664 ** 000665 ** 2. All of the columns in the index are either part of the pDistinct 000666 ** list, or else the WHERE clause contains a term of the form "col=X", 000667 ** where X is a constant value. The collation sequences of the 000668 ** comparison and select-list expressions must match those of the index. 000669 ** 000670 ** 3. All of those index columns for which the WHERE clause does not 000671 ** contain a "col=X" term are subject to a NOT NULL constraint. 000672 */ 000673 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 000674 if( !IsUniqueIndex(pIdx) ) continue; 000675 if( pIdx->pPartIdxWhere ) continue; 000676 for(i=0; i<pIdx->nKeyCol; i++){ 000677 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 000678 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 000679 if( indexColumnNotNull(pIdx, i)==0 ) break; 000680 } 000681 } 000682 if( i==pIdx->nKeyCol ){ 000683 /* This index implies that the DISTINCT qualifier is redundant. */ 000684 return 1; 000685 } 000686 } 000687 000688 return 0; 000689 } 000690 000691 000692 /* 000693 ** Estimate the logarithm of the input value to base 2. 000694 */ 000695 static LogEst estLog(LogEst N){ 000696 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 000697 } 000698 000699 /* 000700 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 000701 ** 000702 ** This routine runs over generated VDBE code and translates OP_Column 000703 ** opcodes into OP_Copy when the table is being accessed via co-routine 000704 ** instead of via table lookup. 000705 ** 000706 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 000707 ** cursor iTabCur are transformed into OP_Sequence opcode for the 000708 ** iAutoidxCur cursor, in order to generate unique rowids for the 000709 ** automatic index being generated. 000710 */ 000711 static void translateColumnToCopy( 000712 Parse *pParse, /* Parsing context */ 000713 int iStart, /* Translate from this opcode to the end */ 000714 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 000715 int iRegister, /* The first column is in this register */ 000716 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 000717 ){ 000718 Vdbe *v = pParse->pVdbe; 000719 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 000720 int iEnd = sqlite3VdbeCurrentAddr(v); 000721 if( pParse->db->mallocFailed ) return; 000722 for(; iStart<iEnd; iStart++, pOp++){ 000723 if( pOp->p1!=iTabCur ) continue; 000724 if( pOp->opcode==OP_Column ){ 000725 #ifdef SQLITE_DEBUG 000726 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 000727 printf("TRANSLATE OP_Column to OP_Copy at %d\n", iStart); 000728 } 000729 #endif 000730 pOp->opcode = OP_Copy; 000731 pOp->p1 = pOp->p2 + iRegister; 000732 pOp->p2 = pOp->p3; 000733 pOp->p3 = 0; 000734 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ 000735 }else if( pOp->opcode==OP_Rowid ){ 000736 #ifdef SQLITE_DEBUG 000737 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ 000738 printf("TRANSLATE OP_Rowid to OP_Sequence at %d\n", iStart); 000739 } 000740 #endif 000741 pOp->opcode = OP_Sequence; 000742 pOp->p1 = iAutoidxCur; 000743 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 000744 if( iAutoidxCur==0 ){ 000745 pOp->opcode = OP_Null; 000746 pOp->p3 = 0; 000747 } 000748 #endif 000749 } 000750 } 000751 } 000752 000753 /* 000754 ** Two routines for printing the content of an sqlite3_index_info 000755 ** structure. Used for testing and debugging only. If neither 000756 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 000757 ** are no-ops. 000758 */ 000759 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 000760 static void whereTraceIndexInfoInputs( 000761 sqlite3_index_info *p, /* The IndexInfo object */ 000762 Table *pTab /* The TABLE that is the virtual table */ 000763 ){ 000764 int i; 000765 if( (sqlite3WhereTrace & 0x10)==0 ) return; 000766 sqlite3DebugPrintf("sqlite3_index_info inputs for %s:\n", pTab->zName); 000767 for(i=0; i<p->nConstraint; i++){ 000768 sqlite3DebugPrintf( 000769 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 000770 i, 000771 p->aConstraint[i].iColumn, 000772 p->aConstraint[i].iTermOffset, 000773 p->aConstraint[i].op, 000774 p->aConstraint[i].usable, 000775 sqlite3_vtab_collation(p,i)); 000776 } 000777 for(i=0; i<p->nOrderBy; i++){ 000778 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 000779 i, 000780 p->aOrderBy[i].iColumn, 000781 p->aOrderBy[i].desc); 000782 } 000783 } 000784 static void whereTraceIndexInfoOutputs( 000785 sqlite3_index_info *p, /* The IndexInfo object */ 000786 Table *pTab /* The TABLE that is the virtual table */ 000787 ){ 000788 int i; 000789 if( (sqlite3WhereTrace & 0x10)==0 ) return; 000790 sqlite3DebugPrintf("sqlite3_index_info outputs for %s:\n", pTab->zName); 000791 for(i=0; i<p->nConstraint; i++){ 000792 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 000793 i, 000794 p->aConstraintUsage[i].argvIndex, 000795 p->aConstraintUsage[i].omit); 000796 } 000797 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 000798 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 000799 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 000800 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 000801 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 000802 } 000803 #else 000804 #define whereTraceIndexInfoInputs(A,B) 000805 #define whereTraceIndexInfoOutputs(A,B) 000806 #endif 000807 000808 /* 000809 ** We know that pSrc is an operand of an outer join. Return true if 000810 ** pTerm is a constraint that is compatible with that join. 000811 ** 000812 ** pTerm must be EP_OuterON if pSrc is the right operand of an 000813 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc 000814 ** is the left operand of a RIGHT join. 000815 ** 000816 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f 000817 ** for an example of a WHERE clause constraints that may not be used on 000818 ** the right table of a RIGHT JOIN because the constraint implies a 000819 ** not-NULL condition on the left table of the RIGHT JOIN. 000820 */ 000821 static int constraintCompatibleWithOuterJoin( 000822 const WhereTerm *pTerm, /* WHERE clause term to check */ 000823 const SrcItem *pSrc /* Table we are trying to access */ 000824 ){ 000825 assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */ 000826 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 000827 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 000828 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 000829 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 000830 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 000831 || pTerm->pExpr->w.iJoin != pSrc->iCursor 000832 ){ 000833 return 0; 000834 } 000835 if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0 000836 && ExprHasProperty(pTerm->pExpr, EP_InnerON) 000837 ){ 000838 return 0; 000839 } 000840 return 1; 000841 } 000842 000843 000844 000845 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 000846 /* 000847 ** Return TRUE if the WHERE clause term pTerm is of a form where it 000848 ** could be used with an index to access pSrc, assuming an appropriate 000849 ** index existed. 000850 */ 000851 static int termCanDriveIndex( 000852 const WhereTerm *pTerm, /* WHERE clause term to check */ 000853 const SrcItem *pSrc, /* Table we are trying to access */ 000854 const Bitmask notReady /* Tables in outer loops of the join */ 000855 ){ 000856 char aff; 000857 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 000858 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 000859 assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); 000860 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 000861 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 000862 ){ 000863 return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */ 000864 } 000865 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 000866 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 000867 if( pTerm->u.x.leftColumn<0 ) return 0; 000868 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 000869 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 000870 testcase( pTerm->pExpr->op==TK_IS ); 000871 return 1; 000872 } 000873 #endif 000874 000875 000876 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 000877 000878 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 000879 /* 000880 ** Argument pIdx represents an automatic index that the current statement 000881 ** will create and populate. Add an OP_Explain with text of the form: 000882 ** 000883 ** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>] 000884 ** 000885 ** This is only required if sqlite3_stmt_scanstatus() is enabled, to 000886 ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP 000887 ** values with. In order to avoid breaking legacy code and test cases, 000888 ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command. 000889 */ 000890 static void explainAutomaticIndex( 000891 Parse *pParse, 000892 Index *pIdx, /* Automatic index to explain */ 000893 int bPartial, /* True if pIdx is a partial index */ 000894 int *pAddrExplain /* OUT: Address of OP_Explain */ 000895 ){ 000896 if( IS_STMT_SCANSTATUS(pParse->db) && pParse->explain!=2 ){ 000897 Table *pTab = pIdx->pTable; 000898 const char *zSep = ""; 000899 char *zText = 0; 000900 int ii = 0; 000901 sqlite3_str *pStr = sqlite3_str_new(pParse->db); 000902 sqlite3_str_appendf(pStr,"CREATE AUTOMATIC INDEX ON %s(", pTab->zName); 000903 assert( pIdx->nColumn>1 ); 000904 assert( pIdx->aiColumn[pIdx->nColumn-1]==XN_ROWID ); 000905 for(ii=0; ii<(pIdx->nColumn-1); ii++){ 000906 const char *zName = 0; 000907 int iCol = pIdx->aiColumn[ii]; 000908 000909 zName = pTab->aCol[iCol].zCnName; 000910 sqlite3_str_appendf(pStr, "%s%s", zSep, zName); 000911 zSep = ", "; 000912 } 000913 zText = sqlite3_str_finish(pStr); 000914 if( zText==0 ){ 000915 sqlite3OomFault(pParse->db); 000916 }else{ 000917 *pAddrExplain = sqlite3VdbeExplain( 000918 pParse, 0, "%s)%s", zText, (bPartial ? " WHERE <expr>" : "") 000919 ); 000920 sqlite3_free(zText); 000921 } 000922 } 000923 } 000924 #else 000925 # define explainAutomaticIndex(a,b,c,d) 000926 #endif 000927 000928 /* 000929 ** Generate code to construct the Index object for an automatic index 000930 ** and to set up the WhereLevel object pLevel so that the code generator 000931 ** makes use of the automatic index. 000932 */ 000933 static SQLITE_NOINLINE void constructAutomaticIndex( 000934 Parse *pParse, /* The parsing context */ 000935 WhereClause *pWC, /* The WHERE clause */ 000936 const Bitmask notReady, /* Mask of cursors that are not available */ 000937 WhereLevel *pLevel /* Write new index here */ 000938 ){ 000939 int nKeyCol; /* Number of columns in the constructed index */ 000940 WhereTerm *pTerm; /* A single term of the WHERE clause */ 000941 WhereTerm *pWCEnd; /* End of pWC->a[] */ 000942 Index *pIdx; /* Object describing the transient index */ 000943 Vdbe *v; /* Prepared statement under construction */ 000944 int addrInit; /* Address of the initialization bypass jump */ 000945 Table *pTable; /* The table being indexed */ 000946 int addrTop; /* Top of the index fill loop */ 000947 int regRecord; /* Register holding an index record */ 000948 int n; /* Column counter */ 000949 int i; /* Loop counter */ 000950 int mxBitCol; /* Maximum column in pSrc->colUsed */ 000951 CollSeq *pColl; /* Collating sequence to on a column */ 000952 WhereLoop *pLoop; /* The Loop object */ 000953 char *zNotUsed; /* Extra space on the end of pIdx */ 000954 Bitmask idxCols; /* Bitmap of columns used for indexing */ 000955 Bitmask extraCols; /* Bitmap of additional columns */ 000956 u8 sentWarning = 0; /* True if a warning has been issued */ 000957 u8 useBloomFilter = 0; /* True to also add a Bloom filter */ 000958 Expr *pPartial = 0; /* Partial Index Expression */ 000959 int iContinue = 0; /* Jump here to skip excluded rows */ 000960 SrcList *pTabList; /* The complete FROM clause */ 000961 SrcItem *pSrc; /* The FROM clause term to get the next index */ 000962 int addrCounter = 0; /* Address where integer counter is initialized */ 000963 int regBase; /* Array of registers where record is assembled */ 000964 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 000965 int addrExp = 0; /* Address of OP_Explain */ 000966 #endif 000967 000968 /* Generate code to skip over the creation and initialization of the 000969 ** transient index on 2nd and subsequent iterations of the loop. */ 000970 v = pParse->pVdbe; 000971 assert( v!=0 ); 000972 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 000973 000974 /* Count the number of columns that will be added to the index 000975 ** and used to match WHERE clause constraints */ 000976 nKeyCol = 0; 000977 pTabList = pWC->pWInfo->pTabList; 000978 pSrc = &pTabList->a[pLevel->iFrom]; 000979 pTable = pSrc->pTab; 000980 pWCEnd = &pWC->a[pWC->nTerm]; 000981 pLoop = pLevel->pWLoop; 000982 idxCols = 0; 000983 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 000984 Expr *pExpr = pTerm->pExpr; 000985 /* Make the automatic index a partial index if there are terms in the 000986 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 000987 ** rows of the target table (pSrc) that can be used. */ 000988 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 000989 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, pLevel->iFrom, 0) 000990 ){ 000991 pPartial = sqlite3ExprAnd(pParse, pPartial, 000992 sqlite3ExprDup(pParse->db, pExpr, 0)); 000993 } 000994 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 000995 int iCol; 000996 Bitmask cMask; 000997 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 000998 iCol = pTerm->u.x.leftColumn; 000999 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 001000 testcase( iCol==BMS ); 001001 testcase( iCol==BMS-1 ); 001002 if( !sentWarning ){ 001003 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 001004 "automatic index on %s(%s)", pTable->zName, 001005 pTable->aCol[iCol].zCnName); 001006 sentWarning = 1; 001007 } 001008 if( (idxCols & cMask)==0 ){ 001009 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 001010 goto end_auto_index_create; 001011 } 001012 pLoop->aLTerm[nKeyCol++] = pTerm; 001013 idxCols |= cMask; 001014 } 001015 } 001016 } 001017 assert( nKeyCol>0 || pParse->db->mallocFailed ); 001018 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 001019 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 001020 | WHERE_AUTO_INDEX; 001021 001022 /* Count the number of additional columns needed to create a 001023 ** covering index. A "covering index" is an index that contains all 001024 ** columns that are needed by the query. With a covering index, the 001025 ** original table never needs to be accessed. Automatic indices must 001026 ** be a covering index because the index will not be updated if the 001027 ** original table changes and the index and table cannot both be used 001028 ** if they go out of sync. 001029 */ 001030 if( IsView(pTable) ){ 001031 extraCols = ALLBITS & ~idxCols; 001032 }else{ 001033 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 001034 } 001035 mxBitCol = MIN(BMS-1,pTable->nCol); 001036 testcase( pTable->nCol==BMS-1 ); 001037 testcase( pTable->nCol==BMS-2 ); 001038 for(i=0; i<mxBitCol; i++){ 001039 if( extraCols & MASKBIT(i) ) nKeyCol++; 001040 } 001041 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 001042 nKeyCol += pTable->nCol - BMS + 1; 001043 } 001044 001045 /* Construct the Index object to describe this index */ 001046 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 001047 if( pIdx==0 ) goto end_auto_index_create; 001048 pLoop->u.btree.pIndex = pIdx; 001049 pIdx->zName = "auto-index"; 001050 pIdx->pTable = pTable; 001051 n = 0; 001052 idxCols = 0; 001053 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 001054 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 001055 int iCol; 001056 Bitmask cMask; 001057 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 001058 iCol = pTerm->u.x.leftColumn; 001059 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 001060 testcase( iCol==BMS-1 ); 001061 testcase( iCol==BMS ); 001062 if( (idxCols & cMask)==0 ){ 001063 Expr *pX = pTerm->pExpr; 001064 idxCols |= cMask; 001065 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 001066 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 001067 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 001068 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 001069 n++; 001070 if( ALWAYS(pX->pLeft!=0) 001071 && sqlite3ExprAffinity(pX->pLeft)!=SQLITE_AFF_TEXT 001072 ){ 001073 /* TUNING: only use a Bloom filter on an automatic index 001074 ** if one or more key columns has the ability to hold numeric 001075 ** values, since strings all have the same hash in the Bloom 001076 ** filter implementation and hence a Bloom filter on a text column 001077 ** is not usually helpful. */ 001078 useBloomFilter = 1; 001079 } 001080 } 001081 } 001082 } 001083 assert( (u32)n==pLoop->u.btree.nEq ); 001084 001085 /* Add additional columns needed to make the automatic index into 001086 ** a covering index */ 001087 for(i=0; i<mxBitCol; i++){ 001088 if( extraCols & MASKBIT(i) ){ 001089 pIdx->aiColumn[n] = i; 001090 pIdx->azColl[n] = sqlite3StrBINARY; 001091 n++; 001092 } 001093 } 001094 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 001095 for(i=BMS-1; i<pTable->nCol; i++){ 001096 pIdx->aiColumn[n] = i; 001097 pIdx->azColl[n] = sqlite3StrBINARY; 001098 n++; 001099 } 001100 } 001101 assert( n==nKeyCol ); 001102 pIdx->aiColumn[n] = XN_ROWID; 001103 pIdx->azColl[n] = sqlite3StrBINARY; 001104 001105 /* Create the automatic index */ 001106 explainAutomaticIndex(pParse, pIdx, pPartial!=0, &addrExp); 001107 assert( pLevel->iIdxCur>=0 ); 001108 pLevel->iIdxCur = pParse->nTab++; 001109 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 001110 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 001111 VdbeComment((v, "for %s", pTable->zName)); 001112 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) && useBloomFilter ){ 001113 sqlite3WhereExplainBloomFilter(pParse, pWC->pWInfo, pLevel); 001114 pLevel->regFilter = ++pParse->nMem; 001115 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 001116 } 001117 001118 /* Fill the automatic index with content */ 001119 assert( pSrc == &pWC->pWInfo->pTabList->a[pLevel->iFrom] ); 001120 if( pSrc->fg.viaCoroutine ){ 001121 int regYield = pSrc->regReturn; 001122 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 001123 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pSrc->addrFillSub); 001124 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 001125 VdbeCoverage(v); 001126 VdbeComment((v, "next row of %s", pSrc->pTab->zName)); 001127 }else{ 001128 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 001129 } 001130 if( pPartial ){ 001131 iContinue = sqlite3VdbeMakeLabel(pParse); 001132 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 001133 pLoop->wsFlags |= WHERE_PARTIALIDX; 001134 } 001135 regRecord = sqlite3GetTempReg(pParse); 001136 regBase = sqlite3GenerateIndexKey( 001137 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 001138 ); 001139 if( pLevel->regFilter ){ 001140 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 001141 regBase, pLoop->u.btree.nEq); 001142 } 001143 sqlite3VdbeScanStatusCounters(v, addrExp, addrExp, sqlite3VdbeCurrentAddr(v)); 001144 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 001145 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 001146 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 001147 if( pSrc->fg.viaCoroutine ){ 001148 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 001149 testcase( pParse->db->mallocFailed ); 001150 assert( pLevel->iIdxCur>0 ); 001151 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 001152 pSrc->regResult, pLevel->iIdxCur); 001153 sqlite3VdbeGoto(v, addrTop); 001154 pSrc->fg.viaCoroutine = 0; 001155 }else{ 001156 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 001157 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 001158 } 001159 sqlite3VdbeJumpHere(v, addrTop); 001160 sqlite3ReleaseTempReg(pParse, regRecord); 001161 001162 /* Jump here when skipping the initialization */ 001163 sqlite3VdbeJumpHere(v, addrInit); 001164 sqlite3VdbeScanStatusRange(v, addrExp, addrExp, -1); 001165 001166 end_auto_index_create: 001167 sqlite3ExprDelete(pParse->db, pPartial); 001168 } 001169 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 001170 001171 /* 001172 ** Generate bytecode that will initialize a Bloom filter that is appropriate 001173 ** for pLevel. 001174 ** 001175 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 001176 ** flag set, initialize a Bloomfilter for them as well. Except don't do 001177 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 001178 ** been turned off. 001179 ** 001180 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 001181 ** from the loop, but the regFilter value is set to a register that implements 001182 ** the Bloom filter. When regFilter is positive, the 001183 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 001184 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 001185 ** no matching rows exist. 001186 ** 001187 ** This routine may only be called if it has previously been determined that 001188 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 001189 ** is set. 001190 */ 001191 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 001192 WhereInfo *pWInfo, /* The WHERE clause */ 001193 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 001194 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 001195 Bitmask notReady /* Loops that are not ready */ 001196 ){ 001197 int addrOnce; /* Address of opening OP_Once */ 001198 int addrTop; /* Address of OP_Rewind */ 001199 int addrCont; /* Jump here to skip a row */ 001200 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 001201 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 001202 Parse *pParse = pWInfo->pParse; /* Parsing context */ 001203 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 001204 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 001205 int iCur; /* Cursor for table getting the filter */ 001206 IndexedExpr *saved_pIdxEpr; /* saved copy of Parse.pIdxEpr */ 001207 IndexedExpr *saved_pIdxPartExpr; /* saved copy of Parse.pIdxPartExpr */ 001208 001209 saved_pIdxEpr = pParse->pIdxEpr; 001210 saved_pIdxPartExpr = pParse->pIdxPartExpr; 001211 pParse->pIdxEpr = 0; 001212 pParse->pIdxPartExpr = 0; 001213 001214 assert( pLoop!=0 ); 001215 assert( v!=0 ); 001216 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 001217 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ); 001218 001219 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 001220 do{ 001221 const SrcList *pTabList; 001222 const SrcItem *pItem; 001223 const Table *pTab; 001224 u64 sz; 001225 int iSrc; 001226 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 001227 addrCont = sqlite3VdbeMakeLabel(pParse); 001228 iCur = pLevel->iTabCur; 001229 pLevel->regFilter = ++pParse->nMem; 001230 001231 /* The Bloom filter is a Blob held in a register. Initialize it 001232 ** to zero-filled blob of at least 80K bits, but maybe more if the 001233 ** estimated size of the table is larger. We could actually 001234 ** measure the size of the table at run-time using OP_Count with 001235 ** P3==1 and use that value to initialize the blob. But that makes 001236 ** testing complicated. By basing the blob size on the value in the 001237 ** sqlite_stat1 table, testing is much easier. 001238 */ 001239 pTabList = pWInfo->pTabList; 001240 iSrc = pLevel->iFrom; 001241 pItem = &pTabList->a[iSrc]; 001242 assert( pItem!=0 ); 001243 pTab = pItem->pTab; 001244 assert( pTab!=0 ); 001245 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 001246 if( sz<10000 ){ 001247 sz = 10000; 001248 }else if( sz>10000000 ){ 001249 sz = 10000000; 001250 } 001251 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 001252 001253 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 001254 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 001255 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 001256 Expr *pExpr = pTerm->pExpr; 001257 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 001258 && sqlite3ExprIsSingleTableConstraint(pExpr, pTabList, iSrc, 0) 001259 ){ 001260 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 001261 } 001262 } 001263 if( pLoop->wsFlags & WHERE_IPK ){ 001264 int r1 = sqlite3GetTempReg(pParse); 001265 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 001266 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 001267 sqlite3ReleaseTempReg(pParse, r1); 001268 }else{ 001269 Index *pIdx = pLoop->u.btree.pIndex; 001270 int n = pLoop->u.btree.nEq; 001271 int r1 = sqlite3GetTempRange(pParse, n); 001272 int jj; 001273 for(jj=0; jj<n; jj++){ 001274 assert( pIdx->pTable==pItem->pTab ); 001275 sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iCur, jj, r1+jj); 001276 } 001277 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 001278 sqlite3ReleaseTempRange(pParse, r1, n); 001279 } 001280 sqlite3VdbeResolveLabel(v, addrCont); 001281 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 001282 VdbeCoverage(v); 001283 sqlite3VdbeJumpHere(v, addrTop); 001284 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 001285 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 001286 while( ++iLevel < pWInfo->nLevel ){ 001287 const SrcItem *pTabItem; 001288 pLevel = &pWInfo->a[iLevel]; 001289 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 001290 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 001291 pLoop = pLevel->pWLoop; 001292 if( NEVER(pLoop==0) ) continue; 001293 if( pLoop->prereq & notReady ) continue; 001294 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 001295 ==WHERE_BLOOMFILTER 001296 ){ 001297 /* This is a candidate for bloom-filter pull-down (early evaluation). 001298 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 001299 ** not able to do early evaluation of bloom filters that make use of 001300 ** the IN operator */ 001301 break; 001302 } 001303 } 001304 }while( iLevel < pWInfo->nLevel ); 001305 sqlite3VdbeJumpHere(v, addrOnce); 001306 pParse->pIdxEpr = saved_pIdxEpr; 001307 pParse->pIdxPartExpr = saved_pIdxPartExpr; 001308 } 001309 001310 001311 #ifndef SQLITE_OMIT_VIRTUALTABLE 001312 /* 001313 ** Allocate and populate an sqlite3_index_info structure. It is the 001314 ** responsibility of the caller to eventually release the structure 001315 ** by passing the pointer returned by this function to freeIndexInfo(). 001316 */ 001317 static sqlite3_index_info *allocateIndexInfo( 001318 WhereInfo *pWInfo, /* The WHERE clause */ 001319 WhereClause *pWC, /* The WHERE clause being analyzed */ 001320 Bitmask mUnusable, /* Ignore terms with these prereqs */ 001321 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 001322 u16 *pmNoOmit /* Mask of terms not to omit */ 001323 ){ 001324 int i, j; 001325 int nTerm; 001326 Parse *pParse = pWInfo->pParse; 001327 struct sqlite3_index_constraint *pIdxCons; 001328 struct sqlite3_index_orderby *pIdxOrderBy; 001329 struct sqlite3_index_constraint_usage *pUsage; 001330 struct HiddenIndexInfo *pHidden; 001331 WhereTerm *pTerm; 001332 int nOrderBy; 001333 sqlite3_index_info *pIdxInfo; 001334 u16 mNoOmit = 0; 001335 const Table *pTab; 001336 int eDistinct = 0; 001337 ExprList *pOrderBy = pWInfo->pOrderBy; 001338 001339 assert( pSrc!=0 ); 001340 pTab = pSrc->pTab; 001341 assert( pTab!=0 ); 001342 assert( IsVirtual(pTab) ); 001343 001344 /* Find all WHERE clause constraints referring to this virtual table. 001345 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 001346 ** terms found. 001347 */ 001348 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 001349 pTerm->wtFlags &= ~TERM_OK; 001350 if( pTerm->leftCursor != pSrc->iCursor ) continue; 001351 if( pTerm->prereqRight & mUnusable ) continue; 001352 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 001353 testcase( pTerm->eOperator & WO_IN ); 001354 testcase( pTerm->eOperator & WO_ISNULL ); 001355 testcase( pTerm->eOperator & WO_IS ); 001356 testcase( pTerm->eOperator & WO_ALL ); 001357 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 001358 if( pTerm->wtFlags & TERM_VNULL ) continue; 001359 001360 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 001361 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 001362 assert( pTerm->u.x.leftColumn<pTab->nCol ); 001363 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 001364 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 001365 ){ 001366 continue; 001367 } 001368 nTerm++; 001369 pTerm->wtFlags |= TERM_OK; 001370 } 001371 001372 /* If the ORDER BY clause contains only columns in the current 001373 ** virtual table then allocate space for the aOrderBy part of 001374 ** the sqlite3_index_info structure. 001375 */ 001376 nOrderBy = 0; 001377 if( pOrderBy ){ 001378 int n = pOrderBy->nExpr; 001379 for(i=0; i<n; i++){ 001380 Expr *pExpr = pOrderBy->a[i].pExpr; 001381 Expr *pE2; 001382 001383 /* Skip over constant terms in the ORDER BY clause */ 001384 if( sqlite3ExprIsConstant(0, pExpr) ){ 001385 continue; 001386 } 001387 001388 /* Virtual tables are unable to deal with NULLS FIRST */ 001389 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 001390 001391 /* First case - a direct column references without a COLLATE operator */ 001392 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 001393 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 001394 continue; 001395 } 001396 001397 /* 2nd case - a column reference with a COLLATE operator. Only match 001398 ** of the COLLATE operator matches the collation of the column. */ 001399 if( pExpr->op==TK_COLLATE 001400 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 001401 && pE2->iTable==pSrc->iCursor 001402 ){ 001403 const char *zColl; /* The collating sequence name */ 001404 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001405 assert( pExpr->u.zToken!=0 ); 001406 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 001407 pExpr->iColumn = pE2->iColumn; 001408 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 001409 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 001410 if( zColl==0 ) zColl = sqlite3StrBINARY; 001411 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 001412 } 001413 001414 /* No matches cause a break out of the loop */ 001415 break; 001416 } 001417 if( i==n ){ 001418 nOrderBy = n; 001419 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) && !pSrc->fg.rowidUsed ){ 001420 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 001421 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 001422 eDistinct = 1; 001423 } 001424 } 001425 } 001426 001427 /* Allocate the sqlite3_index_info structure 001428 */ 001429 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 001430 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 001431 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 001432 + sizeof(sqlite3_value*)*nTerm ); 001433 if( pIdxInfo==0 ){ 001434 sqlite3ErrorMsg(pParse, "out of memory"); 001435 return 0; 001436 } 001437 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 001438 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 001439 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 001440 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 001441 pIdxInfo->aConstraint = pIdxCons; 001442 pIdxInfo->aOrderBy = pIdxOrderBy; 001443 pIdxInfo->aConstraintUsage = pUsage; 001444 pHidden->pWC = pWC; 001445 pHidden->pParse = pParse; 001446 pHidden->eDistinct = eDistinct; 001447 pHidden->mIn = 0; 001448 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 001449 u16 op; 001450 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 001451 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 001452 pIdxCons[j].iTermOffset = i; 001453 op = pTerm->eOperator & WO_ALL; 001454 if( op==WO_IN ){ 001455 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 001456 pHidden->mIn |= SMASKBIT32(j); 001457 } 001458 op = WO_EQ; 001459 } 001460 if( op==WO_AUX ){ 001461 pIdxCons[j].op = pTerm->eMatchOp; 001462 }else if( op & (WO_ISNULL|WO_IS) ){ 001463 if( op==WO_ISNULL ){ 001464 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 001465 }else{ 001466 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 001467 } 001468 }else{ 001469 pIdxCons[j].op = (u8)op; 001470 /* The direct assignment in the previous line is possible only because 001471 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 001472 ** following asserts verify this fact. */ 001473 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 001474 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 001475 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 001476 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 001477 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 001478 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 001479 001480 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 001481 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 001482 ){ 001483 testcase( j!=i ); 001484 if( j<16 ) mNoOmit |= (1 << j); 001485 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 001486 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 001487 } 001488 } 001489 001490 j++; 001491 } 001492 assert( j==nTerm ); 001493 pIdxInfo->nConstraint = j; 001494 for(i=j=0; i<nOrderBy; i++){ 001495 Expr *pExpr = pOrderBy->a[i].pExpr; 001496 if( sqlite3ExprIsConstant(0, pExpr) ) continue; 001497 assert( pExpr->op==TK_COLUMN 001498 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 001499 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 001500 pIdxOrderBy[j].iColumn = pExpr->iColumn; 001501 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 001502 j++; 001503 } 001504 pIdxInfo->nOrderBy = j; 001505 001506 *pmNoOmit = mNoOmit; 001507 return pIdxInfo; 001508 } 001509 001510 /* 001511 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 001512 ** and possibly modified by xBestIndex methods. 001513 */ 001514 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 001515 HiddenIndexInfo *pHidden; 001516 int i; 001517 assert( pIdxInfo!=0 ); 001518 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 001519 assert( pHidden->pParse!=0 ); 001520 assert( pHidden->pParse->db==db ); 001521 for(i=0; i<pIdxInfo->nConstraint; i++){ 001522 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 001523 pHidden->aRhs[i] = 0; 001524 } 001525 sqlite3DbFree(db, pIdxInfo); 001526 } 001527 001528 /* 001529 ** The table object reference passed as the second argument to this function 001530 ** must represent a virtual table. This function invokes the xBestIndex() 001531 ** method of the virtual table with the sqlite3_index_info object that 001532 ** comes in as the 3rd argument to this function. 001533 ** 001534 ** If an error occurs, pParse is populated with an error message and an 001535 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 001536 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 001537 ** the current configuration of "unusable" flags in sqlite3_index_info can 001538 ** not result in a valid plan. 001539 ** 001540 ** Whether or not an error is returned, it is the responsibility of the 001541 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 001542 ** that this is required. 001543 */ 001544 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 001545 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 001546 int rc; 001547 001548 whereTraceIndexInfoInputs(p, pTab); 001549 pParse->db->nSchemaLock++; 001550 rc = pVtab->pModule->xBestIndex(pVtab, p); 001551 pParse->db->nSchemaLock--; 001552 whereTraceIndexInfoOutputs(p, pTab); 001553 001554 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 001555 if( rc==SQLITE_NOMEM ){ 001556 sqlite3OomFault(pParse->db); 001557 }else if( !pVtab->zErrMsg ){ 001558 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 001559 }else{ 001560 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 001561 } 001562 } 001563 if( pTab->u.vtab.p->bAllSchemas ){ 001564 sqlite3VtabUsesAllSchemas(pParse); 001565 } 001566 sqlite3_free(pVtab->zErrMsg); 001567 pVtab->zErrMsg = 0; 001568 return rc; 001569 } 001570 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 001571 001572 #ifdef SQLITE_ENABLE_STAT4 001573 /* 001574 ** Estimate the location of a particular key among all keys in an 001575 ** index. Store the results in aStat as follows: 001576 ** 001577 ** aStat[0] Est. number of rows less than pRec 001578 ** aStat[1] Est. number of rows equal to pRec 001579 ** 001580 ** Return the index of the sample that is the smallest sample that 001581 ** is greater than or equal to pRec. Note that this index is not an index 001582 ** into the aSample[] array - it is an index into a virtual set of samples 001583 ** based on the contents of aSample[] and the number of fields in record 001584 ** pRec. 001585 */ 001586 static int whereKeyStats( 001587 Parse *pParse, /* Database connection */ 001588 Index *pIdx, /* Index to consider domain of */ 001589 UnpackedRecord *pRec, /* Vector of values to consider */ 001590 int roundUp, /* Round up if true. Round down if false */ 001591 tRowcnt *aStat /* OUT: stats written here */ 001592 ){ 001593 IndexSample *aSample = pIdx->aSample; 001594 int iCol; /* Index of required stats in anEq[] etc. */ 001595 int i; /* Index of first sample >= pRec */ 001596 int iSample; /* Smallest sample larger than or equal to pRec */ 001597 int iMin = 0; /* Smallest sample not yet tested */ 001598 int iTest; /* Next sample to test */ 001599 int res; /* Result of comparison operation */ 001600 int nField; /* Number of fields in pRec */ 001601 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 001602 001603 #ifndef SQLITE_DEBUG 001604 UNUSED_PARAMETER( pParse ); 001605 #endif 001606 assert( pRec!=0 ); 001607 assert( pIdx->nSample>0 ); 001608 assert( pRec->nField>0 ); 001609 001610 001611 /* Do a binary search to find the first sample greater than or equal 001612 ** to pRec. If pRec contains a single field, the set of samples to search 001613 ** is simply the aSample[] array. If the samples in aSample[] contain more 001614 ** than one fields, all fields following the first are ignored. 001615 ** 001616 ** If pRec contains N fields, where N is more than one, then as well as the 001617 ** samples in aSample[] (truncated to N fields), the search also has to 001618 ** consider prefixes of those samples. For example, if the set of samples 001619 ** in aSample is: 001620 ** 001621 ** aSample[0] = (a, 5) 001622 ** aSample[1] = (a, 10) 001623 ** aSample[2] = (b, 5) 001624 ** aSample[3] = (c, 100) 001625 ** aSample[4] = (c, 105) 001626 ** 001627 ** Then the search space should ideally be the samples above and the 001628 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 001629 ** the code actually searches this set: 001630 ** 001631 ** 0: (a) 001632 ** 1: (a, 5) 001633 ** 2: (a, 10) 001634 ** 3: (a, 10) 001635 ** 4: (b) 001636 ** 5: (b, 5) 001637 ** 6: (c) 001638 ** 7: (c, 100) 001639 ** 8: (c, 105) 001640 ** 9: (c, 105) 001641 ** 001642 ** For each sample in the aSample[] array, N samples are present in the 001643 ** effective sample array. In the above, samples 0 and 1 are based on 001644 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 001645 ** 001646 ** Often, sample i of each block of N effective samples has (i+1) fields. 001647 ** Except, each sample may be extended to ensure that it is greater than or 001648 ** equal to the previous sample in the array. For example, in the above, 001649 ** sample 2 is the first sample of a block of N samples, so at first it 001650 ** appears that it should be 1 field in size. However, that would make it 001651 ** smaller than sample 1, so the binary search would not work. As a result, 001652 ** it is extended to two fields. The duplicates that this creates do not 001653 ** cause any problems. 001654 */ 001655 if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ 001656 nField = pIdx->nKeyCol; 001657 }else{ 001658 nField = pIdx->nColumn; 001659 } 001660 nField = MIN(pRec->nField, nField); 001661 iCol = 0; 001662 iSample = pIdx->nSample * nField; 001663 do{ 001664 int iSamp; /* Index in aSample[] of test sample */ 001665 int n; /* Number of fields in test sample */ 001666 001667 iTest = (iMin+iSample)/2; 001668 iSamp = iTest / nField; 001669 if( iSamp>0 ){ 001670 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 001671 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 001672 ** fields that is greater than the previous effective sample. */ 001673 for(n=(iTest % nField) + 1; n<nField; n++){ 001674 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 001675 } 001676 }else{ 001677 n = iTest + 1; 001678 } 001679 001680 pRec->nField = n; 001681 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 001682 if( res<0 ){ 001683 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 001684 iMin = iTest+1; 001685 }else if( res==0 && n<nField ){ 001686 iLower = aSample[iSamp].anLt[n-1]; 001687 iMin = iTest+1; 001688 res = -1; 001689 }else{ 001690 iSample = iTest; 001691 iCol = n-1; 001692 } 001693 }while( res && iMin<iSample ); 001694 i = iSample / nField; 001695 001696 #ifdef SQLITE_DEBUG 001697 /* The following assert statements check that the binary search code 001698 ** above found the right answer. This block serves no purpose other 001699 ** than to invoke the asserts. */ 001700 if( pParse->db->mallocFailed==0 ){ 001701 if( res==0 ){ 001702 /* If (res==0) is true, then pRec must be equal to sample i. */ 001703 assert( i<pIdx->nSample ); 001704 assert( iCol==nField-1 ); 001705 pRec->nField = nField; 001706 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 001707 || pParse->db->mallocFailed 001708 ); 001709 }else{ 001710 /* Unless i==pIdx->nSample, indicating that pRec is larger than 001711 ** all samples in the aSample[] array, pRec must be smaller than the 001712 ** (iCol+1) field prefix of sample i. */ 001713 assert( i<=pIdx->nSample && i>=0 ); 001714 pRec->nField = iCol+1; 001715 assert( i==pIdx->nSample 001716 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 001717 || pParse->db->mallocFailed ); 001718 001719 /* if i==0 and iCol==0, then record pRec is smaller than all samples 001720 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 001721 ** be greater than or equal to the (iCol) field prefix of sample i. 001722 ** If (i>0), then pRec must also be greater than sample (i-1). */ 001723 if( iCol>0 ){ 001724 pRec->nField = iCol; 001725 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 001726 || pParse->db->mallocFailed || CORRUPT_DB ); 001727 } 001728 if( i>0 ){ 001729 pRec->nField = nField; 001730 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 001731 || pParse->db->mallocFailed || CORRUPT_DB ); 001732 } 001733 } 001734 } 001735 #endif /* ifdef SQLITE_DEBUG */ 001736 001737 if( res==0 ){ 001738 /* Record pRec is equal to sample i */ 001739 assert( iCol==nField-1 ); 001740 aStat[0] = aSample[i].anLt[iCol]; 001741 aStat[1] = aSample[i].anEq[iCol]; 001742 }else{ 001743 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 001744 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 001745 ** is larger than all samples in the array. */ 001746 tRowcnt iUpper, iGap; 001747 if( i>=pIdx->nSample ){ 001748 iUpper = pIdx->nRowEst0; 001749 }else{ 001750 iUpper = aSample[i].anLt[iCol]; 001751 } 001752 001753 if( iLower>=iUpper ){ 001754 iGap = 0; 001755 }else{ 001756 iGap = iUpper - iLower; 001757 } 001758 if( roundUp ){ 001759 iGap = (iGap*2)/3; 001760 }else{ 001761 iGap = iGap/3; 001762 } 001763 aStat[0] = iLower + iGap; 001764 aStat[1] = pIdx->aAvgEq[nField-1]; 001765 } 001766 001767 /* Restore the pRec->nField value before returning. */ 001768 pRec->nField = nField; 001769 return i; 001770 } 001771 #endif /* SQLITE_ENABLE_STAT4 */ 001772 001773 /* 001774 ** If it is not NULL, pTerm is a term that provides an upper or lower 001775 ** bound on a range scan. Without considering pTerm, it is estimated 001776 ** that the scan will visit nNew rows. This function returns the number 001777 ** estimated to be visited after taking pTerm into account. 001778 ** 001779 ** If the user explicitly specified a likelihood() value for this term, 001780 ** then the return value is the likelihood multiplied by the number of 001781 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 001782 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 001783 */ 001784 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 001785 LogEst nRet = nNew; 001786 if( pTerm ){ 001787 if( pTerm->truthProb<=0 ){ 001788 nRet += pTerm->truthProb; 001789 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 001790 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 001791 } 001792 } 001793 return nRet; 001794 } 001795 001796 001797 #ifdef SQLITE_ENABLE_STAT4 001798 /* 001799 ** Return the affinity for a single column of an index. 001800 */ 001801 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 001802 assert( iCol>=0 && iCol<pIdx->nColumn ); 001803 if( !pIdx->zColAff ){ 001804 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 001805 } 001806 assert( pIdx->zColAff[iCol]!=0 ); 001807 return pIdx->zColAff[iCol]; 001808 } 001809 #endif 001810 001811 001812 #ifdef SQLITE_ENABLE_STAT4 001813 /* 001814 ** This function is called to estimate the number of rows visited by a 001815 ** range-scan on a skip-scan index. For example: 001816 ** 001817 ** CREATE INDEX i1 ON t1(a, b, c); 001818 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 001819 ** 001820 ** Value pLoop->nOut is currently set to the estimated number of rows 001821 ** visited for scanning (a=? AND b=?). This function reduces that estimate 001822 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 001823 ** on the stat4 data for the index. this scan will be performed multiple 001824 ** times (once for each (a,b) combination that matches a=?) is dealt with 001825 ** by the caller. 001826 ** 001827 ** It does this by scanning through all stat4 samples, comparing values 001828 ** extracted from pLower and pUpper with the corresponding column in each 001829 ** sample. If L and U are the number of samples found to be less than or 001830 ** equal to the values extracted from pLower and pUpper respectively, and 001831 ** N is the total number of samples, the pLoop->nOut value is adjusted 001832 ** as follows: 001833 ** 001834 ** nOut = nOut * ( min(U - L, 1) / N ) 001835 ** 001836 ** If pLower is NULL, or a value cannot be extracted from the term, L is 001837 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 001838 ** U is set to N. 001839 ** 001840 ** Normally, this function sets *pbDone to 1 before returning. However, 001841 ** if no value can be extracted from either pLower or pUpper (and so the 001842 ** estimate of the number of rows delivered remains unchanged), *pbDone 001843 ** is left as is. 001844 ** 001845 ** If an error occurs, an SQLite error code is returned. Otherwise, 001846 ** SQLITE_OK. 001847 */ 001848 static int whereRangeSkipScanEst( 001849 Parse *pParse, /* Parsing & code generating context */ 001850 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 001851 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 001852 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 001853 int *pbDone /* Set to true if at least one expr. value extracted */ 001854 ){ 001855 Index *p = pLoop->u.btree.pIndex; 001856 int nEq = pLoop->u.btree.nEq; 001857 sqlite3 *db = pParse->db; 001858 int nLower = -1; 001859 int nUpper = p->nSample+1; 001860 int rc = SQLITE_OK; 001861 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 001862 CollSeq *pColl; 001863 001864 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 001865 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 001866 sqlite3_value *pVal = 0; /* Value extracted from record */ 001867 001868 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 001869 if( pLower ){ 001870 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 001871 nLower = 0; 001872 } 001873 if( pUpper && rc==SQLITE_OK ){ 001874 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 001875 nUpper = p2 ? 0 : p->nSample; 001876 } 001877 001878 if( p1 || p2 ){ 001879 int i; 001880 int nDiff; 001881 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 001882 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 001883 if( rc==SQLITE_OK && p1 ){ 001884 int res = sqlite3MemCompare(p1, pVal, pColl); 001885 if( res>=0 ) nLower++; 001886 } 001887 if( rc==SQLITE_OK && p2 ){ 001888 int res = sqlite3MemCompare(p2, pVal, pColl); 001889 if( res>=0 ) nUpper++; 001890 } 001891 } 001892 nDiff = (nUpper - nLower); 001893 if( nDiff<=0 ) nDiff = 1; 001894 001895 /* If there is both an upper and lower bound specified, and the 001896 ** comparisons indicate that they are close together, use the fallback 001897 ** method (assume that the scan visits 1/64 of the rows) for estimating 001898 ** the number of rows visited. Otherwise, estimate the number of rows 001899 ** using the method described in the header comment for this function. */ 001900 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 001901 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 001902 pLoop->nOut -= nAdjust; 001903 *pbDone = 1; 001904 WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 001905 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 001906 } 001907 001908 }else{ 001909 assert( *pbDone==0 ); 001910 } 001911 001912 sqlite3ValueFree(p1); 001913 sqlite3ValueFree(p2); 001914 sqlite3ValueFree(pVal); 001915 001916 return rc; 001917 } 001918 #endif /* SQLITE_ENABLE_STAT4 */ 001919 001920 /* 001921 ** This function is used to estimate the number of rows that will be visited 001922 ** by scanning an index for a range of values. The range may have an upper 001923 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 001924 ** and lower bounds are represented by pLower and pUpper respectively. For 001925 ** example, assuming that index p is on t1(a): 001926 ** 001927 ** ... FROM t1 WHERE a > ? AND a < ? ... 001928 ** |_____| |_____| 001929 ** | | 001930 ** pLower pUpper 001931 ** 001932 ** If either of the upper or lower bound is not present, then NULL is passed in 001933 ** place of the corresponding WhereTerm. 001934 ** 001935 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 001936 ** column subject to the range constraint. Or, equivalently, the number of 001937 ** equality constraints optimized by the proposed index scan. For example, 001938 ** assuming index p is on t1(a, b), and the SQL query is: 001939 ** 001940 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 001941 ** 001942 ** then nEq is set to 1 (as the range restricted column, b, is the second 001943 ** left-most column of the index). Or, if the query is: 001944 ** 001945 ** ... FROM t1 WHERE a > ? AND a < ? ... 001946 ** 001947 ** then nEq is set to 0. 001948 ** 001949 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 001950 ** number of rows that the index scan is expected to visit without 001951 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 001952 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 001953 ** to account for the range constraints pLower and pUpper. 001954 ** 001955 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 001956 ** used, a single range inequality reduces the search space by a factor of 4. 001957 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 001958 ** rows visited by a factor of 64. 001959 */ 001960 static int whereRangeScanEst( 001961 Parse *pParse, /* Parsing & code generating context */ 001962 WhereLoopBuilder *pBuilder, 001963 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 001964 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 001965 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 001966 ){ 001967 int rc = SQLITE_OK; 001968 int nOut = pLoop->nOut; 001969 LogEst nNew; 001970 001971 #ifdef SQLITE_ENABLE_STAT4 001972 Index *p = pLoop->u.btree.pIndex; 001973 int nEq = pLoop->u.btree.nEq; 001974 001975 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 001976 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 001977 ){ 001978 if( nEq==pBuilder->nRecValid ){ 001979 UnpackedRecord *pRec = pBuilder->pRec; 001980 tRowcnt a[2]; 001981 int nBtm = pLoop->u.btree.nBtm; 001982 int nTop = pLoop->u.btree.nTop; 001983 001984 /* Variable iLower will be set to the estimate of the number of rows in 001985 ** the index that are less than the lower bound of the range query. The 001986 ** lower bound being the concatenation of $P and $L, where $P is the 001987 ** key-prefix formed by the nEq values matched against the nEq left-most 001988 ** columns of the index, and $L is the value in pLower. 001989 ** 001990 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 001991 ** is not a simple variable or literal value), the lower bound of the 001992 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 001993 ** if $L is available, whereKeyStats() is called for both ($P) and 001994 ** ($P:$L) and the larger of the two returned values is used. 001995 ** 001996 ** Similarly, iUpper is to be set to the estimate of the number of rows 001997 ** less than the upper bound of the range query. Where the upper bound 001998 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 001999 ** of iUpper are requested of whereKeyStats() and the smaller used. 002000 ** 002001 ** The number of rows between the two bounds is then just iUpper-iLower. 002002 */ 002003 tRowcnt iLower; /* Rows less than the lower bound */ 002004 tRowcnt iUpper; /* Rows less than the upper bound */ 002005 int iLwrIdx = -2; /* aSample[] for the lower bound */ 002006 int iUprIdx = -1; /* aSample[] for the upper bound */ 002007 002008 if( pRec ){ 002009 testcase( pRec->nField!=pBuilder->nRecValid ); 002010 pRec->nField = pBuilder->nRecValid; 002011 } 002012 /* Determine iLower and iUpper using ($P) only. */ 002013 if( nEq==0 ){ 002014 iLower = 0; 002015 iUpper = p->nRowEst0; 002016 }else{ 002017 /* Note: this call could be optimized away - since the same values must 002018 ** have been requested when testing key $P in whereEqualScanEst(). */ 002019 whereKeyStats(pParse, p, pRec, 0, a); 002020 iLower = a[0]; 002021 iUpper = a[0] + a[1]; 002022 } 002023 002024 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 002025 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 002026 assert( p->aSortOrder!=0 ); 002027 if( p->aSortOrder[nEq] ){ 002028 /* The roles of pLower and pUpper are swapped for a DESC index */ 002029 SWAP(WhereTerm*, pLower, pUpper); 002030 SWAP(int, nBtm, nTop); 002031 } 002032 002033 /* If possible, improve on the iLower estimate using ($P:$L). */ 002034 if( pLower ){ 002035 int n; /* Values extracted from pExpr */ 002036 Expr *pExpr = pLower->pExpr->pRight; 002037 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 002038 if( rc==SQLITE_OK && n ){ 002039 tRowcnt iNew; 002040 u16 mask = WO_GT|WO_LE; 002041 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 002042 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 002043 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 002044 if( iNew>iLower ) iLower = iNew; 002045 nOut--; 002046 pLower = 0; 002047 } 002048 } 002049 002050 /* If possible, improve on the iUpper estimate using ($P:$U). */ 002051 if( pUpper ){ 002052 int n; /* Values extracted from pExpr */ 002053 Expr *pExpr = pUpper->pExpr->pRight; 002054 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 002055 if( rc==SQLITE_OK && n ){ 002056 tRowcnt iNew; 002057 u16 mask = WO_GT|WO_LE; 002058 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 002059 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 002060 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 002061 if( iNew<iUpper ) iUpper = iNew; 002062 nOut--; 002063 pUpper = 0; 002064 } 002065 } 002066 002067 pBuilder->pRec = pRec; 002068 if( rc==SQLITE_OK ){ 002069 if( iUpper>iLower ){ 002070 nNew = sqlite3LogEst(iUpper - iLower); 002071 /* TUNING: If both iUpper and iLower are derived from the same 002072 ** sample, then assume they are 4x more selective. This brings 002073 ** the estimated selectivity more in line with what it would be 002074 ** if estimated without the use of STAT4 tables. */ 002075 if( iLwrIdx==iUprIdx ){ nNew -= 20; } 002076 assert( 20==sqlite3LogEst(4) ); 002077 }else{ 002078 nNew = 10; assert( 10==sqlite3LogEst(2) ); 002079 } 002080 if( nNew<nOut ){ 002081 nOut = nNew; 002082 } 002083 WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n", 002084 (u32)iLower, (u32)iUpper, nOut)); 002085 } 002086 }else{ 002087 int bDone = 0; 002088 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 002089 if( bDone ) return rc; 002090 } 002091 } 002092 #else 002093 UNUSED_PARAMETER(pParse); 002094 UNUSED_PARAMETER(pBuilder); 002095 assert( pLower || pUpper ); 002096 #endif 002097 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 || pParse->nErr>0 ); 002098 nNew = whereRangeAdjust(pLower, nOut); 002099 nNew = whereRangeAdjust(pUpper, nNew); 002100 002101 /* TUNING: If there is both an upper and lower limit and neither limit 002102 ** has an application-defined likelihood(), assume the range is 002103 ** reduced by an additional 75%. This means that, by default, an open-ended 002104 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 002105 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 002106 ** match 1/64 of the index. */ 002107 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 002108 nNew -= 20; 002109 } 002110 002111 nOut -= (pLower!=0) + (pUpper!=0); 002112 if( nNew<10 ) nNew = 10; 002113 if( nNew<nOut ) nOut = nNew; 002114 #if defined(WHERETRACE_ENABLED) 002115 if( pLoop->nOut>nOut ){ 002116 WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n", 002117 pLoop->nOut, nOut)); 002118 } 002119 #endif 002120 pLoop->nOut = (LogEst)nOut; 002121 return rc; 002122 } 002123 002124 #ifdef SQLITE_ENABLE_STAT4 002125 /* 002126 ** Estimate the number of rows that will be returned based on 002127 ** an equality constraint x=VALUE and where that VALUE occurs in 002128 ** the histogram data. This only works when x is the left-most 002129 ** column of an index and sqlite_stat4 histogram data is available 002130 ** for that index. When pExpr==NULL that means the constraint is 002131 ** "x IS NULL" instead of "x=VALUE". 002132 ** 002133 ** Write the estimated row count into *pnRow and return SQLITE_OK. 002134 ** If unable to make an estimate, leave *pnRow unchanged and return 002135 ** non-zero. 002136 ** 002137 ** This routine can fail if it is unable to load a collating sequence 002138 ** required for string comparison, or if unable to allocate memory 002139 ** for a UTF conversion required for comparison. The error is stored 002140 ** in the pParse structure. 002141 */ 002142 static int whereEqualScanEst( 002143 Parse *pParse, /* Parsing & code generating context */ 002144 WhereLoopBuilder *pBuilder, 002145 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 002146 tRowcnt *pnRow /* Write the revised row estimate here */ 002147 ){ 002148 Index *p = pBuilder->pNew->u.btree.pIndex; 002149 int nEq = pBuilder->pNew->u.btree.nEq; 002150 UnpackedRecord *pRec = pBuilder->pRec; 002151 int rc; /* Subfunction return code */ 002152 tRowcnt a[2]; /* Statistics */ 002153 int bOk; 002154 002155 assert( nEq>=1 ); 002156 assert( nEq<=p->nColumn ); 002157 assert( p->aSample!=0 ); 002158 assert( p->nSample>0 ); 002159 assert( pBuilder->nRecValid<nEq ); 002160 002161 /* If values are not available for all fields of the index to the left 002162 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 002163 if( pBuilder->nRecValid<(nEq-1) ){ 002164 return SQLITE_NOTFOUND; 002165 } 002166 002167 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 002168 ** below would return the same value. */ 002169 if( nEq>=p->nColumn ){ 002170 *pnRow = 1; 002171 return SQLITE_OK; 002172 } 002173 002174 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 002175 pBuilder->pRec = pRec; 002176 if( rc!=SQLITE_OK ) return rc; 002177 if( bOk==0 ) return SQLITE_NOTFOUND; 002178 pBuilder->nRecValid = nEq; 002179 002180 whereKeyStats(pParse, p, pRec, 0, a); 002181 WHERETRACE(0x20,("equality scan regions %s(%d): %d\n", 002182 p->zName, nEq-1, (int)a[1])); 002183 *pnRow = a[1]; 002184 002185 return rc; 002186 } 002187 #endif /* SQLITE_ENABLE_STAT4 */ 002188 002189 #ifdef SQLITE_ENABLE_STAT4 002190 /* 002191 ** Estimate the number of rows that will be returned based on 002192 ** an IN constraint where the right-hand side of the IN operator 002193 ** is a list of values. Example: 002194 ** 002195 ** WHERE x IN (1,2,3,4) 002196 ** 002197 ** Write the estimated row count into *pnRow and return SQLITE_OK. 002198 ** If unable to make an estimate, leave *pnRow unchanged and return 002199 ** non-zero. 002200 ** 002201 ** This routine can fail if it is unable to load a collating sequence 002202 ** required for string comparison, or if unable to allocate memory 002203 ** for a UTF conversion required for comparison. The error is stored 002204 ** in the pParse structure. 002205 */ 002206 static int whereInScanEst( 002207 Parse *pParse, /* Parsing & code generating context */ 002208 WhereLoopBuilder *pBuilder, 002209 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 002210 tRowcnt *pnRow /* Write the revised row estimate here */ 002211 ){ 002212 Index *p = pBuilder->pNew->u.btree.pIndex; 002213 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 002214 int nRecValid = pBuilder->nRecValid; 002215 int rc = SQLITE_OK; /* Subfunction return code */ 002216 tRowcnt nEst; /* Number of rows for a single term */ 002217 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 002218 int i; /* Loop counter */ 002219 002220 assert( p->aSample!=0 ); 002221 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 002222 nEst = nRow0; 002223 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 002224 nRowEst += nEst; 002225 pBuilder->nRecValid = nRecValid; 002226 } 002227 002228 if( rc==SQLITE_OK ){ 002229 if( nRowEst > (tRowcnt)nRow0 ) nRowEst = nRow0; 002230 *pnRow = nRowEst; 002231 WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst)); 002232 } 002233 assert( pBuilder->nRecValid==nRecValid ); 002234 return rc; 002235 } 002236 #endif /* SQLITE_ENABLE_STAT4 */ 002237 002238 002239 #ifdef WHERETRACE_ENABLED 002240 /* 002241 ** Print the content of a WhereTerm object 002242 */ 002243 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 002244 if( pTerm==0 ){ 002245 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 002246 }else{ 002247 char zType[8]; 002248 char zLeft[50]; 002249 memcpy(zType, "....", 5); 002250 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 002251 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 002252 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 002253 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 002254 if( pTerm->eOperator & WO_SINGLE ){ 002255 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 002256 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 002257 pTerm->leftCursor, pTerm->u.x.leftColumn); 002258 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 002259 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 002260 pTerm->u.pOrInfo->indexable); 002261 }else{ 002262 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 002263 } 002264 sqlite3DebugPrintf( 002265 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 002266 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 002267 /* The 0x10000 .wheretrace flag causes extra information to be 002268 ** shown about each Term */ 002269 if( sqlite3WhereTrace & 0x10000 ){ 002270 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 002271 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 002272 } 002273 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 002274 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 002275 } 002276 if( pTerm->iParent>=0 ){ 002277 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 002278 } 002279 sqlite3DebugPrintf("\n"); 002280 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 002281 } 002282 } 002283 #endif 002284 002285 #ifdef WHERETRACE_ENABLED 002286 /* 002287 ** Show the complete content of a WhereClause 002288 */ 002289 void sqlite3WhereClausePrint(WhereClause *pWC){ 002290 int i; 002291 for(i=0; i<pWC->nTerm; i++){ 002292 sqlite3WhereTermPrint(&pWC->a[i], i); 002293 } 002294 } 002295 #endif 002296 002297 #ifdef WHERETRACE_ENABLED 002298 /* 002299 ** Print a WhereLoop object for debugging purposes 002300 ** 002301 ** Format example: 002302 ** 002303 ** .--- Position in WHERE clause rSetup, rRun, nOut ---. 002304 ** | | 002305 ** | .--- selfMask nTerm ------. | 002306 ** | | | | 002307 ** | | .-- prereq Idx wsFlags----. | | 002308 ** | | | Name | | | 002309 ** | | | __|__ nEq ---. ___|__ | __|__ 002310 ** | / \ / \ / \ | / \ / \ / \ 002311 ** 1.002.001 t2.t2xy 2 f 010241 N 2 cost 0,56,31 002312 */ 002313 void sqlite3WhereLoopPrint(const WhereLoop *p, const WhereClause *pWC){ 002314 if( pWC ){ 002315 WhereInfo *pWInfo = pWC->pWInfo; 002316 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 002317 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 002318 Table *pTab = pItem->pTab; 002319 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 002320 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 002321 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 002322 sqlite3DebugPrintf(" %12s", 002323 pItem->zAlias ? pItem->zAlias : pTab->zName); 002324 }else{ 002325 sqlite3DebugPrintf("%c%2d.%03llx.%03llx %c%d", 002326 p->cId, p->iTab, p->maskSelf, p->prereq & 0xfff, p->cId, p->iTab); 002327 } 002328 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 002329 const char *zName; 002330 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 002331 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 002332 int i = sqlite3Strlen30(zName) - 1; 002333 while( zName[i]!='_' ) i--; 002334 zName += i; 002335 } 002336 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 002337 }else{ 002338 sqlite3DebugPrintf("%20s",""); 002339 } 002340 }else{ 002341 char *z; 002342 if( p->u.vtab.idxStr ){ 002343 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 002344 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 002345 }else{ 002346 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 002347 } 002348 sqlite3DebugPrintf(" %-19s", z); 002349 sqlite3_free(z); 002350 } 002351 if( p->wsFlags & WHERE_SKIPSCAN ){ 002352 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 002353 }else{ 002354 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 002355 } 002356 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 002357 if( p->nLTerm && (sqlite3WhereTrace & 0x4000)!=0 ){ 002358 int i; 002359 for(i=0; i<p->nLTerm; i++){ 002360 sqlite3WhereTermPrint(p->aLTerm[i], i); 002361 } 002362 } 002363 } 002364 void sqlite3ShowWhereLoop(const WhereLoop *p){ 002365 if( p ) sqlite3WhereLoopPrint(p, 0); 002366 } 002367 void sqlite3ShowWhereLoopList(const WhereLoop *p){ 002368 while( p ){ 002369 sqlite3ShowWhereLoop(p); 002370 p = p->pNextLoop; 002371 } 002372 } 002373 #endif 002374 002375 /* 002376 ** Convert bulk memory into a valid WhereLoop that can be passed 002377 ** to whereLoopClear harmlessly. 002378 */ 002379 static void whereLoopInit(WhereLoop *p){ 002380 p->aLTerm = p->aLTermSpace; 002381 p->nLTerm = 0; 002382 p->nLSlot = ArraySize(p->aLTermSpace); 002383 p->wsFlags = 0; 002384 } 002385 002386 /* 002387 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 002388 */ 002389 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 002390 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 002391 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 002392 sqlite3_free(p->u.vtab.idxStr); 002393 p->u.vtab.needFree = 0; 002394 p->u.vtab.idxStr = 0; 002395 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 002396 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 002397 sqlite3DbFreeNN(db, p->u.btree.pIndex); 002398 p->u.btree.pIndex = 0; 002399 } 002400 } 002401 } 002402 002403 /* 002404 ** Deallocate internal memory used by a WhereLoop object. Leave the 002405 ** object in an initialized state, as if it had been newly allocated. 002406 */ 002407 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 002408 if( p->aLTerm!=p->aLTermSpace ){ 002409 sqlite3DbFreeNN(db, p->aLTerm); 002410 p->aLTerm = p->aLTermSpace; 002411 p->nLSlot = ArraySize(p->aLTermSpace); 002412 } 002413 whereLoopClearUnion(db, p); 002414 p->nLTerm = 0; 002415 p->wsFlags = 0; 002416 } 002417 002418 /* 002419 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 002420 */ 002421 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 002422 WhereTerm **paNew; 002423 if( p->nLSlot>=n ) return SQLITE_OK; 002424 n = (n+7)&~7; 002425 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 002426 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 002427 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 002428 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 002429 p->aLTerm = paNew; 002430 p->nLSlot = n; 002431 return SQLITE_OK; 002432 } 002433 002434 /* 002435 ** Transfer content from the second pLoop into the first. 002436 */ 002437 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 002438 whereLoopClearUnion(db, pTo); 002439 if( pFrom->nLTerm > pTo->nLSlot 002440 && whereLoopResize(db, pTo, pFrom->nLTerm) 002441 ){ 002442 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 002443 return SQLITE_NOMEM_BKPT; 002444 } 002445 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 002446 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 002447 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 002448 pFrom->u.vtab.needFree = 0; 002449 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 002450 pFrom->u.btree.pIndex = 0; 002451 } 002452 return SQLITE_OK; 002453 } 002454 002455 /* 002456 ** Delete a WhereLoop object 002457 */ 002458 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 002459 assert( db!=0 ); 002460 whereLoopClear(db, p); 002461 sqlite3DbNNFreeNN(db, p); 002462 } 002463 002464 /* 002465 ** Free a WhereInfo structure 002466 */ 002467 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 002468 assert( pWInfo!=0 ); 002469 assert( db!=0 ); 002470 sqlite3WhereClauseClear(&pWInfo->sWC); 002471 while( pWInfo->pLoops ){ 002472 WhereLoop *p = pWInfo->pLoops; 002473 pWInfo->pLoops = p->pNextLoop; 002474 whereLoopDelete(db, p); 002475 } 002476 while( pWInfo->pMemToFree ){ 002477 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 002478 sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); 002479 pWInfo->pMemToFree = pNext; 002480 } 002481 sqlite3DbNNFreeNN(db, pWInfo); 002482 } 002483 002484 /* 002485 ** Return TRUE if X is a proper subset of Y but is of equal or less cost. 002486 ** In other words, return true if all constraints of X are also part of Y 002487 ** and Y has additional constraints that might speed the search that X lacks 002488 ** but the cost of running X is not more than the cost of running Y. 002489 ** 002490 ** In other words, return true if the cost relationwship between X and Y 002491 ** is inverted and needs to be adjusted. 002492 ** 002493 ** Case 1: 002494 ** 002495 ** (1a) X and Y use the same index. 002496 ** (1b) X has fewer == terms than Y 002497 ** (1c) Neither X nor Y use skip-scan 002498 ** (1d) X does not have a a greater cost than Y 002499 ** 002500 ** Case 2: 002501 ** 002502 ** (2a) X has the same or lower cost, or returns the same or fewer rows, 002503 ** than Y. 002504 ** (2b) X uses fewer WHERE clause terms than Y 002505 ** (2c) Every WHERE clause term used by X is also used by Y 002506 ** (2d) X skips at least as many columns as Y 002507 ** (2e) If X is a covering index, than Y is too 002508 */ 002509 static int whereLoopCheaperProperSubset( 002510 const WhereLoop *pX, /* First WhereLoop to compare */ 002511 const WhereLoop *pY /* Compare against this WhereLoop */ 002512 ){ 002513 int i, j; 002514 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; /* (1d) and (2a) */ 002515 assert( (pX->wsFlags & WHERE_VIRTUALTABLE)==0 ); 002516 assert( (pY->wsFlags & WHERE_VIRTUALTABLE)==0 ); 002517 if( pX->u.btree.nEq < pY->u.btree.nEq /* (1b) */ 002518 && pX->u.btree.pIndex==pY->u.btree.pIndex /* (1a) */ 002519 && pX->nSkip==0 && pY->nSkip==0 /* (1c) */ 002520 ){ 002521 return 1; /* Case 1 is true */ 002522 } 002523 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 002524 return 0; /* (2b) */ 002525 } 002526 if( pY->nSkip > pX->nSkip ) return 0; /* (2d) */ 002527 for(i=pX->nLTerm-1; i>=0; i--){ 002528 if( pX->aLTerm[i]==0 ) continue; 002529 for(j=pY->nLTerm-1; j>=0; j--){ 002530 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 002531 } 002532 if( j<0 ) return 0; /* (2c) */ 002533 } 002534 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 002535 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 002536 return 0; /* (2e) */ 002537 } 002538 return 1; /* Case 2 is true */ 002539 } 002540 002541 /* 002542 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 002543 ** upwards or downwards so that: 002544 ** 002545 ** (1) pTemplate costs less than any other WhereLoops that are a proper 002546 ** subset of pTemplate 002547 ** 002548 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 002549 ** is a proper subset. 002550 ** 002551 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 002552 ** WHERE clause terms than Y and that every WHERE clause term used by X is 002553 ** also used by Y. 002554 */ 002555 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 002556 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 002557 for(; p; p=p->pNextLoop){ 002558 if( p->iTab!=pTemplate->iTab ) continue; 002559 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 002560 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 002561 /* Adjust pTemplate cost downward so that it is cheaper than its 002562 ** subset p. */ 002563 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 002564 pTemplate->rRun, pTemplate->nOut, 002565 MIN(p->rRun, pTemplate->rRun), 002566 MIN(p->nOut - 1, pTemplate->nOut))); 002567 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 002568 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 002569 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 002570 /* Adjust pTemplate cost upward so that it is costlier than p since 002571 ** pTemplate is a proper subset of p */ 002572 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 002573 pTemplate->rRun, pTemplate->nOut, 002574 MAX(p->rRun, pTemplate->rRun), 002575 MAX(p->nOut + 1, pTemplate->nOut))); 002576 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 002577 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 002578 } 002579 } 002580 } 002581 002582 /* 002583 ** Search the list of WhereLoops in *ppPrev looking for one that can be 002584 ** replaced by pTemplate. 002585 ** 002586 ** Return NULL if pTemplate does not belong on the WhereLoop list. 002587 ** In other words if pTemplate ought to be dropped from further consideration. 002588 ** 002589 ** If pX is a WhereLoop that pTemplate can replace, then return the 002590 ** link that points to pX. 002591 ** 002592 ** If pTemplate cannot replace any existing element of the list but needs 002593 ** to be added to the list as a new entry, then return a pointer to the 002594 ** tail of the list. 002595 */ 002596 static WhereLoop **whereLoopFindLesser( 002597 WhereLoop **ppPrev, 002598 const WhereLoop *pTemplate 002599 ){ 002600 WhereLoop *p; 002601 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 002602 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 002603 /* If either the iTab or iSortIdx values for two WhereLoop are different 002604 ** then those WhereLoops need to be considered separately. Neither is 002605 ** a candidate to replace the other. */ 002606 continue; 002607 } 002608 /* In the current implementation, the rSetup value is either zero 002609 ** or the cost of building an automatic index (NlogN) and the NlogN 002610 ** is the same for compatible WhereLoops. */ 002611 assert( p->rSetup==0 || pTemplate->rSetup==0 002612 || p->rSetup==pTemplate->rSetup ); 002613 002614 /* whereLoopAddBtree() always generates and inserts the automatic index 002615 ** case first. Hence compatible candidate WhereLoops never have a larger 002616 ** rSetup. Call this SETUP-INVARIANT */ 002617 assert( p->rSetup>=pTemplate->rSetup ); 002618 002619 /* Any loop using an application-defined index (or PRIMARY KEY or 002620 ** UNIQUE constraint) with one or more == constraints is better 002621 ** than an automatic index. Unless it is a skip-scan. */ 002622 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 002623 && (pTemplate->nSkip)==0 002624 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 002625 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 002626 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 002627 ){ 002628 break; 002629 } 002630 002631 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 002632 ** discarded. WhereLoop p is better if: 002633 ** (1) p has no more dependencies than pTemplate, and 002634 ** (2) p has an equal or lower cost than pTemplate 002635 */ 002636 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 002637 && p->rSetup<=pTemplate->rSetup /* (2a) */ 002638 && p->rRun<=pTemplate->rRun /* (2b) */ 002639 && p->nOut<=pTemplate->nOut /* (2c) */ 002640 ){ 002641 return 0; /* Discard pTemplate */ 002642 } 002643 002644 /* If pTemplate is always better than p, then cause p to be overwritten 002645 ** with pTemplate. pTemplate is better than p if: 002646 ** (1) pTemplate has no more dependencies than p, and 002647 ** (2) pTemplate has an equal or lower cost than p. 002648 */ 002649 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 002650 && p->rRun>=pTemplate->rRun /* (2a) */ 002651 && p->nOut>=pTemplate->nOut /* (2b) */ 002652 ){ 002653 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 002654 break; /* Cause p to be overwritten by pTemplate */ 002655 } 002656 } 002657 return ppPrev; 002658 } 002659 002660 /* 002661 ** Insert or replace a WhereLoop entry using the template supplied. 002662 ** 002663 ** An existing WhereLoop entry might be overwritten if the new template 002664 ** is better and has fewer dependencies. Or the template will be ignored 002665 ** and no insert will occur if an existing WhereLoop is faster and has 002666 ** fewer dependencies than the template. Otherwise a new WhereLoop is 002667 ** added based on the template. 002668 ** 002669 ** If pBuilder->pOrSet is not NULL then we care about only the 002670 ** prerequisites and rRun and nOut costs of the N best loops. That 002671 ** information is gathered in the pBuilder->pOrSet object. This special 002672 ** processing mode is used only for OR clause processing. 002673 ** 002674 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 002675 ** still might overwrite similar loops with the new template if the 002676 ** new template is better. Loops may be overwritten if the following 002677 ** conditions are met: 002678 ** 002679 ** (1) They have the same iTab. 002680 ** (2) They have the same iSortIdx. 002681 ** (3) The template has same or fewer dependencies than the current loop 002682 ** (4) The template has the same or lower cost than the current loop 002683 */ 002684 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 002685 WhereLoop **ppPrev, *p; 002686 WhereInfo *pWInfo = pBuilder->pWInfo; 002687 sqlite3 *db = pWInfo->pParse->db; 002688 int rc; 002689 002690 /* Stop the search once we hit the query planner search limit */ 002691 if( pBuilder->iPlanLimit==0 ){ 002692 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 002693 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 002694 return SQLITE_DONE; 002695 } 002696 pBuilder->iPlanLimit--; 002697 002698 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 002699 002700 /* If pBuilder->pOrSet is defined, then only keep track of the costs 002701 ** and prereqs. 002702 */ 002703 if( pBuilder->pOrSet!=0 ){ 002704 if( pTemplate->nLTerm ){ 002705 #if WHERETRACE_ENABLED 002706 u16 n = pBuilder->pOrSet->n; 002707 int x = 002708 #endif 002709 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 002710 pTemplate->nOut); 002711 #if WHERETRACE_ENABLED /* 0x8 */ 002712 if( sqlite3WhereTrace & 0x8 ){ 002713 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 002714 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 002715 } 002716 #endif 002717 } 002718 return SQLITE_OK; 002719 } 002720 002721 /* Look for an existing WhereLoop to replace with pTemplate 002722 */ 002723 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 002724 002725 if( ppPrev==0 ){ 002726 /* There already exists a WhereLoop on the list that is better 002727 ** than pTemplate, so just ignore pTemplate */ 002728 #if WHERETRACE_ENABLED /* 0x8 */ 002729 if( sqlite3WhereTrace & 0x8 ){ 002730 sqlite3DebugPrintf(" skip: "); 002731 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 002732 } 002733 #endif 002734 return SQLITE_OK; 002735 }else{ 002736 p = *ppPrev; 002737 } 002738 002739 /* If we reach this point it means that either p[] should be overwritten 002740 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 002741 ** WhereLoop and insert it. 002742 */ 002743 #if WHERETRACE_ENABLED /* 0x8 */ 002744 if( sqlite3WhereTrace & 0x8 ){ 002745 if( p!=0 ){ 002746 sqlite3DebugPrintf("replace: "); 002747 sqlite3WhereLoopPrint(p, pBuilder->pWC); 002748 sqlite3DebugPrintf(" with: "); 002749 }else{ 002750 sqlite3DebugPrintf(" add: "); 002751 } 002752 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 002753 } 002754 #endif 002755 if( p==0 ){ 002756 /* Allocate a new WhereLoop to add to the end of the list */ 002757 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 002758 if( p==0 ) return SQLITE_NOMEM_BKPT; 002759 whereLoopInit(p); 002760 p->pNextLoop = 0; 002761 }else{ 002762 /* We will be overwriting WhereLoop p[]. But before we do, first 002763 ** go through the rest of the list and delete any other entries besides 002764 ** p[] that are also supplanted by pTemplate */ 002765 WhereLoop **ppTail = &p->pNextLoop; 002766 WhereLoop *pToDel; 002767 while( *ppTail ){ 002768 ppTail = whereLoopFindLesser(ppTail, pTemplate); 002769 if( ppTail==0 ) break; 002770 pToDel = *ppTail; 002771 if( pToDel==0 ) break; 002772 *ppTail = pToDel->pNextLoop; 002773 #if WHERETRACE_ENABLED /* 0x8 */ 002774 if( sqlite3WhereTrace & 0x8 ){ 002775 sqlite3DebugPrintf(" delete: "); 002776 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 002777 } 002778 #endif 002779 whereLoopDelete(db, pToDel); 002780 } 002781 } 002782 rc = whereLoopXfer(db, p, pTemplate); 002783 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 002784 Index *pIndex = p->u.btree.pIndex; 002785 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 002786 p->u.btree.pIndex = 0; 002787 } 002788 } 002789 return rc; 002790 } 002791 002792 /* 002793 ** Adjust the WhereLoop.nOut value downward to account for terms of the 002794 ** WHERE clause that reference the loop but which are not used by an 002795 ** index. 002796 * 002797 ** For every WHERE clause term that is not used by the index 002798 ** and which has a truth probability assigned by one of the likelihood(), 002799 ** likely(), or unlikely() SQL functions, reduce the estimated number 002800 ** of output rows by the probability specified. 002801 ** 002802 ** TUNING: For every WHERE clause term that is not used by the index 002803 ** and which does not have an assigned truth probability, heuristics 002804 ** described below are used to try to estimate the truth probability. 002805 ** TODO --> Perhaps this is something that could be improved by better 002806 ** table statistics. 002807 ** 002808 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 002809 ** value corresponds to -1 in LogEst notation, so this means decrement 002810 ** the WhereLoop.nOut field for every such WHERE clause term. 002811 ** 002812 ** Heuristic 2: If there exists one or more WHERE clause terms of the 002813 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 002814 ** final output row estimate is no greater than 1/4 of the total number 002815 ** of rows in the table. In other words, assume that x==EXPR will filter 002816 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 002817 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 002818 ** on the "x" column and so in that case only cap the output row estimate 002819 ** at 1/2 instead of 1/4. 002820 */ 002821 static void whereLoopOutputAdjust( 002822 WhereClause *pWC, /* The WHERE clause */ 002823 WhereLoop *pLoop, /* The loop to adjust downward */ 002824 LogEst nRow /* Number of rows in the entire table */ 002825 ){ 002826 WhereTerm *pTerm, *pX; 002827 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 002828 int i, j; 002829 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 002830 002831 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 002832 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 002833 assert( pTerm!=0 ); 002834 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 002835 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 002836 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 002837 for(j=pLoop->nLTerm-1; j>=0; j--){ 002838 pX = pLoop->aLTerm[j]; 002839 if( pX==0 ) continue; 002840 if( pX==pTerm ) break; 002841 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 002842 } 002843 if( j<0 ){ 002844 sqlite3ProgressCheck(pWC->pWInfo->pParse); 002845 if( pLoop->maskSelf==pTerm->prereqAll ){ 002846 /* If there are extra terms in the WHERE clause not used by an index 002847 ** that depend only on the table being scanned, and that will tend to 002848 ** cause many rows to be omitted, then mark that table as 002849 ** "self-culling". 002850 ** 002851 ** 2022-03-24: Self-culling only applies if either the extra terms 002852 ** are straight comparison operators that are non-true with NULL 002853 ** operand, or if the loop is not an OUTER JOIN. 002854 */ 002855 if( (pTerm->eOperator & 0x3f)!=0 002856 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 002857 & (JT_LEFT|JT_LTORJ))==0 002858 ){ 002859 pLoop->wsFlags |= WHERE_SELFCULL; 002860 } 002861 } 002862 if( pTerm->truthProb<=0 ){ 002863 /* If a truth probability is specified using the likelihood() hints, 002864 ** then use the probability provided by the application. */ 002865 pLoop->nOut += pTerm->truthProb; 002866 }else{ 002867 /* In the absence of explicit truth probabilities, use heuristics to 002868 ** guess a reasonable truth probability. */ 002869 pLoop->nOut--; 002870 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 002871 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 002872 ){ 002873 Expr *pRight = pTerm->pExpr->pRight; 002874 int k = 0; 002875 testcase( pTerm->pExpr->op==TK_IS ); 002876 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 002877 k = 10; 002878 }else{ 002879 k = 20; 002880 } 002881 if( iReduce<k ){ 002882 pTerm->wtFlags |= TERM_HEURTRUTH; 002883 iReduce = k; 002884 } 002885 } 002886 } 002887 } 002888 } 002889 if( pLoop->nOut > nRow-iReduce ){ 002890 pLoop->nOut = nRow - iReduce; 002891 } 002892 } 002893 002894 /* 002895 ** Term pTerm is a vector range comparison operation. The first comparison 002896 ** in the vector can be optimized using column nEq of the index. This 002897 ** function returns the total number of vector elements that can be used 002898 ** as part of the range comparison. 002899 ** 002900 ** For example, if the query is: 002901 ** 002902 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 002903 ** 002904 ** and the index: 002905 ** 002906 ** CREATE INDEX ... ON (a, b, c, d, e) 002907 ** 002908 ** then this function would be invoked with nEq=1. The value returned in 002909 ** this case is 3. 002910 */ 002911 static int whereRangeVectorLen( 002912 Parse *pParse, /* Parsing context */ 002913 int iCur, /* Cursor open on pIdx */ 002914 Index *pIdx, /* The index to be used for a inequality constraint */ 002915 int nEq, /* Number of prior equality constraints on same index */ 002916 WhereTerm *pTerm /* The vector inequality constraint */ 002917 ){ 002918 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 002919 int i; 002920 002921 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 002922 for(i=1; i<nCmp; i++){ 002923 /* Test if comparison i of pTerm is compatible with column (i+nEq) 002924 ** of the index. If not, exit the loop. */ 002925 char aff; /* Comparison affinity */ 002926 char idxaff = 0; /* Indexed columns affinity */ 002927 CollSeq *pColl; /* Comparison collation sequence */ 002928 Expr *pLhs, *pRhs; 002929 002930 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 002931 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 002932 pRhs = pTerm->pExpr->pRight; 002933 if( ExprUseXSelect(pRhs) ){ 002934 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 002935 }else{ 002936 pRhs = pRhs->x.pList->a[i].pExpr; 002937 } 002938 002939 /* Check that the LHS of the comparison is a column reference to 002940 ** the right column of the right source table. And that the sort 002941 ** order of the index column is the same as the sort order of the 002942 ** leftmost index column. */ 002943 if( pLhs->op!=TK_COLUMN 002944 || pLhs->iTable!=iCur 002945 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 002946 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 002947 ){ 002948 break; 002949 } 002950 002951 testcase( pLhs->iColumn==XN_ROWID ); 002952 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 002953 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 002954 if( aff!=idxaff ) break; 002955 002956 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 002957 if( pColl==0 ) break; 002958 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 002959 } 002960 return i; 002961 } 002962 002963 /* 002964 ** Adjust the cost C by the costMult factor T. This only occurs if 002965 ** compiled with -DSQLITE_ENABLE_COSTMULT 002966 */ 002967 #ifdef SQLITE_ENABLE_COSTMULT 002968 # define ApplyCostMultiplier(C,T) C += T 002969 #else 002970 # define ApplyCostMultiplier(C,T) 002971 #endif 002972 002973 /* 002974 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 002975 ** index pIndex. Try to match one more. 002976 ** 002977 ** When this function is called, pBuilder->pNew->nOut contains the 002978 ** number of rows expected to be visited by filtering using the nEq 002979 ** terms only. If it is modified, this value is restored before this 002980 ** function returns. 002981 ** 002982 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 002983 ** a fake index used for the INTEGER PRIMARY KEY. 002984 */ 002985 static int whereLoopAddBtreeIndex( 002986 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 002987 SrcItem *pSrc, /* FROM clause term being analyzed */ 002988 Index *pProbe, /* An index on pSrc */ 002989 LogEst nInMul /* log(Number of iterations due to IN) */ 002990 ){ 002991 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyze context */ 002992 Parse *pParse = pWInfo->pParse; /* Parsing context */ 002993 sqlite3 *db = pParse->db; /* Database connection malloc context */ 002994 WhereLoop *pNew; /* Template WhereLoop under construction */ 002995 WhereTerm *pTerm; /* A WhereTerm under consideration */ 002996 int opMask; /* Valid operators for constraints */ 002997 WhereScan scan; /* Iterator for WHERE terms */ 002998 Bitmask saved_prereq; /* Original value of pNew->prereq */ 002999 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 003000 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 003001 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 003002 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 003003 u16 saved_nSkip; /* Original value of pNew->nSkip */ 003004 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 003005 LogEst saved_nOut; /* Original value of pNew->nOut */ 003006 int rc = SQLITE_OK; /* Return code */ 003007 LogEst rSize; /* Number of rows in the table */ 003008 LogEst rLogSize; /* Logarithm of table size */ 003009 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 003010 003011 pNew = pBuilder->pNew; 003012 assert( db->mallocFailed==0 || pParse->nErr>0 ); 003013 if( pParse->nErr ){ 003014 return pParse->rc; 003015 } 003016 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 003017 pProbe->pTable->zName,pProbe->zName, 003018 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 003019 003020 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 003021 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 003022 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 003023 opMask = WO_LT|WO_LE; 003024 }else{ 003025 assert( pNew->u.btree.nBtm==0 ); 003026 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 003027 } 003028 if( pProbe->bUnordered || pProbe->bLowQual ){ 003029 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 003030 if( pProbe->bLowQual && pSrc->fg.isIndexedBy==0 ){ 003031 opMask &= ~(WO_EQ|WO_IN|WO_IS); 003032 } 003033 } 003034 003035 assert( pNew->u.btree.nEq<pProbe->nColumn ); 003036 assert( pNew->u.btree.nEq<pProbe->nKeyCol 003037 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 003038 003039 saved_nEq = pNew->u.btree.nEq; 003040 saved_nBtm = pNew->u.btree.nBtm; 003041 saved_nTop = pNew->u.btree.nTop; 003042 saved_nSkip = pNew->nSkip; 003043 saved_nLTerm = pNew->nLTerm; 003044 saved_wsFlags = pNew->wsFlags; 003045 saved_prereq = pNew->prereq; 003046 saved_nOut = pNew->nOut; 003047 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 003048 opMask, pProbe); 003049 pNew->rSetup = 0; 003050 rSize = pProbe->aiRowLogEst[0]; 003051 rLogSize = estLog(rSize); 003052 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 003053 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 003054 LogEst rCostIdx; 003055 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 003056 int nIn = 0; 003057 #ifdef SQLITE_ENABLE_STAT4 003058 int nRecValid = pBuilder->nRecValid; 003059 #endif 003060 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 003061 && indexColumnNotNull(pProbe, saved_nEq) 003062 ){ 003063 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 003064 } 003065 if( pTerm->prereqRight & pNew->maskSelf ) continue; 003066 003067 /* Do not allow the upper bound of a LIKE optimization range constraint 003068 ** to mix with a lower range bound from some other source */ 003069 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 003070 003071 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 003072 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 003073 ){ 003074 continue; 003075 } 003076 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 003077 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 003078 }else{ 003079 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 003080 } 003081 pNew->wsFlags = saved_wsFlags; 003082 pNew->u.btree.nEq = saved_nEq; 003083 pNew->u.btree.nBtm = saved_nBtm; 003084 pNew->u.btree.nTop = saved_nTop; 003085 pNew->nLTerm = saved_nLTerm; 003086 if( pNew->nLTerm>=pNew->nLSlot 003087 && whereLoopResize(db, pNew, pNew->nLTerm+1) 003088 ){ 003089 break; /* OOM while trying to enlarge the pNew->aLTerm array */ 003090 } 003091 pNew->aLTerm[pNew->nLTerm++] = pTerm; 003092 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 003093 003094 assert( nInMul==0 003095 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 003096 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 003097 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 003098 ); 003099 003100 if( eOp & WO_IN ){ 003101 Expr *pExpr = pTerm->pExpr; 003102 if( ExprUseXSelect(pExpr) ){ 003103 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 003104 int i; 003105 nIn = 46; assert( 46==sqlite3LogEst(25) ); 003106 003107 /* The expression may actually be of the form (x, y) IN (SELECT...). 003108 ** In this case there is a separate term for each of (x) and (y). 003109 ** However, the nIn multiplier should only be applied once, not once 003110 ** for each such term. The following loop checks that pTerm is the 003111 ** first such term in use, and sets nIn back to 0 if it is not. */ 003112 for(i=0; i<pNew->nLTerm-1; i++){ 003113 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 003114 } 003115 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 003116 /* "x IN (value, value, ...)" */ 003117 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 003118 } 003119 if( pProbe->hasStat1 && rLogSize>=10 ){ 003120 LogEst M, logK, x; 003121 /* Let: 003122 ** N = the total number of rows in the table 003123 ** K = the number of entries on the RHS of the IN operator 003124 ** M = the number of rows in the table that match terms to the 003125 ** to the left in the same index. If the IN operator is on 003126 ** the left-most index column, M==N. 003127 ** 003128 ** Given the definitions above, it is better to omit the IN operator 003129 ** from the index lookup and instead do a scan of the M elements, 003130 ** testing each scanned row against the IN operator separately, if: 003131 ** 003132 ** M*log(K) < K*log(N) 003133 ** 003134 ** Our estimates for M, K, and N might be inaccurate, so we build in 003135 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 003136 ** with the index, as using an index has better worst-case behavior. 003137 ** If we do not have real sqlite_stat1 data, always prefer to use 003138 ** the index. Do not bother with this optimization on very small 003139 ** tables (less than 2 rows) as it is pointless in that case. 003140 */ 003141 M = pProbe->aiRowLogEst[saved_nEq]; 003142 logK = estLog(nIn); 003143 /* TUNING v----- 10 to bias toward indexed IN */ 003144 x = M + logK + 10 - (nIn + rLogSize); 003145 if( x>=0 ){ 003146 WHERETRACE(0x40, 003147 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 003148 "prefers indexed lookup\n", 003149 saved_nEq, M, logK, nIn, rLogSize, x)); 003150 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 003151 WHERETRACE(0x40, 003152 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 003153 " nInMul=%d) prefers skip-scan\n", 003154 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 003155 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 003156 }else{ 003157 WHERETRACE(0x40, 003158 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 003159 " nInMul=%d) prefers normal scan\n", 003160 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 003161 continue; 003162 } 003163 } 003164 pNew->wsFlags |= WHERE_COLUMN_IN; 003165 }else if( eOp & (WO_EQ|WO_IS) ){ 003166 int iCol = pProbe->aiColumn[saved_nEq]; 003167 pNew->wsFlags |= WHERE_COLUMN_EQ; 003168 assert( saved_nEq==pNew->u.btree.nEq ); 003169 if( iCol==XN_ROWID 003170 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 003171 ){ 003172 if( iCol==XN_ROWID || pProbe->uniqNotNull 003173 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 003174 ){ 003175 pNew->wsFlags |= WHERE_ONEROW; 003176 }else{ 003177 pNew->wsFlags |= WHERE_UNQ_WANTED; 003178 } 003179 } 003180 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 003181 }else if( eOp & WO_ISNULL ){ 003182 pNew->wsFlags |= WHERE_COLUMN_NULL; 003183 }else{ 003184 int nVecLen = whereRangeVectorLen( 003185 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 003186 ); 003187 if( eOp & (WO_GT|WO_GE) ){ 003188 testcase( eOp & WO_GT ); 003189 testcase( eOp & WO_GE ); 003190 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 003191 pNew->u.btree.nBtm = nVecLen; 003192 pBtm = pTerm; 003193 pTop = 0; 003194 if( pTerm->wtFlags & TERM_LIKEOPT ){ 003195 /* Range constraints that come from the LIKE optimization are 003196 ** always used in pairs. */ 003197 pTop = &pTerm[1]; 003198 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 003199 assert( pTop->wtFlags & TERM_LIKEOPT ); 003200 assert( pTop->eOperator==WO_LT ); 003201 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 003202 pNew->aLTerm[pNew->nLTerm++] = pTop; 003203 pNew->wsFlags |= WHERE_TOP_LIMIT; 003204 pNew->u.btree.nTop = 1; 003205 } 003206 }else{ 003207 assert( eOp & (WO_LT|WO_LE) ); 003208 testcase( eOp & WO_LT ); 003209 testcase( eOp & WO_LE ); 003210 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 003211 pNew->u.btree.nTop = nVecLen; 003212 pTop = pTerm; 003213 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 003214 pNew->aLTerm[pNew->nLTerm-2] : 0; 003215 } 003216 } 003217 003218 /* At this point pNew->nOut is set to the number of rows expected to 003219 ** be visited by the index scan before considering term pTerm, or the 003220 ** values of nIn and nInMul. In other words, assuming that all 003221 ** "x IN(...)" terms are replaced with "x = ?". This block updates 003222 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 003223 assert( pNew->nOut==saved_nOut ); 003224 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 003225 /* Adjust nOut using stat4 data. Or, if there is no stat4 003226 ** data, using some other estimate. */ 003227 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 003228 }else{ 003229 int nEq = ++pNew->u.btree.nEq; 003230 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 003231 003232 assert( pNew->nOut==saved_nOut ); 003233 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 003234 assert( (eOp & WO_IN) || nIn==0 ); 003235 testcase( eOp & WO_IN ); 003236 pNew->nOut += pTerm->truthProb; 003237 pNew->nOut -= nIn; 003238 }else{ 003239 #ifdef SQLITE_ENABLE_STAT4 003240 tRowcnt nOut = 0; 003241 if( nInMul==0 003242 && pProbe->nSample 003243 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 003244 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 003245 && OptimizationEnabled(db, SQLITE_Stat4) 003246 ){ 003247 Expr *pExpr = pTerm->pExpr; 003248 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 003249 testcase( eOp & WO_EQ ); 003250 testcase( eOp & WO_IS ); 003251 testcase( eOp & WO_ISNULL ); 003252 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 003253 }else{ 003254 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 003255 } 003256 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 003257 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 003258 if( nOut ){ 003259 pNew->nOut = sqlite3LogEst(nOut); 003260 if( nEq==1 003261 /* TUNING: Mark terms as "low selectivity" if they seem likely 003262 ** to be true for half or more of the rows in the table. 003263 ** See tag-202002240-1 */ 003264 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 003265 ){ 003266 #if WHERETRACE_ENABLED /* 0x01 */ 003267 if( sqlite3WhereTrace & 0x20 ){ 003268 sqlite3DebugPrintf( 003269 "STAT4 determines term has low selectivity:\n"); 003270 sqlite3WhereTermPrint(pTerm, 999); 003271 } 003272 #endif 003273 pTerm->wtFlags |= TERM_HIGHTRUTH; 003274 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 003275 /* If the term has previously been used with an assumption of 003276 ** higher selectivity, then set the flag to rerun the 003277 ** loop computations. */ 003278 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 003279 } 003280 } 003281 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 003282 pNew->nOut -= nIn; 003283 } 003284 } 003285 if( nOut==0 ) 003286 #endif 003287 { 003288 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 003289 if( eOp & WO_ISNULL ){ 003290 /* TUNING: If there is no likelihood() value, assume that a 003291 ** "col IS NULL" expression matches twice as many rows 003292 ** as (col=?). */ 003293 pNew->nOut += 10; 003294 } 003295 } 003296 } 003297 } 003298 003299 /* Set rCostIdx to the estimated cost of visiting selected rows in the 003300 ** index. The estimate is the sum of two values: 003301 ** 1. The cost of doing one search-by-key to find the first matching 003302 ** entry 003303 ** 2. Stepping forward in the index pNew->nOut times to find all 003304 ** additional matching entries. 003305 */ 003306 assert( pSrc->pTab->szTabRow>0 ); 003307 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 003308 /* The pProbe->szIdxRow is low for an IPK table since the interior 003309 ** pages are small. Thus szIdxRow gives a good estimate of seek cost. 003310 ** But the leaf pages are full-size, so pProbe->szIdxRow would badly 003311 ** under-estimate the scanning cost. */ 003312 rCostIdx = pNew->nOut + 16; 003313 }else{ 003314 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 003315 } 003316 rCostIdx = sqlite3LogEstAdd(rLogSize, rCostIdx); 003317 003318 /* Estimate the cost of running the loop. If all data is coming 003319 ** from the index, then this is just the cost of doing the index 003320 ** lookup and scan. But if some data is coming out of the main table, 003321 ** we also have to add in the cost of doing pNew->nOut searches to 003322 ** locate the row in the main table that corresponds to the index entry. 003323 */ 003324 pNew->rRun = rCostIdx; 003325 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK|WHERE_EXPRIDX))==0 ){ 003326 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 003327 } 003328 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 003329 003330 nOutUnadjusted = pNew->nOut; 003331 pNew->rRun += nInMul + nIn; 003332 pNew->nOut += nInMul + nIn; 003333 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 003334 rc = whereLoopInsert(pBuilder, pNew); 003335 003336 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 003337 pNew->nOut = saved_nOut; 003338 }else{ 003339 pNew->nOut = nOutUnadjusted; 003340 } 003341 003342 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 003343 && pNew->u.btree.nEq<pProbe->nColumn 003344 && (pNew->u.btree.nEq<pProbe->nKeyCol || 003345 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 003346 ){ 003347 if( pNew->u.btree.nEq>3 ){ 003348 sqlite3ProgressCheck(pParse); 003349 } 003350 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 003351 } 003352 pNew->nOut = saved_nOut; 003353 #ifdef SQLITE_ENABLE_STAT4 003354 pBuilder->nRecValid = nRecValid; 003355 #endif 003356 } 003357 pNew->prereq = saved_prereq; 003358 pNew->u.btree.nEq = saved_nEq; 003359 pNew->u.btree.nBtm = saved_nBtm; 003360 pNew->u.btree.nTop = saved_nTop; 003361 pNew->nSkip = saved_nSkip; 003362 pNew->wsFlags = saved_wsFlags; 003363 pNew->nOut = saved_nOut; 003364 pNew->nLTerm = saved_nLTerm; 003365 003366 /* Consider using a skip-scan if there are no WHERE clause constraints 003367 ** available for the left-most terms of the index, and if the average 003368 ** number of repeats in the left-most terms is at least 18. 003369 ** 003370 ** The magic number 18 is selected on the basis that scanning 17 rows 003371 ** is almost always quicker than an index seek (even though if the index 003372 ** contains fewer than 2^17 rows we assume otherwise in other parts of 003373 ** the code). And, even if it is not, it should not be too much slower. 003374 ** On the other hand, the extra seeks could end up being significantly 003375 ** more expensive. */ 003376 assert( 42==sqlite3LogEst(18) ); 003377 if( saved_nEq==saved_nSkip 003378 && saved_nEq+1<pProbe->nKeyCol 003379 && saved_nEq==pNew->nLTerm 003380 && pProbe->noSkipScan==0 003381 && pProbe->hasStat1!=0 003382 && OptimizationEnabled(db, SQLITE_SkipScan) 003383 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 003384 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 003385 ){ 003386 LogEst nIter; 003387 pNew->u.btree.nEq++; 003388 pNew->nSkip++; 003389 pNew->aLTerm[pNew->nLTerm++] = 0; 003390 pNew->wsFlags |= WHERE_SKIPSCAN; 003391 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 003392 pNew->nOut -= nIter; 003393 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 003394 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 003395 nIter += 5; 003396 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 003397 pNew->nOut = saved_nOut; 003398 pNew->u.btree.nEq = saved_nEq; 003399 pNew->nSkip = saved_nSkip; 003400 pNew->wsFlags = saved_wsFlags; 003401 } 003402 003403 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 003404 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 003405 return rc; 003406 } 003407 003408 /* 003409 ** Return True if it is possible that pIndex might be useful in 003410 ** implementing the ORDER BY clause in pBuilder. 003411 ** 003412 ** Return False if pBuilder does not contain an ORDER BY clause or 003413 ** if there is no way for pIndex to be useful in implementing that 003414 ** ORDER BY clause. 003415 */ 003416 static int indexMightHelpWithOrderBy( 003417 WhereLoopBuilder *pBuilder, 003418 Index *pIndex, 003419 int iCursor 003420 ){ 003421 ExprList *pOB; 003422 ExprList *aColExpr; 003423 int ii, jj; 003424 003425 if( pIndex->bUnordered ) return 0; 003426 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 003427 for(ii=0; ii<pOB->nExpr; ii++){ 003428 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 003429 if( NEVER(pExpr==0) ) continue; 003430 if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) 003431 && pExpr->iTable==iCursor 003432 ){ 003433 if( pExpr->iColumn<0 ) return 1; 003434 for(jj=0; jj<pIndex->nKeyCol; jj++){ 003435 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 003436 } 003437 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 003438 for(jj=0; jj<pIndex->nKeyCol; jj++){ 003439 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 003440 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 003441 return 1; 003442 } 003443 } 003444 } 003445 } 003446 return 0; 003447 } 003448 003449 /* Check to see if a partial index with pPartIndexWhere can be used 003450 ** in the current query. Return true if it can be and false if not. 003451 */ 003452 static int whereUsablePartialIndex( 003453 int iTab, /* The table for which we want an index */ 003454 u8 jointype, /* The JT_* flags on the join */ 003455 WhereClause *pWC, /* The WHERE clause of the query */ 003456 Expr *pWhere /* The WHERE clause from the partial index */ 003457 ){ 003458 int i; 003459 WhereTerm *pTerm; 003460 Parse *pParse; 003461 003462 if( jointype & JT_LTORJ ) return 0; 003463 pParse = pWC->pWInfo->pParse; 003464 while( pWhere->op==TK_AND ){ 003465 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; 003466 pWhere = pWhere->pRight; 003467 } 003468 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 003469 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 003470 Expr *pExpr; 003471 pExpr = pTerm->pExpr; 003472 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 003473 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) 003474 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 003475 && (pTerm->wtFlags & TERM_VNULL)==0 003476 ){ 003477 return 1; 003478 } 003479 } 003480 return 0; 003481 } 003482 003483 /* 003484 ** pIdx is an index containing expressions. Check it see if any of the 003485 ** expressions in the index match the pExpr expression. 003486 */ 003487 static int exprIsCoveredByIndex( 003488 const Expr *pExpr, 003489 const Index *pIdx, 003490 int iTabCur 003491 ){ 003492 int i; 003493 for(i=0; i<pIdx->nColumn; i++){ 003494 if( pIdx->aiColumn[i]==XN_EXPR 003495 && sqlite3ExprCompare(0, pExpr, pIdx->aColExpr->a[i].pExpr, iTabCur)==0 003496 ){ 003497 return 1; 003498 } 003499 } 003500 return 0; 003501 } 003502 003503 /* 003504 ** Structure passed to the whereIsCoveringIndex Walker callback. 003505 */ 003506 typedef struct CoveringIndexCheck CoveringIndexCheck; 003507 struct CoveringIndexCheck { 003508 Index *pIdx; /* The index */ 003509 int iTabCur; /* Cursor number for the corresponding table */ 003510 u8 bExpr; /* Uses an indexed expression */ 003511 u8 bUnidx; /* Uses an unindexed column not within an indexed expr */ 003512 }; 003513 003514 /* 003515 ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk. 003516 ** 003517 ** If the Expr node references the table with cursor pCk->iTabCur, then 003518 ** make sure that column is covered by the index pCk->pIdx. We know that 003519 ** all columns less than 63 (really BMS-1) are covered, so we don't need 003520 ** to check them. But we do need to check any column at 63 or greater. 003521 ** 003522 ** If the index does not cover the column, then set pWalk->eCode to 003523 ** non-zero and return WRC_Abort to stop the search. 003524 ** 003525 ** If this node does not disprove that the index can be a covering index, 003526 ** then just return WRC_Continue, to continue the search. 003527 ** 003528 ** If pCk->pIdx contains indexed expressions and one of those expressions 003529 ** matches pExpr, then prune the search. 003530 */ 003531 static int whereIsCoveringIndexWalkCallback(Walker *pWalk, Expr *pExpr){ 003532 int i; /* Loop counter */ 003533 const Index *pIdx; /* The index of interest */ 003534 const i16 *aiColumn; /* Columns contained in the index */ 003535 u16 nColumn; /* Number of columns in the index */ 003536 CoveringIndexCheck *pCk; /* Info about this search */ 003537 003538 pCk = pWalk->u.pCovIdxCk; 003539 pIdx = pCk->pIdx; 003540 if( (pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN) ){ 003541 /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/ 003542 if( pExpr->iTable!=pCk->iTabCur ) return WRC_Continue; 003543 pIdx = pWalk->u.pCovIdxCk->pIdx; 003544 aiColumn = pIdx->aiColumn; 003545 nColumn = pIdx->nColumn; 003546 for(i=0; i<nColumn; i++){ 003547 if( aiColumn[i]==pExpr->iColumn ) return WRC_Continue; 003548 } 003549 pCk->bUnidx = 1; 003550 return WRC_Abort; 003551 }else if( pIdx->bHasExpr 003552 && exprIsCoveredByIndex(pExpr, pIdx, pWalk->u.pCovIdxCk->iTabCur) ){ 003553 pCk->bExpr = 1; 003554 return WRC_Prune; 003555 } 003556 return WRC_Continue; 003557 } 003558 003559 003560 /* 003561 ** pIdx is an index that covers all of the low-number columns used by 003562 ** pWInfo->pSelect (columns from 0 through 62) or an index that has 003563 ** expressions terms. Hence, we cannot determine whether or not it is 003564 ** a covering index by using the colUsed bitmasks. We have to do a search 003565 ** to see if the index is covering. This routine does that search. 003566 ** 003567 ** The return value is one of these: 003568 ** 003569 ** 0 The index is definitely not a covering index 003570 ** 003571 ** WHERE_IDX_ONLY The index is definitely a covering index 003572 ** 003573 ** WHERE_EXPRIDX The index is likely a covering index, but it is 003574 ** difficult to determine precisely because of the 003575 ** expressions that are indexed. Score it as a 003576 ** covering index, but still keep the main table open 003577 ** just in case we need it. 003578 ** 003579 ** This routine is an optimization. It is always safe to return zero. 003580 ** But returning one of the other two values when zero should have been 003581 ** returned can lead to incorrect bytecode and assertion faults. 003582 */ 003583 static SQLITE_NOINLINE u32 whereIsCoveringIndex( 003584 WhereInfo *pWInfo, /* The WHERE clause context */ 003585 Index *pIdx, /* Index that is being tested */ 003586 int iTabCur /* Cursor for the table being indexed */ 003587 ){ 003588 int i, rc; 003589 struct CoveringIndexCheck ck; 003590 Walker w; 003591 if( pWInfo->pSelect==0 ){ 003592 /* We don't have access to the full query, so we cannot check to see 003593 ** if pIdx is covering. Assume it is not. */ 003594 return 0; 003595 } 003596 if( pIdx->bHasExpr==0 ){ 003597 for(i=0; i<pIdx->nColumn; i++){ 003598 if( pIdx->aiColumn[i]>=BMS-1 ) break; 003599 } 003600 if( i>=pIdx->nColumn ){ 003601 /* pIdx does not index any columns greater than 62, but we know from 003602 ** colMask that columns greater than 62 are used, so this is not a 003603 ** covering index */ 003604 return 0; 003605 } 003606 } 003607 ck.pIdx = pIdx; 003608 ck.iTabCur = iTabCur; 003609 ck.bExpr = 0; 003610 ck.bUnidx = 0; 003611 memset(&w, 0, sizeof(w)); 003612 w.xExprCallback = whereIsCoveringIndexWalkCallback; 003613 w.xSelectCallback = sqlite3SelectWalkNoop; 003614 w.u.pCovIdxCk = &ck; 003615 sqlite3WalkSelect(&w, pWInfo->pSelect); 003616 if( ck.bUnidx ){ 003617 rc = 0; 003618 }else if( ck.bExpr ){ 003619 rc = WHERE_EXPRIDX; 003620 }else{ 003621 rc = WHERE_IDX_ONLY; 003622 } 003623 return rc; 003624 } 003625 003626 /* 003627 ** This is an sqlite3ParserAddCleanup() callback that is invoked to 003628 ** free the Parse->pIdxEpr list when the Parse object is destroyed. 003629 */ 003630 static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){ 003631 IndexedExpr **pp = (IndexedExpr**)pObject; 003632 while( *pp!=0 ){ 003633 IndexedExpr *p = *pp; 003634 *pp = p->pIENext; 003635 sqlite3ExprDelete(db, p->pExpr); 003636 sqlite3DbFreeNN(db, p); 003637 } 003638 } 003639 003640 /* 003641 ** This function is called for a partial index - one with a WHERE clause - in 003642 ** two scenarios. In both cases, it determines whether or not the WHERE 003643 ** clause on the index implies that a column of the table may be safely 003644 ** replaced by a constant expression. For example, in the following 003645 ** SELECT: 003646 ** 003647 ** CREATE INDEX i1 ON t1(b, c) WHERE a=<expr>; 003648 ** SELECT a, b, c FROM t1 WHERE a=<expr> AND b=?; 003649 ** 003650 ** The "a" in the select-list may be replaced by <expr>, iff: 003651 ** 003652 ** (a) <expr> is a constant expression, and 003653 ** (b) The (a=<expr>) comparison uses the BINARY collation sequence, and 003654 ** (c) Column "a" has an affinity other than NONE or BLOB. 003655 ** 003656 ** If argument pItem is NULL, then pMask must not be NULL. In this case this 003657 ** function is being called as part of determining whether or not pIdx 003658 ** is a covering index. This function clears any bits in (*pMask) 003659 ** corresponding to columns that may be replaced by constants as described 003660 ** above. 003661 ** 003662 ** Otherwise, if pItem is not NULL, then this function is being called 003663 ** as part of coding a loop that uses index pIdx. In this case, add entries 003664 ** to the Parse.pIdxPartExpr list for each column that can be replaced 003665 ** by a constant. 003666 */ 003667 static void wherePartIdxExpr( 003668 Parse *pParse, /* Parse context */ 003669 Index *pIdx, /* Partial index being processed */ 003670 Expr *pPart, /* WHERE clause being processed */ 003671 Bitmask *pMask, /* Mask to clear bits in */ 003672 int iIdxCur, /* Cursor number for index */ 003673 SrcItem *pItem /* The FROM clause entry for the table */ 003674 ){ 003675 assert( pItem==0 || (pItem->fg.jointype & JT_RIGHT)==0 ); 003676 assert( (pItem==0 || pMask==0) && (pMask!=0 || pItem!=0) ); 003677 003678 if( pPart->op==TK_AND ){ 003679 wherePartIdxExpr(pParse, pIdx, pPart->pRight, pMask, iIdxCur, pItem); 003680 pPart = pPart->pLeft; 003681 } 003682 003683 if( (pPart->op==TK_EQ || pPart->op==TK_IS) ){ 003684 Expr *pLeft = pPart->pLeft; 003685 Expr *pRight = pPart->pRight; 003686 u8 aff; 003687 003688 if( pLeft->op!=TK_COLUMN ) return; 003689 if( !sqlite3ExprIsConstant(0, pRight) ) return; 003690 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse, pPart)) ) return; 003691 if( pLeft->iColumn<0 ) return; 003692 aff = pIdx->pTable->aCol[pLeft->iColumn].affinity; 003693 if( aff>=SQLITE_AFF_TEXT ){ 003694 if( pItem ){ 003695 sqlite3 *db = pParse->db; 003696 IndexedExpr *p = (IndexedExpr*)sqlite3DbMallocRaw(db, sizeof(*p)); 003697 if( p ){ 003698 int bNullRow = (pItem->fg.jointype&(JT_LEFT|JT_LTORJ))!=0; 003699 p->pExpr = sqlite3ExprDup(db, pRight, 0); 003700 p->iDataCur = pItem->iCursor; 003701 p->iIdxCur = iIdxCur; 003702 p->iIdxCol = pLeft->iColumn; 003703 p->bMaybeNullRow = bNullRow; 003704 p->pIENext = pParse->pIdxPartExpr; 003705 p->aff = aff; 003706 pParse->pIdxPartExpr = p; 003707 if( p->pIENext==0 ){ 003708 void *pArg = (void*)&pParse->pIdxPartExpr; 003709 sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg); 003710 } 003711 } 003712 }else if( pLeft->iColumn<(BMS-1) ){ 003713 *pMask &= ~((Bitmask)1 << pLeft->iColumn); 003714 } 003715 } 003716 } 003717 } 003718 003719 003720 /* 003721 ** Add all WhereLoop objects for a single table of the join where the table 003722 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 003723 ** a b-tree table, not a virtual table. 003724 ** 003725 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 003726 ** are calculated as follows: 003727 ** 003728 ** For a full scan, assuming the table (or index) contains nRow rows: 003729 ** 003730 ** cost = nRow * 3.0 // full-table scan 003731 ** cost = nRow * K // scan of covering index 003732 ** cost = nRow * (K+3.0) // scan of non-covering index 003733 ** 003734 ** where K is a value between 1.1 and 3.0 set based on the relative 003735 ** estimated average size of the index and table records. 003736 ** 003737 ** For an index scan, where nVisit is the number of index rows visited 003738 ** by the scan, and nSeek is the number of seek operations required on 003739 ** the index b-tree: 003740 ** 003741 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 003742 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 003743 ** 003744 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 003745 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 003746 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 003747 ** 003748 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 003749 ** of uncertainty. For this reason, scoring is designed to pick plans that 003750 ** "do the least harm" if the estimates are inaccurate. For example, a 003751 ** log(nRow) factor is omitted from a non-covering index scan in order to 003752 ** bias the scoring in favor of using an index, since the worst-case 003753 ** performance of using an index is far better than the worst-case performance 003754 ** of a full table scan. 003755 */ 003756 static int whereLoopAddBtree( 003757 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 003758 Bitmask mPrereq /* Extra prerequisites for using this table */ 003759 ){ 003760 WhereInfo *pWInfo; /* WHERE analysis context */ 003761 Index *pProbe; /* An index we are evaluating */ 003762 Index sPk; /* A fake index object for the primary key */ 003763 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 003764 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 003765 SrcList *pTabList; /* The FROM clause */ 003766 SrcItem *pSrc; /* The FROM clause btree term to add */ 003767 WhereLoop *pNew; /* Template WhereLoop object */ 003768 int rc = SQLITE_OK; /* Return code */ 003769 int iSortIdx = 1; /* Index number */ 003770 int b; /* A boolean value */ 003771 LogEst rSize; /* number of rows in the table */ 003772 WhereClause *pWC; /* The parsed WHERE clause */ 003773 Table *pTab; /* Table being queried */ 003774 003775 pNew = pBuilder->pNew; 003776 pWInfo = pBuilder->pWInfo; 003777 pTabList = pWInfo->pTabList; 003778 pSrc = pTabList->a + pNew->iTab; 003779 pTab = pSrc->pTab; 003780 pWC = pBuilder->pWC; 003781 assert( !IsVirtual(pSrc->pTab) ); 003782 003783 if( pSrc->fg.isIndexedBy ){ 003784 assert( pSrc->fg.isCte==0 ); 003785 /* An INDEXED BY clause specifies a particular index to use */ 003786 pProbe = pSrc->u2.pIBIndex; 003787 }else if( !HasRowid(pTab) ){ 003788 pProbe = pTab->pIndex; 003789 }else{ 003790 /* There is no INDEXED BY clause. Create a fake Index object in local 003791 ** variable sPk to represent the rowid primary key index. Make this 003792 ** fake index the first in a chain of Index objects with all of the real 003793 ** indices to follow */ 003794 Index *pFirst; /* First of real indices on the table */ 003795 memset(&sPk, 0, sizeof(Index)); 003796 sPk.nKeyCol = 1; 003797 sPk.nColumn = 1; 003798 sPk.aiColumn = &aiColumnPk; 003799 sPk.aiRowLogEst = aiRowEstPk; 003800 sPk.onError = OE_Replace; 003801 sPk.pTable = pTab; 003802 sPk.szIdxRow = 3; /* TUNING: Interior rows of IPK table are very small */ 003803 sPk.idxType = SQLITE_IDXTYPE_IPK; 003804 aiRowEstPk[0] = pTab->nRowLogEst; 003805 aiRowEstPk[1] = 0; 003806 pFirst = pSrc->pTab->pIndex; 003807 if( pSrc->fg.notIndexed==0 ){ 003808 /* The real indices of the table are only considered if the 003809 ** NOT INDEXED qualifier is omitted from the FROM clause */ 003810 sPk.pNext = pFirst; 003811 } 003812 pProbe = &sPk; 003813 } 003814 rSize = pTab->nRowLogEst; 003815 003816 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 003817 /* Automatic indexes */ 003818 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 003819 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 003820 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 003821 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 003822 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 003823 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 003824 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 003825 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 003826 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 003827 ){ 003828 /* Generate auto-index WhereLoops */ 003829 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 003830 WhereTerm *pTerm; 003831 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 003832 rLogSize = estLog(rSize); 003833 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 003834 if( pTerm->prereqRight & pNew->maskSelf ) continue; 003835 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 003836 pNew->u.btree.nEq = 1; 003837 pNew->nSkip = 0; 003838 pNew->u.btree.pIndex = 0; 003839 pNew->nLTerm = 1; 003840 pNew->aLTerm[0] = pTerm; 003841 /* TUNING: One-time cost for computing the automatic index is 003842 ** estimated to be X*N*log2(N) where N is the number of rows in 003843 ** the table being indexed and where X is 7 (LogEst=28) for normal 003844 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 003845 ** of X is smaller for views and subqueries so that the query planner 003846 ** will be more aggressive about generating automatic indexes for 003847 ** those objects, since there is no opportunity to add schema 003848 ** indexes on subqueries and views. */ 003849 pNew->rSetup = rLogSize + rSize; 003850 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 003851 pNew->rSetup += 28; 003852 }else{ 003853 pNew->rSetup -= 25; /* Greatly reduced setup cost for auto indexes 003854 ** on ephemeral materializations of views */ 003855 } 003856 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 003857 if( pNew->rSetup<0 ) pNew->rSetup = 0; 003858 /* TUNING: Each index lookup yields 20 rows in the table. This 003859 ** is more than the usual guess of 10 rows, since we have no way 003860 ** of knowing how selective the index will ultimately be. It would 003861 ** not be unreasonable to make this value much larger. */ 003862 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 003863 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 003864 pNew->wsFlags = WHERE_AUTO_INDEX; 003865 pNew->prereq = mPrereq | pTerm->prereqRight; 003866 rc = whereLoopInsert(pBuilder, pNew); 003867 } 003868 } 003869 } 003870 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 003871 003872 /* Loop over all indices. If there was an INDEXED BY clause, then only 003873 ** consider index pProbe. */ 003874 for(; rc==SQLITE_OK && pProbe; 003875 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 003876 ){ 003877 if( pProbe->pPartIdxWhere!=0 003878 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, 003879 pProbe->pPartIdxWhere) 003880 ){ 003881 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 003882 continue; /* Partial index inappropriate for this query */ 003883 } 003884 if( pProbe->bNoQuery ) continue; 003885 rSize = pProbe->aiRowLogEst[0]; 003886 pNew->u.btree.nEq = 0; 003887 pNew->u.btree.nBtm = 0; 003888 pNew->u.btree.nTop = 0; 003889 pNew->nSkip = 0; 003890 pNew->nLTerm = 0; 003891 pNew->iSortIdx = 0; 003892 pNew->rSetup = 0; 003893 pNew->prereq = mPrereq; 003894 pNew->nOut = rSize; 003895 pNew->u.btree.pIndex = pProbe; 003896 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 003897 003898 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 003899 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 003900 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 003901 /* Integer primary key index */ 003902 pNew->wsFlags = WHERE_IPK; 003903 003904 /* Full table scan */ 003905 pNew->iSortIdx = b ? iSortIdx : 0; 003906 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 003907 ** extra cost designed to discourage the use of full table scans, 003908 ** since index lookups have better worst-case performance if our 003909 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 003910 ** (to 2.75) if we have valid STAT4 information for the table. 003911 ** At 2.75, a full table scan is preferred over using an index on 003912 ** a column with just two distinct values where each value has about 003913 ** an equal number of appearances. Without STAT4 data, we still want 003914 ** to use an index in that case, since the constraint might be for 003915 ** the scarcer of the two values, and in that case an index lookup is 003916 ** better. 003917 */ 003918 #ifdef SQLITE_ENABLE_STAT4 003919 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 003920 #else 003921 pNew->rRun = rSize + 16; 003922 #endif 003923 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 003924 whereLoopOutputAdjust(pWC, pNew, rSize); 003925 rc = whereLoopInsert(pBuilder, pNew); 003926 pNew->nOut = rSize; 003927 if( rc ) break; 003928 }else{ 003929 Bitmask m; 003930 if( pProbe->isCovering ){ 003931 m = 0; 003932 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 003933 }else{ 003934 m = pSrc->colUsed & pProbe->colNotIdxed; 003935 if( pProbe->pPartIdxWhere ){ 003936 wherePartIdxExpr( 003937 pWInfo->pParse, pProbe, pProbe->pPartIdxWhere, &m, 0, 0 003938 ); 003939 } 003940 pNew->wsFlags = WHERE_INDEXED; 003941 if( m==TOPBIT || (pProbe->bHasExpr && !pProbe->bHasVCol && m!=0) ){ 003942 u32 isCov = whereIsCoveringIndex(pWInfo, pProbe, pSrc->iCursor); 003943 if( isCov==0 ){ 003944 WHERETRACE(0x200, 003945 ("-> %s is not a covering index" 003946 " according to whereIsCoveringIndex()\n", pProbe->zName)); 003947 assert( m!=0 ); 003948 }else{ 003949 m = 0; 003950 pNew->wsFlags |= isCov; 003951 if( isCov & WHERE_IDX_ONLY ){ 003952 WHERETRACE(0x200, 003953 ("-> %s is a covering expression index" 003954 " according to whereIsCoveringIndex()\n", pProbe->zName)); 003955 }else{ 003956 assert( isCov==WHERE_EXPRIDX ); 003957 WHERETRACE(0x200, 003958 ("-> %s might be a covering expression index" 003959 " according to whereIsCoveringIndex()\n", pProbe->zName)); 003960 } 003961 } 003962 }else if( m==0 003963 && (HasRowid(pTab) || pWInfo->pSelect!=0 || sqlite3FaultSim(700)) 003964 ){ 003965 WHERETRACE(0x200, 003966 ("-> %s a covering index according to bitmasks\n", 003967 pProbe->zName, m==0 ? "is" : "is not")); 003968 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 003969 } 003970 } 003971 003972 /* Full scan via index */ 003973 if( b 003974 || !HasRowid(pTab) 003975 || pProbe->pPartIdxWhere!=0 003976 || pSrc->fg.isIndexedBy 003977 || ( m==0 003978 && pProbe->bUnordered==0 003979 && (pProbe->szIdxRow<pTab->szTabRow) 003980 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 003981 && sqlite3GlobalConfig.bUseCis 003982 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 003983 ) 003984 ){ 003985 pNew->iSortIdx = b ? iSortIdx : 0; 003986 003987 /* The cost of visiting the index rows is N*K, where K is 003988 ** between 1.1 and 3.0, depending on the relative sizes of the 003989 ** index and table rows. */ 003990 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 003991 if( m!=0 ){ 003992 /* If this is a non-covering index scan, add in the cost of 003993 ** doing table lookups. The cost will be 3x the number of 003994 ** lookups. Take into account WHERE clause terms that can be 003995 ** satisfied using just the index, and that do not require a 003996 ** table lookup. */ 003997 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 003998 int ii; 003999 int iCur = pSrc->iCursor; 004000 WhereClause *pWC2 = &pWInfo->sWC; 004001 for(ii=0; ii<pWC2->nTerm; ii++){ 004002 WhereTerm *pTerm = &pWC2->a[ii]; 004003 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 004004 break; 004005 } 004006 /* pTerm can be evaluated using just the index. So reduce 004007 ** the expected number of table lookups accordingly */ 004008 if( pTerm->truthProb<=0 ){ 004009 nLookup += pTerm->truthProb; 004010 }else{ 004011 nLookup--; 004012 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 004013 } 004014 } 004015 004016 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 004017 } 004018 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 004019 whereLoopOutputAdjust(pWC, pNew, rSize); 004020 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 004021 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 004022 ** because the cursor used to access the index might not be 004023 ** positioned to the correct row during the right-join no-match 004024 ** loop. */ 004025 }else{ 004026 rc = whereLoopInsert(pBuilder, pNew); 004027 } 004028 pNew->nOut = rSize; 004029 if( rc ) break; 004030 } 004031 } 004032 004033 pBuilder->bldFlags1 = 0; 004034 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 004035 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 004036 /* If a non-unique index is used, or if a prefix of the key for 004037 ** unique index is used (making the index functionally non-unique) 004038 ** then the sqlite_stat1 data becomes important for scoring the 004039 ** plan */ 004040 pTab->tabFlags |= TF_MaybeReanalyze; 004041 } 004042 #ifdef SQLITE_ENABLE_STAT4 004043 sqlite3Stat4ProbeFree(pBuilder->pRec); 004044 pBuilder->nRecValid = 0; 004045 pBuilder->pRec = 0; 004046 #endif 004047 } 004048 return rc; 004049 } 004050 004051 #ifndef SQLITE_OMIT_VIRTUALTABLE 004052 004053 /* 004054 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 004055 */ 004056 static int isLimitTerm(WhereTerm *pTerm){ 004057 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 004058 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 004059 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 004060 } 004061 004062 /* 004063 ** Return true if the first nCons constraints in the pUsage array are 004064 ** marked as in-use (have argvIndex>0). False otherwise. 004065 */ 004066 static int allConstraintsUsed( 004067 struct sqlite3_index_constraint_usage *aUsage, 004068 int nCons 004069 ){ 004070 int ii; 004071 for(ii=0; ii<nCons; ii++){ 004072 if( aUsage[ii].argvIndex<=0 ) return 0; 004073 } 004074 return 1; 004075 } 004076 004077 /* 004078 ** Argument pIdxInfo is already populated with all constraints that may 004079 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 004080 ** function marks a subset of those constraints usable, invokes the 004081 ** xBestIndex method and adds the returned plan to pBuilder. 004082 ** 004083 ** A constraint is marked usable if: 004084 ** 004085 ** * Argument mUsable indicates that its prerequisites are available, and 004086 ** 004087 ** * It is not one of the operators specified in the mExclude mask passed 004088 ** as the fourth argument (which in practice is either WO_IN or 0). 004089 ** 004090 ** Argument mPrereq is a mask of tables that must be scanned before the 004091 ** virtual table in question. These are added to the plans prerequisites 004092 ** before it is added to pBuilder. 004093 ** 004094 ** Output parameter *pbIn is set to true if the plan added to pBuilder 004095 ** uses one or more WO_IN terms, or false otherwise. 004096 */ 004097 static int whereLoopAddVirtualOne( 004098 WhereLoopBuilder *pBuilder, 004099 Bitmask mPrereq, /* Mask of tables that must be used. */ 004100 Bitmask mUsable, /* Mask of usable tables */ 004101 u16 mExclude, /* Exclude terms using these operators */ 004102 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 004103 u16 mNoOmit, /* Do not omit these constraints */ 004104 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 004105 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 004106 ){ 004107 WhereClause *pWC = pBuilder->pWC; 004108 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 004109 struct sqlite3_index_constraint *pIdxCons; 004110 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 004111 int i; 004112 int mxTerm; 004113 int rc = SQLITE_OK; 004114 WhereLoop *pNew = pBuilder->pNew; 004115 Parse *pParse = pBuilder->pWInfo->pParse; 004116 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 004117 int nConstraint = pIdxInfo->nConstraint; 004118 004119 assert( (mUsable & mPrereq)==mPrereq ); 004120 *pbIn = 0; 004121 pNew->prereq = mPrereq; 004122 004123 /* Set the usable flag on the subset of constraints identified by 004124 ** arguments mUsable and mExclude. */ 004125 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 004126 for(i=0; i<nConstraint; i++, pIdxCons++){ 004127 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 004128 pIdxCons->usable = 0; 004129 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 004130 && (pTerm->eOperator & mExclude)==0 004131 && (pbRetryLimit || !isLimitTerm(pTerm)) 004132 ){ 004133 pIdxCons->usable = 1; 004134 } 004135 } 004136 004137 /* Initialize the output fields of the sqlite3_index_info structure */ 004138 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 004139 assert( pIdxInfo->needToFreeIdxStr==0 ); 004140 pIdxInfo->idxStr = 0; 004141 pIdxInfo->idxNum = 0; 004142 pIdxInfo->orderByConsumed = 0; 004143 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 004144 pIdxInfo->estimatedRows = 25; 004145 pIdxInfo->idxFlags = 0; 004146 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 004147 pHidden->mHandleIn = 0; 004148 004149 /* Invoke the virtual table xBestIndex() method */ 004150 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 004151 if( rc ){ 004152 if( rc==SQLITE_CONSTRAINT ){ 004153 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 004154 ** that the particular combination of parameters provided is unusable. 004155 ** Make no entries in the loop table. 004156 */ 004157 WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n")); 004158 return SQLITE_OK; 004159 } 004160 return rc; 004161 } 004162 004163 mxTerm = -1; 004164 assert( pNew->nLSlot>=nConstraint ); 004165 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 004166 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 004167 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 004168 for(i=0; i<nConstraint; i++, pIdxCons++){ 004169 int iTerm; 004170 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 004171 WhereTerm *pTerm; 004172 int j = pIdxCons->iTermOffset; 004173 if( iTerm>=nConstraint 004174 || j<0 004175 || j>=pWC->nTerm 004176 || pNew->aLTerm[iTerm]!=0 004177 || pIdxCons->usable==0 004178 ){ 004179 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 004180 testcase( pIdxInfo->needToFreeIdxStr ); 004181 return SQLITE_ERROR; 004182 } 004183 testcase( iTerm==nConstraint-1 ); 004184 testcase( j==0 ); 004185 testcase( j==pWC->nTerm-1 ); 004186 pTerm = &pWC->a[j]; 004187 pNew->prereq |= pTerm->prereqRight; 004188 assert( iTerm<pNew->nLSlot ); 004189 pNew->aLTerm[iTerm] = pTerm; 004190 if( iTerm>mxTerm ) mxTerm = iTerm; 004191 testcase( iTerm==15 ); 004192 testcase( iTerm==16 ); 004193 if( pUsage[i].omit ){ 004194 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 004195 testcase( i!=iTerm ); 004196 pNew->u.vtab.omitMask |= 1<<iTerm; 004197 }else{ 004198 testcase( i!=iTerm ); 004199 } 004200 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 004201 pNew->u.vtab.bOmitOffset = 1; 004202 } 004203 } 004204 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 004205 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 004206 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 004207 /* A virtual table that is constrained by an IN clause may not 004208 ** consume the ORDER BY clause because (1) the order of IN terms 004209 ** is not necessarily related to the order of output terms and 004210 ** (2) Multiple outputs from a single IN value will not merge 004211 ** together. */ 004212 pIdxInfo->orderByConsumed = 0; 004213 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 004214 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 004215 } 004216 004217 /* Unless pbRetryLimit is non-NULL, there should be no LIMIT/OFFSET 004218 ** terms. And if there are any, they should follow all other terms. */ 004219 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 004220 assert( !isLimitTerm(pTerm) || i>=nConstraint-2 ); 004221 assert( !isLimitTerm(pTerm) || i==nConstraint-1 || isLimitTerm(pTerm+1) ); 004222 004223 if( isLimitTerm(pTerm) && (*pbIn || !allConstraintsUsed(pUsage, i)) ){ 004224 /* If there is an IN(...) term handled as an == (separate call to 004225 ** xFilter for each value on the RHS of the IN) and a LIMIT or 004226 ** OFFSET term handled as well, the plan is unusable. Similarly, 004227 ** if there is a LIMIT/OFFSET and there are other unused terms, 004228 ** the plan cannot be used. In these cases set variable *pbRetryLimit 004229 ** to true to tell the caller to retry with LIMIT and OFFSET 004230 ** disabled. */ 004231 if( pIdxInfo->needToFreeIdxStr ){ 004232 sqlite3_free(pIdxInfo->idxStr); 004233 pIdxInfo->idxStr = 0; 004234 pIdxInfo->needToFreeIdxStr = 0; 004235 } 004236 *pbRetryLimit = 1; 004237 return SQLITE_OK; 004238 } 004239 } 004240 } 004241 004242 pNew->nLTerm = mxTerm+1; 004243 for(i=0; i<=mxTerm; i++){ 004244 if( pNew->aLTerm[i]==0 ){ 004245 /* The non-zero argvIdx values must be contiguous. Raise an 004246 ** error if they are not */ 004247 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 004248 testcase( pIdxInfo->needToFreeIdxStr ); 004249 return SQLITE_ERROR; 004250 } 004251 } 004252 assert( pNew->nLTerm<=pNew->nLSlot ); 004253 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 004254 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 004255 pIdxInfo->needToFreeIdxStr = 0; 004256 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 004257 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 004258 pIdxInfo->nOrderBy : 0); 004259 pNew->rSetup = 0; 004260 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 004261 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 004262 004263 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 004264 ** that the scan will visit at most one row. Clear it otherwise. */ 004265 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 004266 pNew->wsFlags |= WHERE_ONEROW; 004267 }else{ 004268 pNew->wsFlags &= ~WHERE_ONEROW; 004269 } 004270 rc = whereLoopInsert(pBuilder, pNew); 004271 if( pNew->u.vtab.needFree ){ 004272 sqlite3_free(pNew->u.vtab.idxStr); 004273 pNew->u.vtab.needFree = 0; 004274 } 004275 WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 004276 *pbIn, (sqlite3_uint64)mPrereq, 004277 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 004278 004279 return rc; 004280 } 004281 004282 /* 004283 ** Return the collating sequence for a constraint passed into xBestIndex. 004284 ** 004285 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 004286 ** This routine depends on there being a HiddenIndexInfo structure immediately 004287 ** following the sqlite3_index_info structure. 004288 ** 004289 ** Return a pointer to the collation name: 004290 ** 004291 ** 1. If there is an explicit COLLATE operator on the constraint, return it. 004292 ** 004293 ** 2. Else, if the column has an alternative collation, return that. 004294 ** 004295 ** 3. Otherwise, return "BINARY". 004296 */ 004297 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 004298 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 004299 const char *zRet = 0; 004300 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 004301 CollSeq *pC = 0; 004302 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 004303 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 004304 if( pX->pLeft ){ 004305 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 004306 } 004307 zRet = (pC ? pC->zName : sqlite3StrBINARY); 004308 } 004309 return zRet; 004310 } 004311 004312 /* 004313 ** Return true if constraint iCons is really an IN(...) constraint, or 004314 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 004315 ** or clear (if bHandle==0) the flag to handle it using an iterator. 004316 */ 004317 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 004318 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 004319 u32 m = SMASKBIT32(iCons); 004320 if( m & pHidden->mIn ){ 004321 if( bHandle==0 ){ 004322 pHidden->mHandleIn &= ~m; 004323 }else if( bHandle>0 ){ 004324 pHidden->mHandleIn |= m; 004325 } 004326 return 1; 004327 } 004328 return 0; 004329 } 004330 004331 /* 004332 ** This interface is callable from within the xBestIndex callback only. 004333 ** 004334 ** If possible, set (*ppVal) to point to an object containing the value 004335 ** on the right-hand-side of constraint iCons. 004336 */ 004337 int sqlite3_vtab_rhs_value( 004338 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 004339 int iCons, /* Constraint for which RHS is wanted */ 004340 sqlite3_value **ppVal /* Write value extracted here */ 004341 ){ 004342 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 004343 sqlite3_value *pVal = 0; 004344 int rc = SQLITE_OK; 004345 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 004346 rc = SQLITE_MISUSE_BKPT; /* EV: R-30545-25046 */ 004347 }else{ 004348 if( pH->aRhs[iCons]==0 ){ 004349 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 004350 rc = sqlite3ValueFromExpr( 004351 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 004352 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 004353 ); 004354 testcase( rc!=SQLITE_OK ); 004355 } 004356 pVal = pH->aRhs[iCons]; 004357 } 004358 *ppVal = pVal; 004359 004360 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 004361 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 004362 } 004363 004364 return rc; 004365 } 004366 004367 /* 004368 ** Return true if ORDER BY clause may be handled as DISTINCT. 004369 */ 004370 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 004371 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 004372 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 004373 return pHidden->eDistinct; 004374 } 004375 004376 /* 004377 ** Cause the prepared statement that is associated with a call to 004378 ** xBestIndex to potentially use all schemas. If the statement being 004379 ** prepared is read-only, then just start read transactions on all 004380 ** schemas. But if this is a write operation, start writes on all 004381 ** schemas. 004382 ** 004383 ** This is used by the (built-in) sqlite_dbpage virtual table. 004384 */ 004385 void sqlite3VtabUsesAllSchemas(Parse *pParse){ 004386 int nDb = pParse->db->nDb; 004387 int i; 004388 for(i=0; i<nDb; i++){ 004389 sqlite3CodeVerifySchema(pParse, i); 004390 } 004391 if( DbMaskNonZero(pParse->writeMask) ){ 004392 for(i=0; i<nDb; i++){ 004393 sqlite3BeginWriteOperation(pParse, 0, i); 004394 } 004395 } 004396 } 004397 004398 /* 004399 ** Add all WhereLoop objects for a table of the join identified by 004400 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 004401 ** 004402 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 004403 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 004404 ** entries that occur before the virtual table in the FROM clause and are 004405 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 004406 ** mUnusable mask contains all FROM clause entries that occur after the 004407 ** virtual table and are separated from it by at least one LEFT or 004408 ** CROSS JOIN. 004409 ** 004410 ** For example, if the query were: 004411 ** 004412 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 004413 ** 004414 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 004415 ** 004416 ** All the tables in mPrereq must be scanned before the current virtual 004417 ** table. So any terms for which all prerequisites are satisfied by 004418 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 004419 ** Conversely, all tables in mUnusable must be scanned after the current 004420 ** virtual table, so any terms for which the prerequisites overlap with 004421 ** mUnusable should always be configured as "not-usable" for xBestIndex. 004422 */ 004423 static int whereLoopAddVirtual( 004424 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 004425 Bitmask mPrereq, /* Tables that must be scanned before this one */ 004426 Bitmask mUnusable /* Tables that must be scanned after this one */ 004427 ){ 004428 int rc = SQLITE_OK; /* Return code */ 004429 WhereInfo *pWInfo; /* WHERE analysis context */ 004430 Parse *pParse; /* The parsing context */ 004431 WhereClause *pWC; /* The WHERE clause */ 004432 SrcItem *pSrc; /* The FROM clause term to search */ 004433 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 004434 int nConstraint; /* Number of constraints in p */ 004435 int bIn; /* True if plan uses IN(...) operator */ 004436 WhereLoop *pNew; 004437 Bitmask mBest; /* Tables used by best possible plan */ 004438 u16 mNoOmit; 004439 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 004440 004441 assert( (mPrereq & mUnusable)==0 ); 004442 pWInfo = pBuilder->pWInfo; 004443 pParse = pWInfo->pParse; 004444 pWC = pBuilder->pWC; 004445 pNew = pBuilder->pNew; 004446 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 004447 assert( IsVirtual(pSrc->pTab) ); 004448 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 004449 if( p==0 ) return SQLITE_NOMEM_BKPT; 004450 pNew->rSetup = 0; 004451 pNew->wsFlags = WHERE_VIRTUALTABLE; 004452 pNew->nLTerm = 0; 004453 pNew->u.vtab.needFree = 0; 004454 nConstraint = p->nConstraint; 004455 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 004456 freeIndexInfo(pParse->db, p); 004457 return SQLITE_NOMEM_BKPT; 004458 } 004459 004460 /* First call xBestIndex() with all constraints usable. */ 004461 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 004462 WHERETRACE(0x800, (" VirtualOne: all usable\n")); 004463 rc = whereLoopAddVirtualOne( 004464 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 004465 ); 004466 if( bRetry ){ 004467 assert( rc==SQLITE_OK ); 004468 rc = whereLoopAddVirtualOne( 004469 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 004470 ); 004471 } 004472 004473 /* If the call to xBestIndex() with all terms enabled produced a plan 004474 ** that does not require any source tables (IOW: a plan with mBest==0) 004475 ** and does not use an IN(...) operator, then there is no point in making 004476 ** any further calls to xBestIndex() since they will all return the same 004477 ** result (if the xBestIndex() implementation is sane). */ 004478 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 004479 int seenZero = 0; /* True if a plan with no prereqs seen */ 004480 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 004481 Bitmask mPrev = 0; 004482 Bitmask mBestNoIn = 0; 004483 004484 /* If the plan produced by the earlier call uses an IN(...) term, call 004485 ** xBestIndex again, this time with IN(...) terms disabled. */ 004486 if( bIn ){ 004487 WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n")); 004488 rc = whereLoopAddVirtualOne( 004489 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 004490 assert( bIn==0 ); 004491 mBestNoIn = pNew->prereq & ~mPrereq; 004492 if( mBestNoIn==0 ){ 004493 seenZero = 1; 004494 seenZeroNoIN = 1; 004495 } 004496 } 004497 004498 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 004499 ** in the set of terms that apply to the current virtual table. */ 004500 while( rc==SQLITE_OK ){ 004501 int i; 004502 Bitmask mNext = ALLBITS; 004503 assert( mNext>0 ); 004504 for(i=0; i<nConstraint; i++){ 004505 Bitmask mThis = ( 004506 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 004507 ); 004508 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 004509 } 004510 mPrev = mNext; 004511 if( mNext==ALLBITS ) break; 004512 if( mNext==mBest || mNext==mBestNoIn ) continue; 004513 WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 004514 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 004515 rc = whereLoopAddVirtualOne( 004516 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 004517 if( pNew->prereq==mPrereq ){ 004518 seenZero = 1; 004519 if( bIn==0 ) seenZeroNoIN = 1; 004520 } 004521 } 004522 004523 /* If the calls to xBestIndex() in the above loop did not find a plan 004524 ** that requires no source tables at all (i.e. one guaranteed to be 004525 ** usable), make a call here with all source tables disabled */ 004526 if( rc==SQLITE_OK && seenZero==0 ){ 004527 WHERETRACE(0x800, (" VirtualOne: all disabled\n")); 004528 rc = whereLoopAddVirtualOne( 004529 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 004530 if( bIn==0 ) seenZeroNoIN = 1; 004531 } 004532 004533 /* If the calls to xBestIndex() have so far failed to find a plan 004534 ** that requires no source tables at all and does not use an IN(...) 004535 ** operator, make a final call to obtain one here. */ 004536 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 004537 WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n")); 004538 rc = whereLoopAddVirtualOne( 004539 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 004540 } 004541 } 004542 004543 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 004544 freeIndexInfo(pParse->db, p); 004545 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 004546 return rc; 004547 } 004548 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 004549 004550 /* 004551 ** Add WhereLoop entries to handle OR terms. This works for either 004552 ** btrees or virtual tables. 004553 */ 004554 static int whereLoopAddOr( 004555 WhereLoopBuilder *pBuilder, 004556 Bitmask mPrereq, 004557 Bitmask mUnusable 004558 ){ 004559 WhereInfo *pWInfo = pBuilder->pWInfo; 004560 WhereClause *pWC; 004561 WhereLoop *pNew; 004562 WhereTerm *pTerm, *pWCEnd; 004563 int rc = SQLITE_OK; 004564 int iCur; 004565 WhereClause tempWC; 004566 WhereLoopBuilder sSubBuild; 004567 WhereOrSet sSum, sCur; 004568 SrcItem *pItem; 004569 004570 pWC = pBuilder->pWC; 004571 pWCEnd = pWC->a + pWC->nTerm; 004572 pNew = pBuilder->pNew; 004573 memset(&sSum, 0, sizeof(sSum)); 004574 pItem = pWInfo->pTabList->a + pNew->iTab; 004575 iCur = pItem->iCursor; 004576 004577 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 004578 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 004579 004580 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 004581 if( (pTerm->eOperator & WO_OR)!=0 004582 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 004583 ){ 004584 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 004585 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 004586 WhereTerm *pOrTerm; 004587 int once = 1; 004588 int i, j; 004589 004590 sSubBuild = *pBuilder; 004591 sSubBuild.pOrSet = &sCur; 004592 004593 WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm)); 004594 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 004595 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 004596 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 004597 }else if( pOrTerm->leftCursor==iCur ){ 004598 tempWC.pWInfo = pWC->pWInfo; 004599 tempWC.pOuter = pWC; 004600 tempWC.op = TK_AND; 004601 tempWC.nTerm = 1; 004602 tempWC.nBase = 1; 004603 tempWC.a = pOrTerm; 004604 sSubBuild.pWC = &tempWC; 004605 }else{ 004606 continue; 004607 } 004608 sCur.n = 0; 004609 #ifdef WHERETRACE_ENABLED 004610 WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n", 004611 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 004612 if( sqlite3WhereTrace & 0x20000 ){ 004613 sqlite3WhereClausePrint(sSubBuild.pWC); 004614 } 004615 #endif 004616 #ifndef SQLITE_OMIT_VIRTUALTABLE 004617 if( IsVirtual(pItem->pTab) ){ 004618 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 004619 }else 004620 #endif 004621 { 004622 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 004623 } 004624 if( rc==SQLITE_OK ){ 004625 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 004626 } 004627 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 004628 testcase( rc==SQLITE_DONE ); 004629 if( sCur.n==0 ){ 004630 sSum.n = 0; 004631 break; 004632 }else if( once ){ 004633 whereOrMove(&sSum, &sCur); 004634 once = 0; 004635 }else{ 004636 WhereOrSet sPrev; 004637 whereOrMove(&sPrev, &sSum); 004638 sSum.n = 0; 004639 for(i=0; i<sPrev.n; i++){ 004640 for(j=0; j<sCur.n; j++){ 004641 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 004642 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 004643 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 004644 } 004645 } 004646 } 004647 } 004648 pNew->nLTerm = 1; 004649 pNew->aLTerm[0] = pTerm; 004650 pNew->wsFlags = WHERE_MULTI_OR; 004651 pNew->rSetup = 0; 004652 pNew->iSortIdx = 0; 004653 memset(&pNew->u, 0, sizeof(pNew->u)); 004654 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 004655 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 004656 ** of all sub-scans required by the OR-scan. However, due to rounding 004657 ** errors, it may be that the cost of the OR-scan is equal to its 004658 ** most expensive sub-scan. Add the smallest possible penalty 004659 ** (equivalent to multiplying the cost by 1.07) to ensure that 004660 ** this does not happen. Otherwise, for WHERE clauses such as the 004661 ** following where there is an index on "y": 004662 ** 004663 ** WHERE likelihood(x=?, 0.99) OR y=? 004664 ** 004665 ** the planner may elect to "OR" together a full-table scan and an 004666 ** index lookup. And other similarly odd results. */ 004667 pNew->rRun = sSum.a[i].rRun + 1; 004668 pNew->nOut = sSum.a[i].nOut; 004669 pNew->prereq = sSum.a[i].prereq; 004670 rc = whereLoopInsert(pBuilder, pNew); 004671 } 004672 WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm)); 004673 } 004674 } 004675 return rc; 004676 } 004677 004678 /* 004679 ** Add all WhereLoop objects for all tables 004680 */ 004681 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 004682 WhereInfo *pWInfo = pBuilder->pWInfo; 004683 Bitmask mPrereq = 0; 004684 Bitmask mPrior = 0; 004685 int iTab; 004686 SrcList *pTabList = pWInfo->pTabList; 004687 SrcItem *pItem; 004688 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 004689 sqlite3 *db = pWInfo->pParse->db; 004690 int rc = SQLITE_OK; 004691 int bFirstPastRJ = 0; 004692 int hasRightJoin = 0; 004693 WhereLoop *pNew; 004694 004695 004696 /* Loop over the tables in the join, from left to right */ 004697 pNew = pBuilder->pNew; 004698 004699 /* Verify that pNew has already been initialized */ 004700 assert( pNew->nLTerm==0 ); 004701 assert( pNew->wsFlags==0 ); 004702 assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); 004703 assert( pNew->aLTerm!=0 ); 004704 004705 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 004706 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 004707 Bitmask mUnusable = 0; 004708 pNew->iTab = iTab; 004709 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 004710 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 004711 if( bFirstPastRJ 004712 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 004713 ){ 004714 /* Add prerequisites to prevent reordering of FROM clause terms 004715 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 004716 ** prevents the right operand of a RIGHT JOIN from being swapped with 004717 ** other elements even further to the right. 004718 ** 004719 ** The JT_LTORJ case and the hasRightJoin flag work together to 004720 ** prevent FROM-clause terms from moving from the right side of 004721 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN 004722 ** is itself on the left side of a RIGHT JOIN. 004723 */ 004724 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; 004725 mPrereq |= mPrior; 004726 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 004727 }else if( !hasRightJoin ){ 004728 mPrereq = 0; 004729 } 004730 #ifndef SQLITE_OMIT_VIRTUALTABLE 004731 if( IsVirtual(pItem->pTab) ){ 004732 SrcItem *p; 004733 for(p=&pItem[1]; p<pEnd; p++){ 004734 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 004735 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 004736 } 004737 } 004738 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 004739 }else 004740 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 004741 { 004742 rc = whereLoopAddBtree(pBuilder, mPrereq); 004743 } 004744 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 004745 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 004746 } 004747 mPrior |= pNew->maskSelf; 004748 if( rc || db->mallocFailed ){ 004749 if( rc==SQLITE_DONE ){ 004750 /* We hit the query planner search limit set by iPlanLimit */ 004751 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 004752 rc = SQLITE_OK; 004753 }else{ 004754 break; 004755 } 004756 } 004757 } 004758 004759 whereLoopClear(db, pNew); 004760 return rc; 004761 } 004762 004763 /* 004764 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 004765 ** parameters) to see if it outputs rows in the requested ORDER BY 004766 ** (or GROUP BY) without requiring a separate sort operation. Return N: 004767 ** 004768 ** N>0: N terms of the ORDER BY clause are satisfied 004769 ** N==0: No terms of the ORDER BY clause are satisfied 004770 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 004771 ** 004772 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 004773 ** strict. With GROUP BY and DISTINCT the only requirement is that 004774 ** equivalent rows appear immediately adjacent to one another. GROUP BY 004775 ** and DISTINCT do not require rows to appear in any particular order as long 004776 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 004777 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 004778 ** pOrderBy terms must be matched in strict left-to-right order. 004779 */ 004780 static i8 wherePathSatisfiesOrderBy( 004781 WhereInfo *pWInfo, /* The WHERE clause */ 004782 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 004783 WherePath *pPath, /* The WherePath to check */ 004784 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 004785 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 004786 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 004787 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 004788 ){ 004789 u8 revSet; /* True if rev is known */ 004790 u8 rev; /* Composite sort order */ 004791 u8 revIdx; /* Index sort order */ 004792 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 004793 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 004794 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 004795 u16 eqOpMask; /* Allowed equality operators */ 004796 u16 nKeyCol; /* Number of key columns in pIndex */ 004797 u16 nColumn; /* Total number of ordered columns in the index */ 004798 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 004799 int iLoop; /* Index of WhereLoop in pPath being processed */ 004800 int i, j; /* Loop counters */ 004801 int iCur; /* Cursor number for current WhereLoop */ 004802 int iColumn; /* A column number within table iCur */ 004803 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 004804 WhereTerm *pTerm; /* A single term of the WHERE clause */ 004805 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 004806 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 004807 Index *pIndex; /* The index associated with pLoop */ 004808 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 004809 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 004810 Bitmask obDone; /* Mask of all ORDER BY terms */ 004811 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 004812 Bitmask ready; /* Mask of inner loops */ 004813 004814 /* 004815 ** We say the WhereLoop is "one-row" if it generates no more than one 004816 ** row of output. A WhereLoop is one-row if all of the following are true: 004817 ** (a) All index columns match with WHERE_COLUMN_EQ. 004818 ** (b) The index is unique 004819 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 004820 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 004821 ** 004822 ** We say the WhereLoop is "order-distinct" if the set of columns from 004823 ** that WhereLoop that are in the ORDER BY clause are different for every 004824 ** row of the WhereLoop. Every one-row WhereLoop is automatically 004825 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 004826 ** is not order-distinct. To be order-distinct is not quite the same as being 004827 ** UNIQUE since a UNIQUE column or index can have multiple rows that 004828 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 004829 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 004830 ** 004831 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 004832 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 004833 ** automatically order-distinct. 004834 */ 004835 004836 assert( pOrderBy!=0 ); 004837 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 004838 004839 nOrderBy = pOrderBy->nExpr; 004840 testcase( nOrderBy==BMS-1 ); 004841 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 004842 isOrderDistinct = 1; 004843 obDone = MASKBIT(nOrderBy)-1; 004844 orderDistinctMask = 0; 004845 ready = 0; 004846 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 004847 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 004848 eqOpMask |= WO_IN; 004849 } 004850 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 004851 if( iLoop>0 ) ready |= pLoop->maskSelf; 004852 if( iLoop<nLoop ){ 004853 pLoop = pPath->aLoop[iLoop]; 004854 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 004855 }else{ 004856 pLoop = pLast; 004857 } 004858 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 004859 if( pLoop->u.vtab.isOrdered 004860 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 004861 ){ 004862 obSat = obDone; 004863 } 004864 break; 004865 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 004866 pLoop->u.btree.nDistinctCol = 0; 004867 } 004868 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 004869 004870 /* Mark off any ORDER BY term X that is a column in the table of 004871 ** the current loop for which there is term in the WHERE 004872 ** clause of the form X IS NULL or X=? that reference only outer 004873 ** loops. 004874 */ 004875 for(i=0; i<nOrderBy; i++){ 004876 if( MASKBIT(i) & obSat ) continue; 004877 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 004878 if( NEVER(pOBExpr==0) ) continue; 004879 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 004880 if( pOBExpr->iTable!=iCur ) continue; 004881 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 004882 ~ready, eqOpMask, 0); 004883 if( pTerm==0 ) continue; 004884 if( pTerm->eOperator==WO_IN ){ 004885 /* IN terms are only valid for sorting in the ORDER BY LIMIT 004886 ** optimization, and then only if they are actually used 004887 ** by the query plan */ 004888 assert( wctrlFlags & 004889 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 004890 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 004891 if( j>=pLoop->nLTerm ) continue; 004892 } 004893 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 004894 Parse *pParse = pWInfo->pParse; 004895 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 004896 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 004897 assert( pColl1 ); 004898 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 004899 continue; 004900 } 004901 testcase( pTerm->pExpr->op==TK_IS ); 004902 } 004903 obSat |= MASKBIT(i); 004904 } 004905 004906 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 004907 if( pLoop->wsFlags & WHERE_IPK ){ 004908 pIndex = 0; 004909 nKeyCol = 0; 004910 nColumn = 1; 004911 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 004912 return 0; 004913 }else{ 004914 nKeyCol = pIndex->nKeyCol; 004915 nColumn = pIndex->nColumn; 004916 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 004917 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 004918 || !HasRowid(pIndex->pTable)); 004919 /* All relevant terms of the index must also be non-NULL in order 004920 ** for isOrderDistinct to be true. So the isOrderDistint value 004921 ** computed here might be a false positive. Corrections will be 004922 ** made at tag-20210426-1 below */ 004923 isOrderDistinct = IsUniqueIndex(pIndex) 004924 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 004925 } 004926 004927 /* Loop through all columns of the index and deal with the ones 004928 ** that are not constrained by == or IN. 004929 */ 004930 rev = revSet = 0; 004931 distinctColumns = 0; 004932 for(j=0; j<nColumn; j++){ 004933 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 004934 004935 assert( j>=pLoop->u.btree.nEq 004936 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 004937 ); 004938 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 004939 u16 eOp = pLoop->aLTerm[j]->eOperator; 004940 004941 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 004942 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 004943 ** terms imply that the index is not UNIQUE NOT NULL in which case 004944 ** the loop need to be marked as not order-distinct because it can 004945 ** have repeated NULL rows. 004946 ** 004947 ** If the current term is a column of an ((?,?) IN (SELECT...)) 004948 ** expression for which the SELECT returns more than one column, 004949 ** check that it is the only column used by this loop. Otherwise, 004950 ** if it is one of two or more, none of the columns can be 004951 ** considered to match an ORDER BY term. 004952 */ 004953 if( (eOp & eqOpMask)!=0 ){ 004954 if( eOp & (WO_ISNULL|WO_IS) ){ 004955 testcase( eOp & WO_ISNULL ); 004956 testcase( eOp & WO_IS ); 004957 testcase( isOrderDistinct ); 004958 isOrderDistinct = 0; 004959 } 004960 continue; 004961 }else if( ALWAYS(eOp & WO_IN) ){ 004962 /* ALWAYS() justification: eOp is an equality operator due to the 004963 ** j<pLoop->u.btree.nEq constraint above. Any equality other 004964 ** than WO_IN is captured by the previous "if". So this one 004965 ** always has to be WO_IN. */ 004966 Expr *pX = pLoop->aLTerm[j]->pExpr; 004967 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 004968 if( pLoop->aLTerm[i]->pExpr==pX ){ 004969 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 004970 bOnce = 0; 004971 break; 004972 } 004973 } 004974 } 004975 } 004976 004977 /* Get the column number in the table (iColumn) and sort order 004978 ** (revIdx) for the j-th column of the index. 004979 */ 004980 if( pIndex ){ 004981 iColumn = pIndex->aiColumn[j]; 004982 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 004983 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 004984 }else{ 004985 iColumn = XN_ROWID; 004986 revIdx = 0; 004987 } 004988 004989 /* An unconstrained column that might be NULL means that this 004990 ** WhereLoop is not well-ordered. tag-20210426-1 004991 */ 004992 if( isOrderDistinct ){ 004993 if( iColumn>=0 004994 && j>=pLoop->u.btree.nEq 004995 && pIndex->pTable->aCol[iColumn].notNull==0 004996 ){ 004997 isOrderDistinct = 0; 004998 } 004999 if( iColumn==XN_EXPR ){ 005000 isOrderDistinct = 0; 005001 } 005002 } 005003 005004 /* Find the ORDER BY term that corresponds to the j-th column 005005 ** of the index and mark that ORDER BY term off 005006 */ 005007 isMatch = 0; 005008 for(i=0; bOnce && i<nOrderBy; i++){ 005009 if( MASKBIT(i) & obSat ) continue; 005010 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 005011 testcase( wctrlFlags & WHERE_GROUPBY ); 005012 testcase( wctrlFlags & WHERE_DISTINCTBY ); 005013 if( NEVER(pOBExpr==0) ) continue; 005014 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 005015 if( iColumn>=XN_ROWID ){ 005016 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 005017 if( pOBExpr->iTable!=iCur ) continue; 005018 if( pOBExpr->iColumn!=iColumn ) continue; 005019 }else{ 005020 Expr *pIxExpr = pIndex->aColExpr->a[j].pExpr; 005021 if( sqlite3ExprCompareSkip(pOBExpr, pIxExpr, iCur) ){ 005022 continue; 005023 } 005024 } 005025 if( iColumn!=XN_ROWID ){ 005026 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 005027 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 005028 } 005029 if( wctrlFlags & WHERE_DISTINCTBY ){ 005030 pLoop->u.btree.nDistinctCol = j+1; 005031 } 005032 isMatch = 1; 005033 break; 005034 } 005035 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 005036 /* Make sure the sort order is compatible in an ORDER BY clause. 005037 ** Sort order is irrelevant for a GROUP BY clause. */ 005038 if( revSet ){ 005039 if( (rev ^ revIdx) 005040 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 005041 ){ 005042 isMatch = 0; 005043 } 005044 }else{ 005045 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 005046 if( rev ) *pRevMask |= MASKBIT(iLoop); 005047 revSet = 1; 005048 } 005049 } 005050 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 005051 if( j==pLoop->u.btree.nEq ){ 005052 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 005053 }else{ 005054 isMatch = 0; 005055 } 005056 } 005057 if( isMatch ){ 005058 if( iColumn==XN_ROWID ){ 005059 testcase( distinctColumns==0 ); 005060 distinctColumns = 1; 005061 } 005062 obSat |= MASKBIT(i); 005063 }else{ 005064 /* No match found */ 005065 if( j==0 || j<nKeyCol ){ 005066 testcase( isOrderDistinct!=0 ); 005067 isOrderDistinct = 0; 005068 } 005069 break; 005070 } 005071 } /* end Loop over all index columns */ 005072 if( distinctColumns ){ 005073 testcase( isOrderDistinct==0 ); 005074 isOrderDistinct = 1; 005075 } 005076 } /* end-if not one-row */ 005077 005078 /* Mark off any other ORDER BY terms that reference pLoop */ 005079 if( isOrderDistinct ){ 005080 orderDistinctMask |= pLoop->maskSelf; 005081 for(i=0; i<nOrderBy; i++){ 005082 Expr *p; 005083 Bitmask mTerm; 005084 if( MASKBIT(i) & obSat ) continue; 005085 p = pOrderBy->a[i].pExpr; 005086 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 005087 if( mTerm==0 && !sqlite3ExprIsConstant(0,p) ) continue; 005088 if( (mTerm&~orderDistinctMask)==0 ){ 005089 obSat |= MASKBIT(i); 005090 } 005091 } 005092 } 005093 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 005094 if( obSat==obDone ) return (i8)nOrderBy; 005095 if( !isOrderDistinct ){ 005096 for(i=nOrderBy-1; i>0; i--){ 005097 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 005098 if( (obSat&m)==m ) return i; 005099 } 005100 return 0; 005101 } 005102 return -1; 005103 } 005104 005105 005106 /* 005107 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 005108 ** the planner assumes that the specified pOrderBy list is actually a GROUP 005109 ** BY clause - and so any order that groups rows as required satisfies the 005110 ** request. 005111 ** 005112 ** Normally, in this case it is not possible for the caller to determine 005113 ** whether or not the rows are really being delivered in sorted order, or 005114 ** just in some other order that provides the required grouping. However, 005115 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 005116 ** this function may be called on the returned WhereInfo object. It returns 005117 ** true if the rows really will be sorted in the specified order, or false 005118 ** otherwise. 005119 ** 005120 ** For example, assuming: 005121 ** 005122 ** CREATE INDEX i1 ON t1(x, Y); 005123 ** 005124 ** then 005125 ** 005126 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 005127 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 005128 */ 005129 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 005130 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 005131 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 005132 return pWInfo->sorted; 005133 } 005134 005135 #ifdef WHERETRACE_ENABLED 005136 /* For debugging use only: */ 005137 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 005138 static char zName[65]; 005139 int i; 005140 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 005141 if( pLast ) zName[i++] = pLast->cId; 005142 zName[i] = 0; 005143 return zName; 005144 } 005145 #endif 005146 005147 /* 005148 ** Return the cost of sorting nRow rows, assuming that the keys have 005149 ** nOrderby columns and that the first nSorted columns are already in 005150 ** order. 005151 */ 005152 static LogEst whereSortingCost( 005153 WhereInfo *pWInfo, /* Query planning context */ 005154 LogEst nRow, /* Estimated number of rows to sort */ 005155 int nOrderBy, /* Number of ORDER BY clause terms */ 005156 int nSorted /* Number of initial ORDER BY terms naturally in order */ 005157 ){ 005158 /* Estimated cost of a full external sort, where N is 005159 ** the number of rows to sort is: 005160 ** 005161 ** cost = (K * N * log(N)). 005162 ** 005163 ** Or, if the order-by clause has X terms but only the last Y 005164 ** terms are out of order, then block-sorting will reduce the 005165 ** sorting cost to: 005166 ** 005167 ** cost = (K * N * log(N)) * (Y/X) 005168 ** 005169 ** The constant K is at least 2.0 but will be larger if there are a 005170 ** large number of columns to be sorted, as the sorting time is 005171 ** proportional to the amount of content to be sorted. The algorithm 005172 ** does not currently distinguish between fat columns (BLOBs and TEXTs) 005173 ** and skinny columns (INTs). It just uses the number of columns as 005174 ** an approximation for the row width. 005175 ** 005176 ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort 005177 ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert. 005178 */ 005179 LogEst rSortCost, nCol; 005180 assert( pWInfo->pSelect!=0 ); 005181 assert( pWInfo->pSelect->pEList!=0 ); 005182 /* TUNING: sorting cost proportional to the number of output columns: */ 005183 nCol = sqlite3LogEst((pWInfo->pSelect->pEList->nExpr+59)/30); 005184 rSortCost = nRow + nCol; 005185 if( nSorted>0 ){ 005186 /* Scale the result by (Y/X) */ 005187 rSortCost += sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 005188 } 005189 005190 /* Multiple by log(M) where M is the number of output rows. 005191 ** Use the LIMIT for M if it is smaller. Or if this sort is for 005192 ** a DISTINCT operator, M will be the number of distinct output 005193 ** rows, so fudge it downwards a bit. 005194 */ 005195 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 ){ 005196 rSortCost += 10; /* TUNING: Extra 2.0x if using LIMIT */ 005197 if( nSorted!=0 ){ 005198 rSortCost += 6; /* TUNING: Extra 1.5x if also using partial sort */ 005199 } 005200 if( pWInfo->iLimit<nRow ){ 005201 nRow = pWInfo->iLimit; 005202 } 005203 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 005204 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 005205 ** reduces the number of output rows by a factor of 2 */ 005206 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 005207 } 005208 rSortCost += estLog(nRow); 005209 return rSortCost; 005210 } 005211 005212 /* 005213 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 005214 ** attempts to find the lowest cost path that visits each WhereLoop 005215 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 005216 ** 005217 ** Assume that the total number of output rows that will need to be sorted 005218 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 005219 ** costs if nRowEst==0. 005220 ** 005221 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 005222 ** error occurs. 005223 */ 005224 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 005225 int mxChoice; /* Maximum number of simultaneous paths tracked */ 005226 int nLoop; /* Number of terms in the join */ 005227 Parse *pParse; /* Parsing context */ 005228 int iLoop; /* Loop counter over the terms of the join */ 005229 int ii, jj; /* Loop counters */ 005230 int mxI = 0; /* Index of next entry to replace */ 005231 int nOrderBy; /* Number of ORDER BY clause terms */ 005232 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 005233 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 005234 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 005235 WherePath *aFrom; /* All nFrom paths at the previous level */ 005236 WherePath *aTo; /* The nTo best paths at the current level */ 005237 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 005238 WherePath *pTo; /* An element of aTo[] that we are working on */ 005239 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 005240 WhereLoop **pX; /* Used to divy up the pSpace memory */ 005241 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 005242 char *pSpace; /* Temporary memory used by this routine */ 005243 int nSpace; /* Bytes of space allocated at pSpace */ 005244 005245 pParse = pWInfo->pParse; 005246 nLoop = pWInfo->nLevel; 005247 /* TUNING: For simple queries, only the best path is tracked. 005248 ** For 2-way joins, the 5 best paths are followed. 005249 ** For joins of 3 or more tables, track the 10 best paths */ 005250 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 005251 assert( nLoop<=pWInfo->pTabList->nSrc ); 005252 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n", 005253 nRowEst, pParse->nQueryLoop)); 005254 005255 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 005256 ** case the purpose of this call is to estimate the number of rows returned 005257 ** by the overall query. Once this estimate has been obtained, the caller 005258 ** will invoke this function a second time, passing the estimate as the 005259 ** nRowEst parameter. */ 005260 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 005261 nOrderBy = 0; 005262 }else{ 005263 nOrderBy = pWInfo->pOrderBy->nExpr; 005264 } 005265 005266 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 005267 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 005268 nSpace += sizeof(LogEst) * nOrderBy; 005269 pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace); 005270 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 005271 aTo = (WherePath*)pSpace; 005272 aFrom = aTo+mxChoice; 005273 memset(aFrom, 0, sizeof(aFrom[0])); 005274 pX = (WhereLoop**)(aFrom+mxChoice); 005275 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 005276 pFrom->aLoop = pX; 005277 } 005278 if( nOrderBy ){ 005279 /* If there is an ORDER BY clause and it is not being ignored, set up 005280 ** space for the aSortCost[] array. Each element of the aSortCost array 005281 ** is either zero - meaning it has not yet been initialized - or the 005282 ** cost of sorting nRowEst rows of data where the first X terms of 005283 ** the ORDER BY clause are already in order, where X is the array 005284 ** index. */ 005285 aSortCost = (LogEst*)pX; 005286 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 005287 } 005288 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 005289 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 005290 005291 /* Seed the search with a single WherePath containing zero WhereLoops. 005292 ** 005293 ** TUNING: Do not let the number of iterations go above 28. If the cost 005294 ** of computing an automatic index is not paid back within the first 28 005295 ** rows, then do not use the automatic index. */ 005296 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 005297 nFrom = 1; 005298 assert( aFrom[0].isOrdered==0 ); 005299 if( nOrderBy ){ 005300 /* If nLoop is zero, then there are no FROM terms in the query. Since 005301 ** in this case the query may return a maximum of one row, the results 005302 ** are already in the requested order. Set isOrdered to nOrderBy to 005303 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 005304 ** -1, indicating that the result set may or may not be ordered, 005305 ** depending on the loops added to the current plan. */ 005306 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 005307 } 005308 005309 /* Compute successively longer WherePaths using the previous generation 005310 ** of WherePaths as the basis for the next. Keep track of the mxChoice 005311 ** best paths at each generation */ 005312 for(iLoop=0; iLoop<nLoop; iLoop++){ 005313 nTo = 0; 005314 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 005315 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 005316 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 005317 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 005318 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 005319 i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ 005320 Bitmask maskNew; /* Mask of src visited by (..) */ 005321 Bitmask revMask; /* Mask of rev-order loops for (..) */ 005322 005323 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 005324 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 005325 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 005326 /* Do not use an automatic index if the this loop is expected 005327 ** to run less than 1.25 times. It is tempting to also exclude 005328 ** automatic index usage on an outer loop, but sometimes an automatic 005329 ** index is useful in the outer loop of a correlated subquery. */ 005330 assert( 10==sqlite3LogEst(2) ); 005331 continue; 005332 } 005333 005334 /* At this point, pWLoop is a candidate to be the next loop. 005335 ** Compute its cost */ 005336 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 005337 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 005338 nOut = pFrom->nRow + pWLoop->nOut; 005339 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 005340 isOrdered = pFrom->isOrdered; 005341 if( isOrdered<0 ){ 005342 revMask = 0; 005343 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 005344 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 005345 iLoop, pWLoop, &revMask); 005346 }else{ 005347 revMask = pFrom->revLoop; 005348 } 005349 if( isOrdered>=0 && isOrdered<nOrderBy ){ 005350 if( aSortCost[isOrdered]==0 ){ 005351 aSortCost[isOrdered] = whereSortingCost( 005352 pWInfo, nRowEst, nOrderBy, isOrdered 005353 ); 005354 } 005355 /* TUNING: Add a small extra penalty (3) to sorting as an 005356 ** extra encouragement to the query planner to select a plan 005357 ** where the rows emerge in the correct order without any sorting 005358 ** required. */ 005359 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 3; 005360 005361 WHERETRACE(0x002, 005362 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 005363 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 005364 rUnsorted, rCost)); 005365 }else{ 005366 rCost = rUnsorted; 005367 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 005368 } 005369 005370 /* Check to see if pWLoop should be added to the set of 005371 ** mxChoice best-so-far paths. 005372 ** 005373 ** First look for an existing path among best-so-far paths 005374 ** that covers the same set of loops and has the same isOrdered 005375 ** setting as the current path candidate. 005376 ** 005377 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 005378 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 005379 ** of legal values for isOrdered, -1..64. 005380 */ 005381 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 005382 if( pTo->maskLoop==maskNew 005383 && ((pTo->isOrdered^isOrdered)&0x80)==0 005384 ){ 005385 testcase( jj==nTo-1 ); 005386 break; 005387 } 005388 } 005389 if( jj>=nTo ){ 005390 /* None of the existing best-so-far paths match the candidate. */ 005391 if( nTo>=mxChoice 005392 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 005393 ){ 005394 /* The current candidate is no better than any of the mxChoice 005395 ** paths currently in the best-so-far buffer. So discard 005396 ** this candidate as not viable. */ 005397 #ifdef WHERETRACE_ENABLED /* 0x4 */ 005398 if( sqlite3WhereTrace&0x4 ){ 005399 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 005400 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 005401 isOrdered>=0 ? isOrdered+'0' : '?'); 005402 } 005403 #endif 005404 continue; 005405 } 005406 /* If we reach this points it means that the new candidate path 005407 ** needs to be added to the set of best-so-far paths. */ 005408 if( nTo<mxChoice ){ 005409 /* Increase the size of the aTo set by one */ 005410 jj = nTo++; 005411 }else{ 005412 /* New path replaces the prior worst to keep count below mxChoice */ 005413 jj = mxI; 005414 } 005415 pTo = &aTo[jj]; 005416 #ifdef WHERETRACE_ENABLED /* 0x4 */ 005417 if( sqlite3WhereTrace&0x4 ){ 005418 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 005419 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 005420 isOrdered>=0 ? isOrdered+'0' : '?'); 005421 } 005422 #endif 005423 }else{ 005424 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 005425 ** same set of loops and has the same isOrdered setting as the 005426 ** candidate path. Check to see if the candidate should replace 005427 ** pTo or if the candidate should be skipped. 005428 ** 005429 ** The conditional is an expanded vector comparison equivalent to: 005430 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 005431 */ 005432 if( pTo->rCost<rCost 005433 || (pTo->rCost==rCost 005434 && (pTo->nRow<nOut 005435 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 005436 ) 005437 ) 005438 ){ 005439 #ifdef WHERETRACE_ENABLED /* 0x4 */ 005440 if( sqlite3WhereTrace&0x4 ){ 005441 sqlite3DebugPrintf( 005442 "Skip %s cost=%-3d,%3d,%3d order=%c", 005443 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 005444 isOrdered>=0 ? isOrdered+'0' : '?'); 005445 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 005446 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 005447 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 005448 } 005449 #endif 005450 /* Discard the candidate path from further consideration */ 005451 testcase( pTo->rCost==rCost ); 005452 continue; 005453 } 005454 testcase( pTo->rCost==rCost+1 ); 005455 /* Control reaches here if the candidate path is better than the 005456 ** pTo path. Replace pTo with the candidate. */ 005457 #ifdef WHERETRACE_ENABLED /* 0x4 */ 005458 if( sqlite3WhereTrace&0x4 ){ 005459 sqlite3DebugPrintf( 005460 "Update %s cost=%-3d,%3d,%3d order=%c", 005461 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 005462 isOrdered>=0 ? isOrdered+'0' : '?'); 005463 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 005464 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 005465 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 005466 } 005467 #endif 005468 } 005469 /* pWLoop is a winner. Add it to the set of best so far */ 005470 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 005471 pTo->revLoop = revMask; 005472 pTo->nRow = nOut; 005473 pTo->rCost = rCost; 005474 pTo->rUnsorted = rUnsorted; 005475 pTo->isOrdered = isOrdered; 005476 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 005477 pTo->aLoop[iLoop] = pWLoop; 005478 if( nTo>=mxChoice ){ 005479 mxI = 0; 005480 mxCost = aTo[0].rCost; 005481 mxUnsorted = aTo[0].nRow; 005482 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 005483 if( pTo->rCost>mxCost 005484 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 005485 ){ 005486 mxCost = pTo->rCost; 005487 mxUnsorted = pTo->rUnsorted; 005488 mxI = jj; 005489 } 005490 } 005491 } 005492 } 005493 } 005494 005495 #ifdef WHERETRACE_ENABLED /* >=2 */ 005496 if( sqlite3WhereTrace & 0x02 ){ 005497 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 005498 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 005499 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 005500 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 005501 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 005502 if( pTo->isOrdered>0 ){ 005503 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 005504 }else{ 005505 sqlite3DebugPrintf("\n"); 005506 } 005507 } 005508 } 005509 #endif 005510 005511 /* Swap the roles of aFrom and aTo for the next generation */ 005512 pFrom = aTo; 005513 aTo = aFrom; 005514 aFrom = pFrom; 005515 nFrom = nTo; 005516 } 005517 005518 if( nFrom==0 ){ 005519 sqlite3ErrorMsg(pParse, "no query solution"); 005520 sqlite3StackFreeNN(pParse->db, pSpace); 005521 return SQLITE_ERROR; 005522 } 005523 005524 /* Find the lowest cost path. pFrom will be left pointing to that path */ 005525 pFrom = aFrom; 005526 for(ii=1; ii<nFrom; ii++){ 005527 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 005528 } 005529 assert( pWInfo->nLevel==nLoop ); 005530 /* Load the lowest cost path into pWInfo */ 005531 for(iLoop=0; iLoop<nLoop; iLoop++){ 005532 WhereLevel *pLevel = pWInfo->a + iLoop; 005533 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 005534 pLevel->iFrom = pWLoop->iTab; 005535 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 005536 } 005537 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 005538 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 005539 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 005540 && nRowEst 005541 ){ 005542 Bitmask notUsed; 005543 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 005544 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 005545 if( rc==pWInfo->pResultSet->nExpr ){ 005546 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 005547 } 005548 } 005549 pWInfo->bOrderedInnerLoop = 0; 005550 if( pWInfo->pOrderBy ){ 005551 pWInfo->nOBSat = pFrom->isOrdered; 005552 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 005553 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 005554 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 005555 } 005556 /* vvv--- See check-in [12ad822d9b827777] on 2023-03-16 ---vvv */ 005557 assert( pWInfo->pSelect->pOrderBy==0 005558 || pWInfo->nOBSat <= pWInfo->pSelect->pOrderBy->nExpr ); 005559 }else{ 005560 pWInfo->revMask = pFrom->revLoop; 005561 if( pWInfo->nOBSat<=0 ){ 005562 pWInfo->nOBSat = 0; 005563 if( nLoop>0 ){ 005564 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 005565 if( (wsFlags & WHERE_ONEROW)==0 005566 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 005567 ){ 005568 Bitmask m = 0; 005569 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 005570 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 005571 testcase( wsFlags & WHERE_IPK ); 005572 testcase( wsFlags & WHERE_COLUMN_IN ); 005573 if( rc==pWInfo->pOrderBy->nExpr ){ 005574 pWInfo->bOrderedInnerLoop = 1; 005575 pWInfo->revMask = m; 005576 } 005577 } 005578 } 005579 }else if( nLoop 005580 && pWInfo->nOBSat==1 005581 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 005582 ){ 005583 pWInfo->bOrderedInnerLoop = 1; 005584 } 005585 } 005586 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 005587 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 005588 ){ 005589 Bitmask revMask = 0; 005590 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 005591 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 005592 ); 005593 assert( pWInfo->sorted==0 ); 005594 if( nOrder==pWInfo->pOrderBy->nExpr ){ 005595 pWInfo->sorted = 1; 005596 pWInfo->revMask = revMask; 005597 } 005598 } 005599 } 005600 005601 pWInfo->nRowOut = pFrom->nRow; 005602 005603 /* Free temporary memory and return success */ 005604 sqlite3StackFreeNN(pParse->db, pSpace); 005605 return SQLITE_OK; 005606 } 005607 005608 /* 005609 ** This routine implements a heuristic designed to improve query planning. 005610 ** This routine is called in between the first and second call to 005611 ** wherePathSolver(). Hence the name "Interstage" "Heuristic". 005612 ** 005613 ** The first call to wherePathSolver() (hereafter just "solver()") computes 005614 ** the best path without regard to the order of the outputs. The second call 005615 ** to the solver() builds upon the first call to try to find an alternative 005616 ** path that satisfies the ORDER BY clause. 005617 ** 005618 ** This routine looks at the results of the first solver() run, and for 005619 ** every FROM clause term in the resulting query plan that uses an equality 005620 ** constraint against an index, disable other WhereLoops for that same 005621 ** FROM clause term that would try to do a full-table scan. This prevents 005622 ** an index search from being converted into a full-table scan in order to 005623 ** satisfy an ORDER BY clause, since even though we might get slightly better 005624 ** performance using the full-scan without sorting if the output size 005625 ** estimates are very precise, we might also get severe performance 005626 ** degradation using the full-scan if the output size estimate is too large. 005627 ** It is better to err on the side of caution. 005628 ** 005629 ** Except, if the first solver() call generated a full-table scan in an outer 005630 ** loop then stop this analysis at the first full-scan, since the second 005631 ** solver() run might try to swap that full-scan for another in order to 005632 ** get the output into the correct order. In other words, we allow a 005633 ** rewrite like this: 005634 ** 005635 ** First Solver() Second Solver() 005636 ** |-- SCAN t1 |-- SCAN t2 005637 ** |-- SEARCH t2 `-- SEARCH t1 005638 ** `-- SORT USING B-TREE 005639 ** 005640 ** The purpose of this routine is to disallow rewrites such as: 005641 ** 005642 ** First Solver() Second Solver() 005643 ** |-- SEARCH t1 |-- SCAN t2 <--- bad! 005644 ** |-- SEARCH t2 `-- SEARCH t1 005645 ** `-- SORT USING B-TREE 005646 ** 005647 ** See test cases in test/whereN.test for the real-world query that 005648 ** originally provoked this heuristic. 005649 */ 005650 static SQLITE_NOINLINE void whereInterstageHeuristic(WhereInfo *pWInfo){ 005651 int i; 005652 #ifdef WHERETRACE_ENABLED 005653 int once = 0; 005654 #endif 005655 for(i=0; i<pWInfo->nLevel; i++){ 005656 WhereLoop *p = pWInfo->a[i].pWLoop; 005657 if( p==0 ) break; 005658 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 ) continue; 005659 if( (p->wsFlags & (WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_IN))!=0 ){ 005660 u8 iTab = p->iTab; 005661 WhereLoop *pLoop; 005662 for(pLoop=pWInfo->pLoops; pLoop; pLoop=pLoop->pNextLoop){ 005663 if( pLoop->iTab!=iTab ) continue; 005664 if( (pLoop->wsFlags & (WHERE_CONSTRAINT|WHERE_AUTO_INDEX))!=0 ){ 005665 /* Auto-index and index-constrained loops allowed to remain */ 005666 continue; 005667 } 005668 #ifdef WHERETRACE_ENABLED 005669 if( sqlite3WhereTrace & 0x80 ){ 005670 if( once==0 ){ 005671 sqlite3DebugPrintf("Loops disabled by interstage heuristic:\n"); 005672 once = 1; 005673 } 005674 sqlite3WhereLoopPrint(pLoop, &pWInfo->sWC); 005675 } 005676 #endif /* WHERETRACE_ENABLED */ 005677 pLoop->prereq = ALLBITS; /* Prevent 2nd solver() from using this one */ 005678 } 005679 }else{ 005680 break; 005681 } 005682 } 005683 } 005684 005685 /* 005686 ** Most queries use only a single table (they are not joins) and have 005687 ** simple == constraints against indexed fields. This routine attempts 005688 ** to plan those simple cases using much less ceremony than the 005689 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 005690 ** times for the common case. 005691 ** 005692 ** Return non-zero on success, if this query can be handled by this 005693 ** no-frills query planner. Return zero if this query needs the 005694 ** general-purpose query planner. 005695 */ 005696 static int whereShortCut(WhereLoopBuilder *pBuilder){ 005697 WhereInfo *pWInfo; 005698 SrcItem *pItem; 005699 WhereClause *pWC; 005700 WhereTerm *pTerm; 005701 WhereLoop *pLoop; 005702 int iCur; 005703 int j; 005704 Table *pTab; 005705 Index *pIdx; 005706 WhereScan scan; 005707 005708 pWInfo = pBuilder->pWInfo; 005709 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 005710 assert( pWInfo->pTabList->nSrc>=1 ); 005711 pItem = pWInfo->pTabList->a; 005712 pTab = pItem->pTab; 005713 if( IsVirtual(pTab) ) return 0; 005714 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ 005715 testcase( pItem->fg.isIndexedBy ); 005716 testcase( pItem->fg.notIndexed ); 005717 return 0; 005718 } 005719 iCur = pItem->iCursor; 005720 pWC = &pWInfo->sWC; 005721 pLoop = pBuilder->pNew; 005722 pLoop->wsFlags = 0; 005723 pLoop->nSkip = 0; 005724 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 005725 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 005726 if( pTerm ){ 005727 testcase( pTerm->eOperator & WO_IS ); 005728 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 005729 pLoop->aLTerm[0] = pTerm; 005730 pLoop->nLTerm = 1; 005731 pLoop->u.btree.nEq = 1; 005732 /* TUNING: Cost of a rowid lookup is 10 */ 005733 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 005734 }else{ 005735 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 005736 int opMask; 005737 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 005738 if( !IsUniqueIndex(pIdx) 005739 || pIdx->pPartIdxWhere!=0 005740 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 005741 ) continue; 005742 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 005743 for(j=0; j<pIdx->nKeyCol; j++){ 005744 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 005745 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 005746 if( pTerm==0 ) break; 005747 testcase( pTerm->eOperator & WO_IS ); 005748 pLoop->aLTerm[j] = pTerm; 005749 } 005750 if( j!=pIdx->nKeyCol ) continue; 005751 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 005752 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 005753 pLoop->wsFlags |= WHERE_IDX_ONLY; 005754 } 005755 pLoop->nLTerm = j; 005756 pLoop->u.btree.nEq = j; 005757 pLoop->u.btree.pIndex = pIdx; 005758 /* TUNING: Cost of a unique index lookup is 15 */ 005759 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 005760 break; 005761 } 005762 } 005763 if( pLoop->wsFlags ){ 005764 pLoop->nOut = (LogEst)1; 005765 pWInfo->a[0].pWLoop = pLoop; 005766 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 005767 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 005768 pWInfo->a[0].iTabCur = iCur; 005769 pWInfo->nRowOut = 1; 005770 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 005771 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 005772 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 005773 } 005774 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 005775 #ifdef SQLITE_DEBUG 005776 pLoop->cId = '0'; 005777 #endif 005778 #ifdef WHERETRACE_ENABLED 005779 if( sqlite3WhereTrace & 0x02 ){ 005780 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 005781 } 005782 #endif 005783 return 1; 005784 } 005785 return 0; 005786 } 005787 005788 /* 005789 ** Helper function for exprIsDeterministic(). 005790 */ 005791 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 005792 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 005793 pWalker->eCode = 0; 005794 return WRC_Abort; 005795 } 005796 return WRC_Continue; 005797 } 005798 005799 /* 005800 ** Return true if the expression contains no non-deterministic SQL 005801 ** functions. Do not consider non-deterministic SQL functions that are 005802 ** part of sub-select statements. 005803 */ 005804 static int exprIsDeterministic(Expr *p){ 005805 Walker w; 005806 memset(&w, 0, sizeof(w)); 005807 w.eCode = 1; 005808 w.xExprCallback = exprNodeIsDeterministic; 005809 w.xSelectCallback = sqlite3SelectWalkFail; 005810 sqlite3WalkExpr(&w, p); 005811 return w.eCode; 005812 } 005813 005814 005815 #ifdef WHERETRACE_ENABLED 005816 /* 005817 ** Display all WhereLoops in pWInfo 005818 */ 005819 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 005820 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 005821 WhereLoop *p; 005822 int i; 005823 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 005824 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 005825 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 005826 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 005827 sqlite3WhereLoopPrint(p, pWC); 005828 } 005829 } 005830 } 005831 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 005832 #else 005833 # define WHERETRACE_ALL_LOOPS(W,C) 005834 #endif 005835 005836 /* Attempt to omit tables from a join that do not affect the result. 005837 ** For a table to not affect the result, the following must be true: 005838 ** 005839 ** 1) The query must not be an aggregate. 005840 ** 2) The table must be the RHS of a LEFT JOIN. 005841 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 005842 ** must contain a constraint that limits the scan of the table to 005843 ** at most a single row. 005844 ** 4) The table must not be referenced by any part of the query apart 005845 ** from its own USING or ON clause. 005846 ** 5) The table must not have an inner-join ON or USING clause if there is 005847 ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause 005848 ** might move from the right side to the left side of the RIGHT JOIN. 005849 ** Note: Due to (2), this condition can only arise if the table is 005850 ** the right-most table of a subquery that was flattened into the 005851 ** main query and that subquery was the right-hand operand of an 005852 ** inner join that held an ON or USING clause. 005853 ** 6) The ORDER BY clause has 63 or fewer terms 005854 ** 7) The omit-noop-join optimization is enabled. 005855 ** 005856 ** Items (1), (6), and (7) are checked by the caller. 005857 ** 005858 ** For example, given: 005859 ** 005860 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 005861 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 005862 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 005863 ** 005864 ** then table t2 can be omitted from the following: 005865 ** 005866 ** SELECT v1, v3 FROM t1 005867 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 005868 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 005869 ** 005870 ** or from: 005871 ** 005872 ** SELECT DISTINCT v1, v3 FROM t1 005873 ** LEFT JOIN t2 005874 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 005875 */ 005876 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 005877 WhereInfo *pWInfo, 005878 Bitmask notReady 005879 ){ 005880 int i; 005881 Bitmask tabUsed; 005882 int hasRightJoin; 005883 005884 /* Preconditions checked by the caller */ 005885 assert( pWInfo->nLevel>=2 ); 005886 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 005887 005888 /* These two preconditions checked by the caller combine to guarantee 005889 ** condition (1) of the header comment */ 005890 assert( pWInfo->pResultSet!=0 ); 005891 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 005892 005893 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 005894 if( pWInfo->pOrderBy ){ 005895 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 005896 } 005897 hasRightJoin = (pWInfo->pTabList->a[0].fg.jointype & JT_LTORJ)!=0; 005898 for(i=pWInfo->nLevel-1; i>=1; i--){ 005899 WhereTerm *pTerm, *pEnd; 005900 SrcItem *pItem; 005901 WhereLoop *pLoop; 005902 pLoop = pWInfo->a[i].pWLoop; 005903 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 005904 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; 005905 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 005906 && (pLoop->wsFlags & WHERE_ONEROW)==0 005907 ){ 005908 continue; 005909 } 005910 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 005911 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 005912 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 005913 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 005914 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 005915 || pTerm->pExpr->w.iJoin!=pItem->iCursor 005916 ){ 005917 break; 005918 } 005919 } 005920 if( hasRightJoin 005921 && ExprHasProperty(pTerm->pExpr, EP_InnerON) 005922 && pTerm->pExpr->w.iJoin==pItem->iCursor 005923 ){ 005924 break; /* restriction (5) */ 005925 } 005926 } 005927 if( pTerm<pEnd ) continue; 005928 WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop->cId)); 005929 notReady &= ~pLoop->maskSelf; 005930 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 005931 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 005932 pTerm->wtFlags |= TERM_CODED; 005933 } 005934 } 005935 if( i!=pWInfo->nLevel-1 ){ 005936 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 005937 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 005938 } 005939 pWInfo->nLevel--; 005940 assert( pWInfo->nLevel>0 ); 005941 } 005942 return notReady; 005943 } 005944 005945 /* 005946 ** Check to see if there are any SEARCH loops that might benefit from 005947 ** using a Bloom filter. Consider a Bloom filter if: 005948 ** 005949 ** (1) The SEARCH happens more than N times where N is the number 005950 ** of rows in the table that is being considered for the Bloom 005951 ** filter. 005952 ** (2) Some searches are expected to find zero rows. (This is determined 005953 ** by the WHERE_SELFCULL flag on the term.) 005954 ** (3) Bloom-filter processing is not disabled. (Checked by the 005955 ** caller.) 005956 ** (4) The size of the table being searched is known by ANALYZE. 005957 ** 005958 ** This block of code merely checks to see if a Bloom filter would be 005959 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 005960 ** WhereLoop. The implementation of the Bloom filter comes further 005961 ** down where the code for each WhereLoop is generated. 005962 */ 005963 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 005964 const WhereInfo *pWInfo 005965 ){ 005966 int i; 005967 LogEst nSearch = 0; 005968 005969 assert( pWInfo->nLevel>=2 ); 005970 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 005971 for(i=0; i<pWInfo->nLevel; i++){ 005972 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 005973 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 005974 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 005975 Table *pTab = pItem->pTab; 005976 if( (pTab->tabFlags & TF_HasStat1)==0 ) break; 005977 pTab->tabFlags |= TF_MaybeReanalyze; 005978 if( i>=1 005979 && (pLoop->wsFlags & reqFlags)==reqFlags 005980 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 005981 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 005982 ){ 005983 if( nSearch > pTab->nRowLogEst ){ 005984 testcase( pItem->fg.jointype & JT_LEFT ); 005985 pLoop->wsFlags |= WHERE_BLOOMFILTER; 005986 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 005987 WHERETRACE(0xffffffff, ( 005988 "-> use Bloom-filter on loop %c because there are ~%.1e " 005989 "lookups into %s which has only ~%.1e rows\n", 005990 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 005991 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 005992 } 005993 } 005994 nSearch += pLoop->nOut; 005995 } 005996 } 005997 005998 /* 005999 ** Expression Node callback for sqlite3ExprCanReturnSubtype(). 006000 ** 006001 ** Only a function call is able to return a subtype. So if the node 006002 ** is not a function call, return WRC_Prune immediately. 006003 ** 006004 ** A function call is able to return a subtype if it has the 006005 ** SQLITE_RESULT_SUBTYPE property. 006006 ** 006007 ** Assume that every function is able to pass-through a subtype from 006008 ** one of its argument (using sqlite3_result_value()). Most functions 006009 ** are not this way, but we don't have a mechanism to distinguish those 006010 ** that are from those that are not, so assume they all work this way. 006011 ** That means that if one of its arguments is another function and that 006012 ** other function is able to return a subtype, then this function is 006013 ** able to return a subtype. 006014 */ 006015 static int exprNodeCanReturnSubtype(Walker *pWalker, Expr *pExpr){ 006016 int n; 006017 FuncDef *pDef; 006018 sqlite3 *db; 006019 if( pExpr->op!=TK_FUNCTION ){ 006020 return WRC_Prune; 006021 } 006022 assert( ExprUseXList(pExpr) ); 006023 db = pWalker->pParse->db; 006024 n = pExpr->x.pList ? pExpr->x.pList->nExpr : 0; 006025 pDef = sqlite3FindFunction(db, pExpr->u.zToken, n, ENC(db), 0); 006026 if( pDef==0 || (pDef->funcFlags & SQLITE_RESULT_SUBTYPE)!=0 ){ 006027 pWalker->eCode = 1; 006028 return WRC_Prune; 006029 } 006030 return WRC_Continue; 006031 } 006032 006033 /* 006034 ** Return TRUE if expression pExpr is able to return a subtype. 006035 ** 006036 ** A TRUE return does not guarantee that a subtype will be returned. 006037 ** It only indicates that a subtype return is possible. False positives 006038 ** are acceptable as they only disable an optimization. False negatives, 006039 ** on the other hand, can lead to incorrect answers. 006040 */ 006041 static int sqlite3ExprCanReturnSubtype(Parse *pParse, Expr *pExpr){ 006042 Walker w; 006043 memset(&w, 0, sizeof(w)); 006044 w.pParse = pParse; 006045 w.xExprCallback = exprNodeCanReturnSubtype; 006046 sqlite3WalkExpr(&w, pExpr); 006047 return w.eCode; 006048 } 006049 006050 /* 006051 ** The index pIdx is used by a query and contains one or more expressions. 006052 ** In other words pIdx is an index on an expression. iIdxCur is the cursor 006053 ** number for the index and iDataCur is the cursor number for the corresponding 006054 ** table. 006055 ** 006056 ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for 006057 ** each of the expressions in the index so that the expression code generator 006058 ** will know to replace occurrences of the indexed expression with 006059 ** references to the corresponding column of the index. 006060 */ 006061 static SQLITE_NOINLINE void whereAddIndexedExpr( 006062 Parse *pParse, /* Add IndexedExpr entries to pParse->pIdxEpr */ 006063 Index *pIdx, /* The index-on-expression that contains the expressions */ 006064 int iIdxCur, /* Cursor number for pIdx */ 006065 SrcItem *pTabItem /* The FROM clause entry for the table */ 006066 ){ 006067 int i; 006068 IndexedExpr *p; 006069 Table *pTab; 006070 assert( pIdx->bHasExpr ); 006071 pTab = pIdx->pTable; 006072 for(i=0; i<pIdx->nColumn; i++){ 006073 Expr *pExpr; 006074 int j = pIdx->aiColumn[i]; 006075 if( j==XN_EXPR ){ 006076 pExpr = pIdx->aColExpr->a[i].pExpr; 006077 }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){ 006078 pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]); 006079 }else{ 006080 continue; 006081 } 006082 if( sqlite3ExprIsConstant(0,pExpr) ) continue; 006083 if( pExpr->op==TK_FUNCTION && sqlite3ExprCanReturnSubtype(pParse,pExpr) ){ 006084 /* Functions that might set a subtype should not be replaced by the 006085 ** value taken from an expression index since the index omits the 006086 ** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */ 006087 continue; 006088 } 006089 p = sqlite3DbMallocRaw(pParse->db, sizeof(IndexedExpr)); 006090 if( p==0 ) break; 006091 p->pIENext = pParse->pIdxEpr; 006092 #ifdef WHERETRACE_ENABLED 006093 if( sqlite3WhereTrace & 0x200 ){ 006094 sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur, i); 006095 if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(pExpr); 006096 } 006097 #endif 006098 p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); 006099 p->iDataCur = pTabItem->iCursor; 006100 p->iIdxCur = iIdxCur; 006101 p->iIdxCol = i; 006102 p->bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0; 006103 if( sqlite3IndexAffinityStr(pParse->db, pIdx) ){ 006104 p->aff = pIdx->zColAff[i]; 006105 } 006106 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 006107 p->zIdxName = pIdx->zName; 006108 #endif 006109 pParse->pIdxEpr = p; 006110 if( p->pIENext==0 ){ 006111 void *pArg = (void*)&pParse->pIdxEpr; 006112 sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pArg); 006113 } 006114 } 006115 } 006116 006117 /* 006118 ** Set the reverse-scan order mask to one for all tables in the query 006119 ** with the exception of MATERIALIZED common table expressions that have 006120 ** their own internal ORDER BY clauses. 006121 ** 006122 ** This implements the PRAGMA reverse_unordered_selects=ON setting. 006123 ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER). 006124 */ 006125 static SQLITE_NOINLINE void whereReverseScanOrder(WhereInfo *pWInfo){ 006126 int ii; 006127 for(ii=0; ii<pWInfo->pTabList->nSrc; ii++){ 006128 SrcItem *pItem = &pWInfo->pTabList->a[ii]; 006129 if( !pItem->fg.isCte 006130 || pItem->u2.pCteUse->eM10d!=M10d_Yes 006131 || NEVER(pItem->pSelect==0) 006132 || pItem->pSelect->pOrderBy==0 006133 ){ 006134 pWInfo->revMask |= MASKBIT(ii); 006135 } 006136 } 006137 } 006138 006139 /* 006140 ** Generate the beginning of the loop used for WHERE clause processing. 006141 ** The return value is a pointer to an opaque structure that contains 006142 ** information needed to terminate the loop. Later, the calling routine 006143 ** should invoke sqlite3WhereEnd() with the return value of this function 006144 ** in order to complete the WHERE clause processing. 006145 ** 006146 ** If an error occurs, this routine returns NULL. 006147 ** 006148 ** The basic idea is to do a nested loop, one loop for each table in 006149 ** the FROM clause of a select. (INSERT and UPDATE statements are the 006150 ** same as a SELECT with only a single table in the FROM clause.) For 006151 ** example, if the SQL is this: 006152 ** 006153 ** SELECT * FROM t1, t2, t3 WHERE ...; 006154 ** 006155 ** Then the code generated is conceptually like the following: 006156 ** 006157 ** foreach row1 in t1 do \ Code generated 006158 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 006159 ** foreach row3 in t3 do / 006160 ** ... 006161 ** end \ Code generated 006162 ** end |-- by sqlite3WhereEnd() 006163 ** end / 006164 ** 006165 ** Note that the loops might not be nested in the order in which they 006166 ** appear in the FROM clause if a different order is better able to make 006167 ** use of indices. Note also that when the IN operator appears in 006168 ** the WHERE clause, it might result in additional nested loops for 006169 ** scanning through all values on the right-hand side of the IN. 006170 ** 006171 ** There are Btree cursors associated with each table. t1 uses cursor 006172 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 006173 ** And so forth. This routine generates code to open those VDBE cursors 006174 ** and sqlite3WhereEnd() generates the code to close them. 006175 ** 006176 ** The code that sqlite3WhereBegin() generates leaves the cursors named 006177 ** in pTabList pointing at their appropriate entries. The [...] code 006178 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 006179 ** data from the various tables of the loop. 006180 ** 006181 ** If the WHERE clause is empty, the foreach loops must each scan their 006182 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 006183 ** the tables have indices and there are terms in the WHERE clause that 006184 ** refer to those indices, a complete table scan can be avoided and the 006185 ** code will run much faster. Most of the work of this routine is checking 006186 ** to see if there are indices that can be used to speed up the loop. 006187 ** 006188 ** Terms of the WHERE clause are also used to limit which rows actually 006189 ** make it to the "..." in the middle of the loop. After each "foreach", 006190 ** terms of the WHERE clause that use only terms in that loop and outer 006191 ** loops are evaluated and if false a jump is made around all subsequent 006192 ** inner loops (or around the "..." if the test occurs within the inner- 006193 ** most loop) 006194 ** 006195 ** OUTER JOINS 006196 ** 006197 ** An outer join of tables t1 and t2 is conceptually coded as follows: 006198 ** 006199 ** foreach row1 in t1 do 006200 ** flag = 0 006201 ** foreach row2 in t2 do 006202 ** start: 006203 ** ... 006204 ** flag = 1 006205 ** end 006206 ** if flag==0 then 006207 ** move the row2 cursor to a null row 006208 ** goto start 006209 ** fi 006210 ** end 006211 ** 006212 ** ORDER BY CLAUSE PROCESSING 006213 ** 006214 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 006215 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 006216 ** if there is one. If there is no ORDER BY clause or if this routine 006217 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 006218 ** 006219 ** The iIdxCur parameter is the cursor number of an index. If 006220 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 006221 ** to use for OR clause processing. The WHERE clause should use this 006222 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 006223 ** the first cursor in an array of cursors for all indices. iIdxCur should 006224 ** be used to compute the appropriate cursor depending on which index is 006225 ** used. 006226 */ 006227 WhereInfo *sqlite3WhereBegin( 006228 Parse *pParse, /* The parser context */ 006229 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 006230 Expr *pWhere, /* The WHERE clause */ 006231 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 006232 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 006233 Select *pSelect, /* The entire SELECT statement */ 006234 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 006235 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 006236 ** If WHERE_USE_LIMIT, then the limit amount */ 006237 ){ 006238 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 006239 int nTabList; /* Number of elements in pTabList */ 006240 WhereInfo *pWInfo; /* Will become the return value of this function */ 006241 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 006242 Bitmask notReady; /* Cursors that are not yet positioned */ 006243 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 006244 WhereMaskSet *pMaskSet; /* The expression mask set */ 006245 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 006246 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 006247 int ii; /* Loop counter */ 006248 sqlite3 *db; /* Database connection */ 006249 int rc; /* Return code */ 006250 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 006251 006252 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 006253 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 006254 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 006255 )); 006256 006257 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 006258 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 006259 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 006260 006261 /* Variable initialization */ 006262 db = pParse->db; 006263 memset(&sWLB, 0, sizeof(sWLB)); 006264 006265 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 006266 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 006267 if( pOrderBy && pOrderBy->nExpr>=BMS ){ 006268 pOrderBy = 0; 006269 wctrlFlags &= ~WHERE_WANT_DISTINCT; 006270 wctrlFlags |= WHERE_KEEP_ALL_JOINS; /* Disable omit-noop-join opt */ 006271 } 006272 006273 /* The number of tables in the FROM clause is limited by the number of 006274 ** bits in a Bitmask 006275 */ 006276 testcase( pTabList->nSrc==BMS ); 006277 if( pTabList->nSrc>BMS ){ 006278 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 006279 return 0; 006280 } 006281 006282 /* This function normally generates a nested loop for all tables in 006283 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 006284 ** only generate code for the first table in pTabList and assume that 006285 ** any cursors associated with subsequent tables are uninitialized. 006286 */ 006287 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 006288 006289 /* Allocate and initialize the WhereInfo structure that will become the 006290 ** return value. A single allocation is used to store the WhereInfo 006291 ** struct, the contents of WhereInfo.a[], the WhereClause structure 006292 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 006293 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 006294 ** some architectures. Hence the ROUND8() below. 006295 */ 006296 nByteWInfo = ROUND8P(sizeof(WhereInfo)); 006297 if( nTabList>1 ){ 006298 nByteWInfo = ROUND8P(nByteWInfo + (nTabList-1)*sizeof(WhereLevel)); 006299 } 006300 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 006301 if( db->mallocFailed ){ 006302 sqlite3DbFree(db, pWInfo); 006303 pWInfo = 0; 006304 goto whereBeginError; 006305 } 006306 pWInfo->pParse = pParse; 006307 pWInfo->pTabList = pTabList; 006308 pWInfo->pOrderBy = pOrderBy; 006309 #if WHERETRACE_ENABLED 006310 pWInfo->pWhere = pWhere; 006311 #endif 006312 pWInfo->pResultSet = pResultSet; 006313 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 006314 pWInfo->nLevel = nTabList; 006315 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 006316 pWInfo->wctrlFlags = wctrlFlags; 006317 pWInfo->iLimit = iAuxArg; 006318 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 006319 pWInfo->pSelect = pSelect; 006320 memset(&pWInfo->nOBSat, 0, 006321 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 006322 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 006323 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 006324 pMaskSet = &pWInfo->sMaskSet; 006325 pMaskSet->n = 0; 006326 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 006327 ** a valid cursor number, to avoid an initial 006328 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 006329 sWLB.pWInfo = pWInfo; 006330 sWLB.pWC = &pWInfo->sWC; 006331 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 006332 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 006333 whereLoopInit(sWLB.pNew); 006334 #ifdef SQLITE_DEBUG 006335 sWLB.pNew->cId = '*'; 006336 #endif 006337 006338 /* Split the WHERE clause into separate subexpressions where each 006339 ** subexpression is separated by an AND operator. 006340 */ 006341 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 006342 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 006343 006344 /* Special case: No FROM clause 006345 */ 006346 if( nTabList==0 ){ 006347 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 006348 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 006349 && OptimizationEnabled(db, SQLITE_DistinctOpt) 006350 ){ 006351 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 006352 } 006353 if( ALWAYS(pWInfo->pSelect) 006354 && (pWInfo->pSelect->selFlags & SF_MultiValue)==0 006355 ){ 006356 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 006357 } 006358 }else{ 006359 /* Assign a bit from the bitmask to every term in the FROM clause. 006360 ** 006361 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 006362 ** 006363 ** The rule of the previous sentence ensures that if X is the bitmask for 006364 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 006365 ** Knowing the bitmask for all tables to the left of a left join is 006366 ** important. Ticket #3015. 006367 ** 006368 ** Note that bitmasks are created for all pTabList->nSrc tables in 006369 ** pTabList, not just the first nTabList tables. nTabList is normally 006370 ** equal to pTabList->nSrc but might be shortened to 1 if the 006371 ** WHERE_OR_SUBCLAUSE flag is set. 006372 */ 006373 ii = 0; 006374 do{ 006375 createMask(pMaskSet, pTabList->a[ii].iCursor); 006376 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 006377 }while( (++ii)<pTabList->nSrc ); 006378 #ifdef SQLITE_DEBUG 006379 { 006380 Bitmask mx = 0; 006381 for(ii=0; ii<pTabList->nSrc; ii++){ 006382 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 006383 assert( m>=mx ); 006384 mx = m; 006385 } 006386 } 006387 #endif 006388 } 006389 006390 /* Analyze all of the subexpressions. */ 006391 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 006392 if( pSelect && pSelect->pLimit ){ 006393 sqlite3WhereAddLimit(&pWInfo->sWC, pSelect); 006394 } 006395 if( pParse->nErr ) goto whereBeginError; 006396 006397 /* The False-WHERE-Term-Bypass optimization: 006398 ** 006399 ** If there are WHERE terms that are false, then no rows will be output, 006400 ** so skip over all of the code generated here. 006401 ** 006402 ** Conditions: 006403 ** 006404 ** (1) The WHERE term must not refer to any tables in the join. 006405 ** (2) The term must not come from an ON clause on the 006406 ** right-hand side of a LEFT or FULL JOIN. 006407 ** (3) The term must not come from an ON clause, or there must be 006408 ** no RIGHT or FULL OUTER joins in pTabList. 006409 ** (4) If the expression contains non-deterministic functions 006410 ** that are not within a sub-select. This is not required 006411 ** for correctness but rather to preserves SQLite's legacy 006412 ** behaviour in the following two cases: 006413 ** 006414 ** WHERE random()>0; -- eval random() once per row 006415 ** WHERE (SELECT random())>0; -- eval random() just once overall 006416 ** 006417 ** Note that the Where term need not be a constant in order for this 006418 ** optimization to apply, though it does need to be constant relative to 006419 ** the current subquery (condition 1). The term might include variables 006420 ** from outer queries so that the value of the term changes from one 006421 ** invocation of the current subquery to the next. 006422 */ 006423 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 006424 WhereTerm *pT = &sWLB.pWC->a[ii]; /* A term of the WHERE clause */ 006425 Expr *pX; /* The expression of pT */ 006426 if( pT->wtFlags & TERM_VIRTUAL ) continue; 006427 pX = pT->pExpr; 006428 assert( pX!=0 ); 006429 assert( pT->prereqAll!=0 || !ExprHasProperty(pX, EP_OuterON) ); 006430 if( pT->prereqAll==0 /* Conditions (1) and (2) */ 006431 && (nTabList==0 || exprIsDeterministic(pX)) /* Condition (4) */ 006432 && !(ExprHasProperty(pX, EP_InnerON) /* Condition (3) */ 006433 && (pTabList->a[0].fg.jointype & JT_LTORJ)!=0 ) 006434 ){ 006435 sqlite3ExprIfFalse(pParse, pX, pWInfo->iBreak, SQLITE_JUMPIFNULL); 006436 pT->wtFlags |= TERM_CODED; 006437 } 006438 } 006439 006440 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 006441 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 006442 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 006443 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 006444 wctrlFlags &= ~WHERE_WANT_DISTINCT; 006445 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 006446 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 006447 /* The DISTINCT marking is pointless. Ignore it. */ 006448 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 006449 }else if( pOrderBy==0 ){ 006450 /* Try to ORDER BY the result set to make distinct processing easier */ 006451 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 006452 pWInfo->pOrderBy = pResultSet; 006453 } 006454 } 006455 006456 /* Construct the WhereLoop objects */ 006457 #if defined(WHERETRACE_ENABLED) 006458 if( sqlite3WhereTrace & 0xffffffff ){ 006459 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 006460 if( wctrlFlags & WHERE_USE_LIMIT ){ 006461 sqlite3DebugPrintf(", limit: %d", iAuxArg); 006462 } 006463 sqlite3DebugPrintf(")\n"); 006464 if( sqlite3WhereTrace & 0x8000 ){ 006465 Select sSelect; 006466 memset(&sSelect, 0, sizeof(sSelect)); 006467 sSelect.selFlags = SF_WhereBegin; 006468 sSelect.pSrc = pTabList; 006469 sSelect.pWhere = pWhere; 006470 sSelect.pOrderBy = pOrderBy; 006471 sSelect.pEList = pResultSet; 006472 sqlite3TreeViewSelect(0, &sSelect, 0); 006473 } 006474 if( sqlite3WhereTrace & 0x4000 ){ /* Display all WHERE clause terms */ 006475 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 006476 sqlite3WhereClausePrint(sWLB.pWC); 006477 } 006478 } 006479 #endif 006480 006481 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 006482 rc = whereLoopAddAll(&sWLB); 006483 if( rc ) goto whereBeginError; 006484 006485 #ifdef SQLITE_ENABLE_STAT4 006486 /* If one or more WhereTerm.truthProb values were used in estimating 006487 ** loop parameters, but then those truthProb values were subsequently 006488 ** changed based on STAT4 information while computing subsequent loops, 006489 ** then we need to rerun the whole loop building process so that all 006490 ** loops will be built using the revised truthProb values. */ 006491 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 006492 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 006493 WHERETRACE(0xffffffff, 006494 ("**** Redo all loop computations due to" 006495 " TERM_HIGHTRUTH changes ****\n")); 006496 while( pWInfo->pLoops ){ 006497 WhereLoop *p = pWInfo->pLoops; 006498 pWInfo->pLoops = p->pNextLoop; 006499 whereLoopDelete(db, p); 006500 } 006501 rc = whereLoopAddAll(&sWLB); 006502 if( rc ) goto whereBeginError; 006503 } 006504 #endif 006505 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 006506 006507 wherePathSolver(pWInfo, 0); 006508 if( db->mallocFailed ) goto whereBeginError; 006509 if( pWInfo->pOrderBy ){ 006510 whereInterstageHeuristic(pWInfo); 006511 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 006512 if( db->mallocFailed ) goto whereBeginError; 006513 } 006514 006515 /* TUNING: Assume that a DISTINCT clause on a subquery reduces 006516 ** the output size by a factor of 8 (LogEst -30). 006517 */ 006518 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 ){ 006519 WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n", 006520 pWInfo->nRowOut, pWInfo->nRowOut-30)); 006521 pWInfo->nRowOut -= 30; 006522 } 006523 006524 } 006525 assert( pWInfo->pTabList!=0 ); 006526 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 006527 whereReverseScanOrder(pWInfo); 006528 } 006529 if( pParse->nErr ){ 006530 goto whereBeginError; 006531 } 006532 assert( db->mallocFailed==0 ); 006533 #ifdef WHERETRACE_ENABLED 006534 if( sqlite3WhereTrace ){ 006535 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 006536 if( pWInfo->nOBSat>0 ){ 006537 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 006538 } 006539 switch( pWInfo->eDistinct ){ 006540 case WHERE_DISTINCT_UNIQUE: { 006541 sqlite3DebugPrintf(" DISTINCT=unique"); 006542 break; 006543 } 006544 case WHERE_DISTINCT_ORDERED: { 006545 sqlite3DebugPrintf(" DISTINCT=ordered"); 006546 break; 006547 } 006548 case WHERE_DISTINCT_UNORDERED: { 006549 sqlite3DebugPrintf(" DISTINCT=unordered"); 006550 break; 006551 } 006552 } 006553 sqlite3DebugPrintf("\n"); 006554 for(ii=0; ii<pWInfo->nLevel; ii++){ 006555 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 006556 } 006557 } 006558 #endif 006559 006560 /* Attempt to omit tables from a join that do not affect the result. 006561 ** See the comment on whereOmitNoopJoin() for further information. 006562 ** 006563 ** This query optimization is factored out into a separate "no-inline" 006564 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 006565 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 006566 ** some C-compiler optimizers from in-lining the 006567 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 006568 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 006569 */ 006570 notReady = ~(Bitmask)0; 006571 if( pWInfo->nLevel>=2 /* Must be a join, or this opt8n is pointless */ 006572 && pResultSet!=0 /* Condition (1) */ 006573 && 0==(wctrlFlags & (WHERE_AGG_DISTINCT|WHERE_KEEP_ALL_JOINS)) /* (1),(6) */ 006574 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) /* (7) */ 006575 ){ 006576 notReady = whereOmitNoopJoin(pWInfo, notReady); 006577 nTabList = pWInfo->nLevel; 006578 assert( nTabList>0 ); 006579 } 006580 006581 /* Check to see if there are any SEARCH loops that might benefit from 006582 ** using a Bloom filter. 006583 */ 006584 if( pWInfo->nLevel>=2 006585 && OptimizationEnabled(db, SQLITE_BloomFilter) 006586 ){ 006587 whereCheckIfBloomFilterIsUseful(pWInfo); 006588 } 006589 006590 #if defined(WHERETRACE_ENABLED) 006591 if( sqlite3WhereTrace & 0x4000 ){ /* Display all terms of the WHERE clause */ 006592 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 006593 sqlite3WhereClausePrint(sWLB.pWC); 006594 } 006595 WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n")); 006596 #endif 006597 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 006598 006599 /* If the caller is an UPDATE or DELETE statement that is requesting 006600 ** to use a one-pass algorithm, determine if this is appropriate. 006601 ** 006602 ** A one-pass approach can be used if the caller has requested one 006603 ** and either (a) the scan visits at most one row or (b) each 006604 ** of the following are true: 006605 ** 006606 ** * the caller has indicated that a one-pass approach can be used 006607 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 006608 ** * the table is not a virtual table, and 006609 ** * either the scan does not use the OR optimization or the caller 006610 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 006611 ** for DELETE). 006612 ** 006613 ** The last qualification is because an UPDATE statement uses 006614 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 006615 ** use a one-pass approach, and this is not set accurately for scans 006616 ** that use the OR optimization. 006617 */ 006618 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 006619 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 006620 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 006621 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 006622 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 006623 if( bOnerow || ( 006624 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 006625 && !IsVirtual(pTabList->a[0].pTab) 006626 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 006627 && OptimizationEnabled(db, SQLITE_OnePass) 006628 )){ 006629 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 006630 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 006631 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 006632 bFordelete = OPFLAG_FORDELETE; 006633 } 006634 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 006635 } 006636 } 006637 } 006638 006639 /* Open all tables in the pTabList and any indices selected for 006640 ** searching those tables. 006641 */ 006642 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 006643 Table *pTab; /* Table to open */ 006644 int iDb; /* Index of database containing table/index */ 006645 SrcItem *pTabItem; 006646 006647 pTabItem = &pTabList->a[pLevel->iFrom]; 006648 pTab = pTabItem->pTab; 006649 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 006650 pLoop = pLevel->pWLoop; 006651 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 006652 /* Do nothing */ 006653 }else 006654 #ifndef SQLITE_OMIT_VIRTUALTABLE 006655 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 006656 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 006657 int iCur = pTabItem->iCursor; 006658 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 006659 }else if( IsVirtual(pTab) ){ 006660 /* noop */ 006661 }else 006662 #endif 006663 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 006664 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 006665 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 006666 ){ 006667 int op = OP_OpenRead; 006668 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 006669 op = OP_OpenWrite; 006670 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 006671 }; 006672 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 006673 assert( pTabItem->iCursor==pLevel->iTabCur ); 006674 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 006675 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 006676 if( pWInfo->eOnePass==ONEPASS_OFF 006677 && pTab->nCol<BMS 006678 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 006679 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 006680 ){ 006681 /* If we know that only a prefix of the record will be used, 006682 ** it is advantageous to reduce the "column count" field in 006683 ** the P4 operand of the OP_OpenRead/Write opcode. */ 006684 Bitmask b = pTabItem->colUsed; 006685 int n = 0; 006686 for(; b; b=b>>1, n++){} 006687 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 006688 assert( n<=pTab->nCol ); 006689 } 006690 #ifdef SQLITE_ENABLE_CURSOR_HINTS 006691 if( pLoop->u.btree.pIndex!=0 && (pTab->tabFlags & TF_WithoutRowid)==0 ){ 006692 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 006693 }else 006694 #endif 006695 { 006696 sqlite3VdbeChangeP5(v, bFordelete); 006697 } 006698 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 006699 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 006700 (const u8*)&pTabItem->colUsed, P4_INT64); 006701 #endif 006702 }else{ 006703 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 006704 } 006705 if( pLoop->wsFlags & WHERE_INDEXED ){ 006706 Index *pIx = pLoop->u.btree.pIndex; 006707 int iIndexCur; 006708 int op = OP_OpenRead; 006709 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 006710 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 006711 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 006712 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 006713 ){ 006714 /* This is one term of an OR-optimization using the PRIMARY KEY of a 006715 ** WITHOUT ROWID table. No need for a separate index */ 006716 iIndexCur = pLevel->iTabCur; 006717 op = 0; 006718 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 006719 Index *pJ = pTabItem->pTab->pIndex; 006720 iIndexCur = iAuxArg; 006721 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 006722 while( ALWAYS(pJ) && pJ!=pIx ){ 006723 iIndexCur++; 006724 pJ = pJ->pNext; 006725 } 006726 op = OP_OpenWrite; 006727 pWInfo->aiCurOnePass[1] = iIndexCur; 006728 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 006729 iIndexCur = iAuxArg; 006730 op = OP_ReopenIdx; 006731 }else{ 006732 iIndexCur = pParse->nTab++; 006733 if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){ 006734 whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem); 006735 } 006736 if( pIx->pPartIdxWhere && (pTabItem->fg.jointype & JT_RIGHT)==0 ){ 006737 wherePartIdxExpr( 006738 pParse, pIx, pIx->pPartIdxWhere, 0, iIndexCur, pTabItem 006739 ); 006740 } 006741 } 006742 pLevel->iIdxCur = iIndexCur; 006743 assert( pIx!=0 ); 006744 assert( pIx->pSchema==pTab->pSchema ); 006745 assert( iIndexCur>=0 ); 006746 if( op ){ 006747 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 006748 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 006749 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 006750 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 006751 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 006752 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 006753 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 006754 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 006755 ){ 006756 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 006757 } 006758 VdbeComment((v, "%s", pIx->zName)); 006759 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 006760 { 006761 u64 colUsed = 0; 006762 int ii, jj; 006763 for(ii=0; ii<pIx->nColumn; ii++){ 006764 jj = pIx->aiColumn[ii]; 006765 if( jj<0 ) continue; 006766 if( jj>63 ) jj = 63; 006767 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 006768 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 006769 } 006770 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 006771 (u8*)&colUsed, P4_INT64); 006772 } 006773 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 006774 } 006775 } 006776 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 006777 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 006778 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 006779 ){ 006780 WhereRightJoin *pRJ = pLevel->pRJ; 006781 pRJ->iMatch = pParse->nTab++; 006782 pRJ->regBloom = ++pParse->nMem; 006783 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 006784 pRJ->regReturn = ++pParse->nMem; 006785 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 006786 assert( pTab==pTabItem->pTab ); 006787 if( HasRowid(pTab) ){ 006788 KeyInfo *pInfo; 006789 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 006790 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 006791 if( pInfo ){ 006792 pInfo->aColl[0] = 0; 006793 pInfo->aSortFlags[0] = 0; 006794 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 006795 } 006796 }else{ 006797 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 006798 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 006799 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 006800 } 006801 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 006802 /* The nature of RIGHT JOIN processing is such that it messes up 006803 ** the output order. So omit any ORDER BY/GROUP BY elimination 006804 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 006805 pWInfo->nOBSat = 0; 006806 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 006807 } 006808 } 006809 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 006810 if( db->mallocFailed ) goto whereBeginError; 006811 006812 /* Generate the code to do the search. Each iteration of the for 006813 ** loop below generates code for a single nested loop of the VM 006814 ** program. 006815 */ 006816 for(ii=0; ii<nTabList; ii++){ 006817 int addrExplain; 006818 int wsFlags; 006819 SrcItem *pSrc; 006820 if( pParse->nErr ) goto whereBeginError; 006821 pLevel = &pWInfo->a[ii]; 006822 wsFlags = pLevel->pWLoop->wsFlags; 006823 pSrc = &pTabList->a[pLevel->iFrom]; 006824 if( pSrc->fg.isMaterialized ){ 006825 if( pSrc->fg.isCorrelated ){ 006826 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 006827 }else{ 006828 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 006829 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 006830 sqlite3VdbeJumpHere(v, iOnce); 006831 } 006832 } 006833 assert( pTabList == pWInfo->pTabList ); 006834 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 006835 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 006836 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 006837 constructAutomaticIndex(pParse, &pWInfo->sWC, notReady, pLevel); 006838 #endif 006839 }else{ 006840 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 006841 } 006842 if( db->mallocFailed ) goto whereBeginError; 006843 } 006844 addrExplain = sqlite3WhereExplainOneScan( 006845 pParse, pTabList, pLevel, wctrlFlags 006846 ); 006847 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 006848 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 006849 pWInfo->iContinue = pLevel->addrCont; 006850 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 006851 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 006852 } 006853 } 006854 006855 /* Done. */ 006856 VdbeModuleComment((v, "Begin WHERE-core")); 006857 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 006858 return pWInfo; 006859 006860 /* Jump here if malloc fails */ 006861 whereBeginError: 006862 if( pWInfo ){ 006863 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 006864 whereInfoFree(db, pWInfo); 006865 } 006866 #ifdef WHERETRACE_ENABLED 006867 /* Prevent harmless compiler warnings about debugging routines 006868 ** being declared but never used */ 006869 sqlite3ShowWhereLoopList(0); 006870 #endif /* WHERETRACE_ENABLED */ 006871 return 0; 006872 } 006873 006874 /* 006875 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 006876 ** index rather than the main table. In SQLITE_DEBUG mode, we want 006877 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 006878 ** does that. 006879 */ 006880 #ifndef SQLITE_DEBUG 006881 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 006882 #else 006883 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 006884 static void sqlite3WhereOpcodeRewriteTrace( 006885 sqlite3 *db, 006886 int pc, 006887 VdbeOp *pOp 006888 ){ 006889 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 006890 sqlite3VdbePrintOp(0, pc, pOp); 006891 } 006892 #endif 006893 006894 /* 006895 ** Generate the end of the WHERE loop. See comments on 006896 ** sqlite3WhereBegin() for additional information. 006897 */ 006898 void sqlite3WhereEnd(WhereInfo *pWInfo){ 006899 Parse *pParse = pWInfo->pParse; 006900 Vdbe *v = pParse->pVdbe; 006901 int i; 006902 WhereLevel *pLevel; 006903 WhereLoop *pLoop; 006904 SrcList *pTabList = pWInfo->pTabList; 006905 sqlite3 *db = pParse->db; 006906 int iEnd = sqlite3VdbeCurrentAddr(v); 006907 int nRJ = 0; 006908 006909 /* Generate loop termination code. 006910 */ 006911 VdbeModuleComment((v, "End WHERE-core")); 006912 for(i=pWInfo->nLevel-1; i>=0; i--){ 006913 int addr; 006914 pLevel = &pWInfo->a[i]; 006915 if( pLevel->pRJ ){ 006916 /* Terminate the subroutine that forms the interior of the loop of 006917 ** the RIGHT JOIN table */ 006918 WhereRightJoin *pRJ = pLevel->pRJ; 006919 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 006920 pLevel->addrCont = 0; 006921 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 006922 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 006923 VdbeCoverage(v); 006924 nRJ++; 006925 } 006926 pLoop = pLevel->pWLoop; 006927 if( pLevel->op!=OP_Noop ){ 006928 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 006929 int addrSeek = 0; 006930 Index *pIdx; 006931 int n; 006932 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 006933 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 006934 && (pLoop->wsFlags & WHERE_INDEXED)!=0 006935 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 006936 && (n = pLoop->u.btree.nDistinctCol)>0 006937 && pIdx->aiRowLogEst[n]>=36 006938 ){ 006939 int r1 = pParse->nMem+1; 006940 int j, op; 006941 for(j=0; j<n; j++){ 006942 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 006943 } 006944 pParse->nMem += n+1; 006945 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 006946 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 006947 VdbeCoverageIf(v, op==OP_SeekLT); 006948 VdbeCoverageIf(v, op==OP_SeekGT); 006949 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 006950 } 006951 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 006952 /* The common case: Advance to the next row */ 006953 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 006954 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 006955 sqlite3VdbeChangeP5(v, pLevel->p5); 006956 VdbeCoverage(v); 006957 VdbeCoverageIf(v, pLevel->op==OP_Next); 006958 VdbeCoverageIf(v, pLevel->op==OP_Prev); 006959 VdbeCoverageIf(v, pLevel->op==OP_VNext); 006960 if( pLevel->regBignull ){ 006961 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 006962 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 006963 VdbeCoverage(v); 006964 } 006965 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 006966 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 006967 #endif 006968 }else if( pLevel->addrCont ){ 006969 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 006970 } 006971 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 006972 struct InLoop *pIn; 006973 int j; 006974 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 006975 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 006976 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 006977 || pParse->db->mallocFailed ); 006978 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 006979 if( pIn->eEndLoopOp!=OP_Noop ){ 006980 if( pIn->nPrefix ){ 006981 int bEarlyOut = 006982 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 006983 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 006984 if( pLevel->iLeftJoin ){ 006985 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 006986 ** opened yet. This occurs for WHERE clauses such as 006987 ** "a = ? AND b IN (...)", where the index is on (a, b). If 006988 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 006989 ** never have been coded, but the body of the loop run to 006990 ** return the null-row. So, if the cursor is not open yet, 006991 ** jump over the OP_Next or OP_Prev instruction about to 006992 ** be coded. */ 006993 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 006994 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 006995 VdbeCoverage(v); 006996 } 006997 if( bEarlyOut ){ 006998 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 006999 sqlite3VdbeCurrentAddr(v)+2, 007000 pIn->iBase, pIn->nPrefix); 007001 VdbeCoverage(v); 007002 /* Retarget the OP_IsNull against the left operand of IN so 007003 ** it jumps past the OP_IfNoHope. This is because the 007004 ** OP_IsNull also bypasses the OP_Affinity opcode that is 007005 ** required by OP_IfNoHope. */ 007006 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 007007 } 007008 } 007009 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 007010 VdbeCoverage(v); 007011 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 007012 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 007013 } 007014 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 007015 } 007016 } 007017 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 007018 if( pLevel->pRJ ){ 007019 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 007020 VdbeCoverage(v); 007021 } 007022 if( pLevel->addrSkip ){ 007023 sqlite3VdbeGoto(v, pLevel->addrSkip); 007024 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 007025 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 007026 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 007027 } 007028 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 007029 if( pLevel->addrLikeRep ){ 007030 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 007031 pLevel->addrLikeRep); 007032 VdbeCoverage(v); 007033 } 007034 #endif 007035 if( pLevel->iLeftJoin ){ 007036 int ws = pLoop->wsFlags; 007037 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 007038 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 007039 if( (ws & WHERE_IDX_ONLY)==0 ){ 007040 SrcItem *pSrc = &pTabList->a[pLevel->iFrom]; 007041 assert( pLevel->iTabCur==pSrc->iCursor ); 007042 if( pSrc->fg.viaCoroutine ){ 007043 int m, n; 007044 n = pSrc->regResult; 007045 assert( pSrc->pTab!=0 ); 007046 m = pSrc->pTab->nCol; 007047 sqlite3VdbeAddOp3(v, OP_Null, 0, n, n+m-1); 007048 } 007049 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 007050 } 007051 if( (ws & WHERE_INDEXED) 007052 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 007053 ){ 007054 if( ws & WHERE_MULTI_OR ){ 007055 Index *pIx = pLevel->u.pCoveringIdx; 007056 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 007057 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 007058 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 007059 } 007060 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 007061 } 007062 if( pLevel->op==OP_Return ){ 007063 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 007064 }else{ 007065 sqlite3VdbeGoto(v, pLevel->addrFirst); 007066 } 007067 sqlite3VdbeJumpHere(v, addr); 007068 } 007069 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 007070 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 007071 } 007072 007073 assert( pWInfo->nLevel<=pTabList->nSrc ); 007074 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 007075 int k, last; 007076 VdbeOp *pOp, *pLastOp; 007077 Index *pIdx = 0; 007078 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 007079 Table *pTab = pTabItem->pTab; 007080 assert( pTab!=0 ); 007081 pLoop = pLevel->pWLoop; 007082 007083 /* Do RIGHT JOIN processing. Generate code that will output the 007084 ** unmatched rows of the right operand of the RIGHT JOIN with 007085 ** all of the columns of the left operand set to NULL. 007086 */ 007087 if( pLevel->pRJ ){ 007088 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 007089 continue; 007090 } 007091 007092 /* For a co-routine, change all OP_Column references to the table of 007093 ** the co-routine into OP_Copy of result contained in a register. 007094 ** OP_Rowid becomes OP_Null. 007095 */ 007096 if( pTabItem->fg.viaCoroutine ){ 007097 testcase( pParse->db->mallocFailed ); 007098 assert( pTabItem->regResult>=0 ); 007099 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 007100 pTabItem->regResult, 0); 007101 continue; 007102 } 007103 007104 /* If this scan uses an index, make VDBE code substitutions to read data 007105 ** from the index instead of from the table where possible. In some cases 007106 ** this optimization prevents the table from ever being read, which can 007107 ** yield a significant performance boost. 007108 ** 007109 ** Calls to the code generator in between sqlite3WhereBegin and 007110 ** sqlite3WhereEnd will have created code that references the table 007111 ** directly. This loop scans all that code looking for opcodes 007112 ** that reference the table and converts them into opcodes that 007113 ** reference the index. 007114 */ 007115 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 007116 pIdx = pLoop->u.btree.pIndex; 007117 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 007118 pIdx = pLevel->u.pCoveringIdx; 007119 } 007120 if( pIdx 007121 && !db->mallocFailed 007122 ){ 007123 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 007124 last = iEnd; 007125 }else{ 007126 last = pWInfo->iEndWhere; 007127 } 007128 if( pIdx->bHasExpr ){ 007129 IndexedExpr *p = pParse->pIdxEpr; 007130 while( p ){ 007131 if( p->iIdxCur==pLevel->iIdxCur ){ 007132 #ifdef WHERETRACE_ENABLED 007133 if( sqlite3WhereTrace & 0x200 ){ 007134 sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n", 007135 p->iIdxCur, p->iIdxCol); 007136 if( sqlite3WhereTrace & 0x5000 ) sqlite3ShowExpr(p->pExpr); 007137 } 007138 #endif 007139 p->iDataCur = -1; 007140 p->iIdxCur = -1; 007141 } 007142 p = p->pIENext; 007143 } 007144 } 007145 k = pLevel->addrBody + 1; 007146 #ifdef SQLITE_DEBUG 007147 if( db->flags & SQLITE_VdbeAddopTrace ){ 007148 printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n", 007149 pLevel->iTabCur, pLevel->iIdxCur, k, last-1); 007150 } 007151 /* Proof that the "+1" on the k value above is safe */ 007152 pOp = sqlite3VdbeGetOp(v, k - 1); 007153 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 007154 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 007155 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 007156 #endif 007157 pOp = sqlite3VdbeGetOp(v, k); 007158 pLastOp = pOp + (last - k); 007159 assert( pOp<=pLastOp ); 007160 do{ 007161 if( pOp->p1!=pLevel->iTabCur ){ 007162 /* no-op */ 007163 }else if( pOp->opcode==OP_Column 007164 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 007165 || pOp->opcode==OP_Offset 007166 #endif 007167 ){ 007168 int x = pOp->p2; 007169 assert( pIdx->pTable==pTab ); 007170 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 007171 if( pOp->opcode==OP_Offset ){ 007172 /* Do not need to translate the column number */ 007173 }else 007174 #endif 007175 if( !HasRowid(pTab) ){ 007176 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 007177 x = pPk->aiColumn[x]; 007178 assert( x>=0 ); 007179 }else{ 007180 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 007181 x = sqlite3StorageColumnToTable(pTab,x); 007182 } 007183 x = sqlite3TableColumnToIndex(pIdx, x); 007184 if( x>=0 ){ 007185 pOp->p2 = x; 007186 pOp->p1 = pLevel->iIdxCur; 007187 OpcodeRewriteTrace(db, k, pOp); 007188 }else{ 007189 /* Unable to translate the table reference into an index 007190 ** reference. Verify that this is harmless - that the 007191 ** table being referenced really is open. 007192 */ 007193 if( pLoop->wsFlags & WHERE_IDX_ONLY ){ 007194 sqlite3ErrorMsg(pParse, "internal query planner error"); 007195 pParse->rc = SQLITE_INTERNAL; 007196 } 007197 } 007198 }else if( pOp->opcode==OP_Rowid ){ 007199 pOp->p1 = pLevel->iIdxCur; 007200 pOp->opcode = OP_IdxRowid; 007201 OpcodeRewriteTrace(db, k, pOp); 007202 }else if( pOp->opcode==OP_IfNullRow ){ 007203 pOp->p1 = pLevel->iIdxCur; 007204 OpcodeRewriteTrace(db, k, pOp); 007205 } 007206 #ifdef SQLITE_DEBUG 007207 k++; 007208 #endif 007209 }while( (++pOp)<pLastOp ); 007210 #ifdef SQLITE_DEBUG 007211 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 007212 #endif 007213 } 007214 } 007215 007216 /* The "break" point is here, just past the end of the outer loop. 007217 ** Set it. 007218 */ 007219 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 007220 007221 /* Final cleanup 007222 */ 007223 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 007224 whereInfoFree(db, pWInfo); 007225 pParse->withinRJSubrtn -= nRJ; 007226 return; 007227 }