000001 /* 000002 ** 2010 February 1 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** This file contains the implementation of a write-ahead log (WAL) used in 000014 ** "journal_mode=WAL" mode. 000015 ** 000016 ** WRITE-AHEAD LOG (WAL) FILE FORMAT 000017 ** 000018 ** A WAL file consists of a header followed by zero or more "frames". 000019 ** Each frame records the revised content of a single page from the 000020 ** database file. All changes to the database are recorded by writing 000021 ** frames into the WAL. Transactions commit when a frame is written that 000022 ** contains a commit marker. A single WAL can and usually does record 000023 ** multiple transactions. Periodically, the content of the WAL is 000024 ** transferred back into the database file in an operation called a 000025 ** "checkpoint". 000026 ** 000027 ** A single WAL file can be used multiple times. In other words, the 000028 ** WAL can fill up with frames and then be checkpointed and then new 000029 ** frames can overwrite the old ones. A WAL always grows from beginning 000030 ** toward the end. Checksums and counters attached to each frame are 000031 ** used to determine which frames within the WAL are valid and which 000032 ** are leftovers from prior checkpoints. 000033 ** 000034 ** The WAL header is 32 bytes in size and consists of the following eight 000035 ** big-endian 32-bit unsigned integer values: 000036 ** 000037 ** 0: Magic number. 0x377f0682 or 0x377f0683 000038 ** 4: File format version. Currently 3007000 000039 ** 8: Database page size. Example: 1024 000040 ** 12: Checkpoint sequence number 000041 ** 16: Salt-1, random integer incremented with each checkpoint 000042 ** 20: Salt-2, a different random integer changing with each ckpt 000043 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). 000044 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). 000045 ** 000046 ** Immediately following the wal-header are zero or more frames. Each 000047 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes 000048 ** of page data. The frame-header is six big-endian 32-bit unsigned 000049 ** integer values, as follows: 000050 ** 000051 ** 0: Page number. 000052 ** 4: For commit records, the size of the database image in pages 000053 ** after the commit. For all other records, zero. 000054 ** 8: Salt-1 (copied from the header) 000055 ** 12: Salt-2 (copied from the header) 000056 ** 16: Checksum-1. 000057 ** 20: Checksum-2. 000058 ** 000059 ** A frame is considered valid if and only if the following conditions are 000060 ** true: 000061 ** 000062 ** (1) The salt-1 and salt-2 values in the frame-header match 000063 ** salt values in the wal-header 000064 ** 000065 ** (2) The checksum values in the final 8 bytes of the frame-header 000066 ** exactly match the checksum computed consecutively on the 000067 ** WAL header and the first 8 bytes and the content of all frames 000068 ** up to and including the current frame. 000069 ** 000070 ** The checksum is computed using 32-bit big-endian integers if the 000071 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it 000072 ** is computed using little-endian if the magic number is 0x377f0682. 000073 ** The checksum values are always stored in the frame header in a 000074 ** big-endian format regardless of which byte order is used to compute 000075 ** the checksum. The checksum is computed by interpreting the input as 000076 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The 000077 ** algorithm used for the checksum is as follows: 000078 ** 000079 ** for i from 0 to n-1 step 2: 000080 ** s0 += x[i] + s1; 000081 ** s1 += x[i+1] + s0; 000082 ** endfor 000083 ** 000084 ** Note that s0 and s1 are both weighted checksums using fibonacci weights 000085 ** in reverse order (the largest fibonacci weight occurs on the first element 000086 ** of the sequence being summed.) The s1 value spans all 32-bit 000087 ** terms of the sequence whereas s0 omits the final term. 000088 ** 000089 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the 000090 ** WAL is transferred into the database, then the database is VFS.xSync-ed. 000091 ** The VFS.xSync operations serve as write barriers - all writes launched 000092 ** before the xSync must complete before any write that launches after the 000093 ** xSync begins. 000094 ** 000095 ** After each checkpoint, the salt-1 value is incremented and the salt-2 000096 ** value is randomized. This prevents old and new frames in the WAL from 000097 ** being considered valid at the same time and being checkpointing together 000098 ** following a crash. 000099 ** 000100 ** READER ALGORITHM 000101 ** 000102 ** To read a page from the database (call it page number P), a reader 000103 ** first checks the WAL to see if it contains page P. If so, then the 000104 ** last valid instance of page P that is a followed by a commit frame 000105 ** or is a commit frame itself becomes the value read. If the WAL 000106 ** contains no copies of page P that are valid and which are a commit 000107 ** frame or are followed by a commit frame, then page P is read from 000108 ** the database file. 000109 ** 000110 ** To start a read transaction, the reader records the index of the last 000111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value 000112 ** for all subsequent read operations. New transactions can be appended 000113 ** to the WAL, but as long as the reader uses its original mxFrame value 000114 ** and ignores the newly appended content, it will see a consistent snapshot 000115 ** of the database from a single point in time. This technique allows 000116 ** multiple concurrent readers to view different versions of the database 000117 ** content simultaneously. 000118 ** 000119 ** The reader algorithm in the previous paragraphs works correctly, but 000120 ** because frames for page P can appear anywhere within the WAL, the 000121 ** reader has to scan the entire WAL looking for page P frames. If the 000122 ** WAL is large (multiple megabytes is typical) that scan can be slow, 000123 ** and read performance suffers. To overcome this problem, a separate 000124 ** data structure called the wal-index is maintained to expedite the 000125 ** search for frames of a particular page. 000126 ** 000127 ** WAL-INDEX FORMAT 000128 ** 000129 ** Conceptually, the wal-index is shared memory, though VFS implementations 000130 ** might choose to implement the wal-index using a mmapped file. Because 000131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL 000132 ** on a network filesystem. All users of the database must be able to 000133 ** share memory. 000134 ** 000135 ** In the default unix and windows implementation, the wal-index is a mmapped 000136 ** file whose name is the database name with a "-shm" suffix added. For that 000137 ** reason, the wal-index is sometimes called the "shm" file. 000138 ** 000139 ** The wal-index is transient. After a crash, the wal-index can (and should 000140 ** be) reconstructed from the original WAL file. In fact, the VFS is required 000141 ** to either truncate or zero the header of the wal-index when the last 000142 ** connection to it closes. Because the wal-index is transient, it can 000143 ** use an architecture-specific format; it does not have to be cross-platform. 000144 ** Hence, unlike the database and WAL file formats which store all values 000145 ** as big endian, the wal-index can store multi-byte values in the native 000146 ** byte order of the host computer. 000147 ** 000148 ** The purpose of the wal-index is to answer this question quickly: Given 000149 ** a page number P and a maximum frame index M, return the index of the 000150 ** last frame in the wal before frame M for page P in the WAL, or return 000151 ** NULL if there are no frames for page P in the WAL prior to M. 000152 ** 000153 ** The wal-index consists of a header region, followed by an one or 000154 ** more index blocks. 000155 ** 000156 ** The wal-index header contains the total number of frames within the WAL 000157 ** in the mxFrame field. 000158 ** 000159 ** Each index block except for the first contains information on 000160 ** HASHTABLE_NPAGE frames. The first index block contains information on 000161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 000162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and 000163 ** first index block are the same size as all other index blocks in the 000164 ** wal-index. The values are: 000165 ** 000166 ** HASHTABLE_NPAGE 4096 000167 ** HASHTABLE_NPAGE_ONE 4062 000168 ** 000169 ** Each index block contains two sections, a page-mapping that contains the 000170 ** database page number associated with each wal frame, and a hash-table 000171 ** that allows readers to query an index block for a specific page number. 000172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE 000173 ** for the first index block) 32-bit page numbers. The first entry in the 000174 ** first index-block contains the database page number corresponding to the 000175 ** first frame in the WAL file. The first entry in the second index block 000176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in 000177 ** the log, and so on. 000178 ** 000179 ** The last index block in a wal-index usually contains less than the full 000180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, 000181 ** depending on the contents of the WAL file. This does not change the 000182 ** allocated size of the page-mapping array - the page-mapping array merely 000183 ** contains unused entries. 000184 ** 000185 ** Even without using the hash table, the last frame for page P 000186 ** can be found by scanning the page-mapping sections of each index block 000187 ** starting with the last index block and moving toward the first, and 000188 ** within each index block, starting at the end and moving toward the 000189 ** beginning. The first entry that equals P corresponds to the frame 000190 ** holding the content for that page. 000191 ** 000192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. 000193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the 000194 ** hash table for each page number in the mapping section, so the hash 000195 ** table is never more than half full. The expected number of collisions 000196 ** prior to finding a match is 1. Each entry of the hash table is an 000197 ** 1-based index of an entry in the mapping section of the same 000198 ** index block. Let K be the 1-based index of the largest entry in 000199 ** the mapping section. (For index blocks other than the last, K will 000200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block 000201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table 000202 ** contain a value of 0. 000203 ** 000204 ** To look for page P in the hash table, first compute a hash iKey on 000205 ** P as follows: 000206 ** 000207 ** iKey = (P * 383) % HASHTABLE_NSLOT 000208 ** 000209 ** Then start scanning entries of the hash table, starting with iKey 000210 ** (wrapping around to the beginning when the end of the hash table is 000211 ** reached) until an unused hash slot is found. Let the first unused slot 000212 ** be at index iUnused. (iUnused might be less than iKey if there was 000213 ** wrap-around.) Because the hash table is never more than half full, 000214 ** the search is guaranteed to eventually hit an unused entry. Let 000215 ** iMax be the value between iKey and iUnused, closest to iUnused, 000216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists 000217 ** no hash slot such that aHash[i]==p) then page P is not in the 000218 ** current index block. Otherwise the iMax-th mapping entry of the 000219 ** current index block corresponds to the last entry that references 000220 ** page P. 000221 ** 000222 ** A hash search begins with the last index block and moves toward the 000223 ** first index block, looking for entries corresponding to page P. On 000224 ** average, only two or three slots in each index block need to be 000225 ** examined in order to either find the last entry for page P, or to 000226 ** establish that no such entry exists in the block. Each index block 000227 ** holds over 4000 entries. So two or three index blocks are sufficient 000228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 000229 ** comparisons (on average) suffice to either locate a frame in the 000230 ** WAL or to establish that the frame does not exist in the WAL. This 000231 ** is much faster than scanning the entire 10MB WAL. 000232 ** 000233 ** Note that entries are added in order of increasing K. Hence, one 000234 ** reader might be using some value K0 and a second reader that started 000235 ** at a later time (after additional transactions were added to the WAL 000236 ** and to the wal-index) might be using a different value K1, where K1>K0. 000237 ** Both readers can use the same hash table and mapping section to get 000238 ** the correct result. There may be entries in the hash table with 000239 ** K>K0 but to the first reader, those entries will appear to be unused 000240 ** slots in the hash table and so the first reader will get an answer as 000241 ** if no values greater than K0 had ever been inserted into the hash table 000242 ** in the first place - which is what reader one wants. Meanwhile, the 000243 ** second reader using K1 will see additional values that were inserted 000244 ** later, which is exactly what reader two wants. 000245 ** 000246 ** When a rollback occurs, the value of K is decreased. Hash table entries 000247 ** that correspond to frames greater than the new K value are removed 000248 ** from the hash table at this point. 000249 */ 000250 #ifndef SQLITE_OMIT_WAL 000251 000252 #include "wal.h" 000253 000254 /* 000255 ** Trace output macros 000256 */ 000257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 000258 int sqlite3WalTrace = 0; 000259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X 000260 #else 000261 # define WALTRACE(X) 000262 #endif 000263 000264 /* 000265 ** The maximum (and only) versions of the wal and wal-index formats 000266 ** that may be interpreted by this version of SQLite. 000267 ** 000268 ** If a client begins recovering a WAL file and finds that (a) the checksum 000269 ** values in the wal-header are correct and (b) the version field is not 000270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. 000271 ** 000272 ** Similarly, if a client successfully reads a wal-index header (i.e. the 000273 ** checksum test is successful) and finds that the version field is not 000274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite 000275 ** returns SQLITE_CANTOPEN. 000276 */ 000277 #define WAL_MAX_VERSION 3007000 000278 #define WALINDEX_MAX_VERSION 3007000 000279 000280 /* 000281 ** Index numbers for various locking bytes. WAL_NREADER is the number 000282 ** of available reader locks and should be at least 3. The default 000283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. 000284 ** 000285 ** Technically, the various VFSes are free to implement these locks however 000286 ** they see fit. However, compatibility is encouraged so that VFSes can 000287 ** interoperate. The standard implementation used on both unix and windows 000288 ** is for the index number to indicate a byte offset into the 000289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all 000290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which 000291 ** should be 120) is the location in the shm file for the first locking 000292 ** byte. 000293 */ 000294 #define WAL_WRITE_LOCK 0 000295 #define WAL_ALL_BUT_WRITE 1 000296 #define WAL_CKPT_LOCK 1 000297 #define WAL_RECOVER_LOCK 2 000298 #define WAL_READ_LOCK(I) (3+(I)) 000299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) 000300 000301 000302 /* Object declarations */ 000303 typedef struct WalIndexHdr WalIndexHdr; 000304 typedef struct WalIterator WalIterator; 000305 typedef struct WalCkptInfo WalCkptInfo; 000306 000307 000308 /* 000309 ** The following object holds a copy of the wal-index header content. 000310 ** 000311 ** The actual header in the wal-index consists of two copies of this 000312 ** object followed by one instance of the WalCkptInfo object. 000313 ** For all versions of SQLite through 3.10.0 and probably beyond, 000314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and 000315 ** the total header size is 136 bytes. 000316 ** 000317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. 000318 ** Or it can be 1 to represent a 65536-byte page. The latter case was 000319 ** added in 3.7.1 when support for 64K pages was added. 000320 */ 000321 struct WalIndexHdr { 000322 u32 iVersion; /* Wal-index version */ 000323 u32 unused; /* Unused (padding) field */ 000324 u32 iChange; /* Counter incremented each transaction */ 000325 u8 isInit; /* 1 when initialized */ 000326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ 000327 u16 szPage; /* Database page size in bytes. 1==64K */ 000328 u32 mxFrame; /* Index of last valid frame in the WAL */ 000329 u32 nPage; /* Size of database in pages */ 000330 u32 aFrameCksum[2]; /* Checksum of last frame in log */ 000331 u32 aSalt[2]; /* Two salt values copied from WAL header */ 000332 u32 aCksum[2]; /* Checksum over all prior fields */ 000333 }; 000334 000335 /* 000336 ** A copy of the following object occurs in the wal-index immediately 000337 ** following the second copy of the WalIndexHdr. This object stores 000338 ** information used by checkpoint. 000339 ** 000340 ** nBackfill is the number of frames in the WAL that have been written 000341 ** back into the database. (We call the act of moving content from WAL to 000342 ** database "backfilling".) The nBackfill number is never greater than 000343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads 000344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). 000345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from 000346 ** mxFrame back to zero when the WAL is reset. 000347 ** 000348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint 000349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however 000350 ** the nBackfillAttempted is set before any backfilling is done and the 000351 ** nBackfill is only set after all backfilling completes. So if a checkpoint 000352 ** crashes, nBackfillAttempted might be larger than nBackfill. The 000353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. 000354 ** 000355 ** The aLock[] field is a set of bytes used for locking. These bytes should 000356 ** never be read or written. 000357 ** 000358 ** There is one entry in aReadMark[] for each reader lock. If a reader 000359 ** holds read-lock K, then the value in aReadMark[K] is no greater than 000360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) 000361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is 000362 ** a special case; its value is never used and it exists as a place-holder 000363 ** to avoid having to offset aReadMark[] indexes by one. Readers holding 000364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content 000365 ** directly from the database. 000366 ** 000367 ** The value of aReadMark[K] may only be changed by a thread that 000368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of 000369 ** aReadMark[K] cannot changed while there is a reader is using that mark 000370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). 000371 ** 000372 ** The checkpointer may only transfer frames from WAL to database where 000373 ** the frame numbers are less than or equal to every aReadMark[] that is 000374 ** in use (that is, every aReadMark[j] for which there is a corresponding 000375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the 000376 ** largest value and will increase an unused aReadMark[] to mxFrame if there 000377 ** is not already an aReadMark[] equal to mxFrame. The exception to the 000378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything 000379 ** in the WAL has been backfilled into the database) then new readers 000380 ** will choose aReadMark[0] which has value 0 and hence such reader will 000381 ** get all their all content directly from the database file and ignore 000382 ** the WAL. 000383 ** 000384 ** Writers normally append new frames to the end of the WAL. However, 000385 ** if nBackfill equals mxFrame (meaning that all WAL content has been 000386 ** written back into the database) and if no readers are using the WAL 000387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then 000388 ** the writer will first "reset" the WAL back to the beginning and start 000389 ** writing new content beginning at frame 1. 000390 ** 000391 ** We assume that 32-bit loads are atomic and so no locks are needed in 000392 ** order to read from any aReadMark[] entries. 000393 */ 000394 struct WalCkptInfo { 000395 u32 nBackfill; /* Number of WAL frames backfilled into DB */ 000396 u32 aReadMark[WAL_NREADER]; /* Reader marks */ 000397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ 000398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ 000399 u32 notUsed0; /* Available for future enhancements */ 000400 }; 000401 #define READMARK_NOT_USED 0xffffffff 000402 000403 /* 000404 ** This is a schematic view of the complete 136-byte header of the 000405 ** wal-index file (also known as the -shm file): 000406 ** 000407 ** +-----------------------------+ 000408 ** 0: | iVersion | \ 000409 ** +-----------------------------+ | 000410 ** 4: | (unused padding) | | 000411 ** +-----------------------------+ | 000412 ** 8: | iChange | | 000413 ** +-------+-------+-------------+ | 000414 ** 12: | bInit | bBig | szPage | | 000415 ** +-------+-------+-------------+ | 000416 ** 16: | mxFrame | | First copy of the 000417 ** +-----------------------------+ | WalIndexHdr object 000418 ** 20: | nPage | | 000419 ** +-----------------------------+ | 000420 ** 24: | aFrameCksum | | 000421 ** | | | 000422 ** +-----------------------------+ | 000423 ** 32: | aSalt | | 000424 ** | | | 000425 ** +-----------------------------+ | 000426 ** 40: | aCksum | | 000427 ** | | / 000428 ** +-----------------------------+ 000429 ** 48: | iVersion | \ 000430 ** +-----------------------------+ | 000431 ** 52: | (unused padding) | | 000432 ** +-----------------------------+ | 000433 ** 56: | iChange | | 000434 ** +-------+-------+-------------+ | 000435 ** 60: | bInit | bBig | szPage | | 000436 ** +-------+-------+-------------+ | Second copy of the 000437 ** 64: | mxFrame | | WalIndexHdr 000438 ** +-----------------------------+ | 000439 ** 68: | nPage | | 000440 ** +-----------------------------+ | 000441 ** 72: | aFrameCksum | | 000442 ** | | | 000443 ** +-----------------------------+ | 000444 ** 80: | aSalt | | 000445 ** | | | 000446 ** +-----------------------------+ | 000447 ** 88: | aCksum | | 000448 ** | | / 000449 ** +-----------------------------+ 000450 ** 96: | nBackfill | 000451 ** +-----------------------------+ 000452 ** 100: | 5 read marks | 000453 ** | | 000454 ** | | 000455 ** | | 000456 ** | | 000457 ** +-------+-------+------+------+ 000458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \ 000459 ** +-------+-------+------+------+ ) 8 lock bytes 000460 ** | Read1 | Read2 | Rd3 | Rd4 | / 000461 ** +-------+-------+------+------+ 000462 ** 128: | nBackfillAttempted | 000463 ** +-----------------------------+ 000464 ** 132: | (unused padding) | 000465 ** +-----------------------------+ 000466 */ 000467 000468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at 000469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems 000470 ** only support mandatory file-locks, we do not read or write data 000471 ** from the region of the file on which locks are applied. 000472 */ 000473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) 000474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) 000475 000476 /* Size of header before each frame in wal */ 000477 #define WAL_FRAME_HDRSIZE 24 000478 000479 /* Size of write ahead log header, including checksum. */ 000480 #define WAL_HDRSIZE 32 000481 000482 /* WAL magic value. Either this value, or the same value with the least 000483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit 000484 ** big-endian format in the first 4 bytes of a WAL file. 000485 ** 000486 ** If the LSB is set, then the checksums for each frame within the WAL 000487 ** file are calculated by treating all data as an array of 32-bit 000488 ** big-endian words. Otherwise, they are calculated by interpreting 000489 ** all data as 32-bit little-endian words. 000490 */ 000491 #define WAL_MAGIC 0x377f0682 000492 000493 /* 000494 ** Return the offset of frame iFrame in the write-ahead log file, 000495 ** assuming a database page size of szPage bytes. The offset returned 000496 ** is to the start of the write-ahead log frame-header. 000497 */ 000498 #define walFrameOffset(iFrame, szPage) ( \ 000499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ 000500 ) 000501 000502 /* 000503 ** An open write-ahead log file is represented by an instance of the 000504 ** following object. 000505 */ 000506 struct Wal { 000507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ 000508 sqlite3_file *pDbFd; /* File handle for the database file */ 000509 sqlite3_file *pWalFd; /* File handle for WAL file */ 000510 u32 iCallback; /* Value to pass to log callback (or 0) */ 000511 i64 mxWalSize; /* Truncate WAL to this size upon reset */ 000512 int nWiData; /* Size of array apWiData */ 000513 int szFirstBlock; /* Size of first block written to WAL file */ 000514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ 000515 u32 szPage; /* Database page size */ 000516 i16 readLock; /* Which read lock is being held. -1 for none */ 000517 u8 syncFlags; /* Flags to use to sync header writes */ 000518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ 000519 u8 writeLock; /* True if in a write transaction */ 000520 u8 ckptLock; /* True if holding a checkpoint lock */ 000521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ 000522 u8 truncateOnCommit; /* True to truncate WAL file on commit */ 000523 u8 syncHeader; /* Fsync the WAL header if true */ 000524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ 000525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */ 000526 WalIndexHdr hdr; /* Wal-index header for current transaction */ 000527 u32 minFrame; /* Ignore wal frames before this one */ 000528 u32 iReCksum; /* On commit, recalculate checksums from here */ 000529 const char *zWalName; /* Name of WAL file */ 000530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ 000531 #ifdef SQLITE_USE_SEH 000532 u32 lockMask; /* Mask of locks held */ 000533 void *pFree; /* Pointer to sqlite3_free() if exception thrown */ 000534 u32 *pWiValue; /* Value to write into apWiData[iWiPg] */ 000535 int iWiPg; /* Write pWiValue into apWiData[iWiPg] */ 000536 int iSysErrno; /* System error code following exception */ 000537 #endif 000538 #ifdef SQLITE_DEBUG 000539 int nSehTry; /* Number of nested SEH_TRY{} blocks */ 000540 u8 lockError; /* True if a locking error has occurred */ 000541 #endif 000542 #ifdef SQLITE_ENABLE_SNAPSHOT 000543 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ 000544 #endif 000545 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 000546 sqlite3 *db; 000547 #endif 000548 }; 000549 000550 /* 000551 ** Candidate values for Wal.exclusiveMode. 000552 */ 000553 #define WAL_NORMAL_MODE 0 000554 #define WAL_EXCLUSIVE_MODE 1 000555 #define WAL_HEAPMEMORY_MODE 2 000556 000557 /* 000558 ** Possible values for WAL.readOnly 000559 */ 000560 #define WAL_RDWR 0 /* Normal read/write connection */ 000561 #define WAL_RDONLY 1 /* The WAL file is readonly */ 000562 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ 000563 000564 /* 000565 ** Each page of the wal-index mapping contains a hash-table made up of 000566 ** an array of HASHTABLE_NSLOT elements of the following type. 000567 */ 000568 typedef u16 ht_slot; 000569 000570 /* 000571 ** This structure is used to implement an iterator that loops through 000572 ** all frames in the WAL in database page order. Where two or more frames 000573 ** correspond to the same database page, the iterator visits only the 000574 ** frame most recently written to the WAL (in other words, the frame with 000575 ** the largest index). 000576 ** 000577 ** The internals of this structure are only accessed by: 000578 ** 000579 ** walIteratorInit() - Create a new iterator, 000580 ** walIteratorNext() - Step an iterator, 000581 ** walIteratorFree() - Free an iterator. 000582 ** 000583 ** This functionality is used by the checkpoint code (see walCheckpoint()). 000584 */ 000585 struct WalIterator { 000586 u32 iPrior; /* Last result returned from the iterator */ 000587 int nSegment; /* Number of entries in aSegment[] */ 000588 struct WalSegment { 000589 int iNext; /* Next slot in aIndex[] not yet returned */ 000590 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ 000591 u32 *aPgno; /* Array of page numbers. */ 000592 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ 000593 int iZero; /* Frame number associated with aPgno[0] */ 000594 } aSegment[1]; /* One for every 32KB page in the wal-index */ 000595 }; 000596 000597 /* 000598 ** Define the parameters of the hash tables in the wal-index file. There 000599 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the 000600 ** wal-index. 000601 ** 000602 ** Changing any of these constants will alter the wal-index format and 000603 ** create incompatibilities. 000604 */ 000605 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ 000606 #define HASHTABLE_HASH_1 383 /* Should be prime */ 000607 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ 000608 000609 /* 000610 ** The block of page numbers associated with the first hash-table in a 000611 ** wal-index is smaller than usual. This is so that there is a complete 000612 ** hash-table on each aligned 32KB page of the wal-index. 000613 */ 000614 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) 000615 000616 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ 000617 #define WALINDEX_PGSZ ( \ 000618 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ 000619 ) 000620 000621 /* 000622 ** Structured Exception Handling (SEH) is a Windows-specific technique 000623 ** for catching exceptions raised while accessing memory-mapped files. 000624 ** 000625 ** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and 000626 ** deal with system-level errors that arise during WAL -shm file processing. 000627 ** Without this compile-time option, any system-level faults that appear 000628 ** while accessing the memory-mapped -shm file will cause a process-wide 000629 ** signal to be deliver, which will more than likely cause the entire 000630 ** process to exit. 000631 */ 000632 #ifdef SQLITE_USE_SEH 000633 #include <Windows.h> 000634 000635 /* Beginning of a block of code in which an exception might occur */ 000636 # define SEH_TRY __try { \ 000637 assert( walAssertLockmask(pWal) && pWal->nSehTry==0 ); \ 000638 VVA_ONLY(pWal->nSehTry++); 000639 000640 /* The end of a block of code in which an exception might occur */ 000641 # define SEH_EXCEPT(X) \ 000642 VVA_ONLY(pWal->nSehTry--); \ 000643 assert( pWal->nSehTry==0 ); \ 000644 } __except( sehExceptionFilter(pWal, GetExceptionCode(), GetExceptionInformation() ) ){ X } 000645 000646 /* Simulate a memory-mapping fault in the -shm file for testing purposes */ 000647 # define SEH_INJECT_FAULT sehInjectFault(pWal) 000648 000649 /* 000650 ** The second argument is the return value of GetExceptionCode() for the 000651 ** current exception. Return EXCEPTION_EXECUTE_HANDLER if the exception code 000652 ** indicates that the exception may have been caused by accessing the *-shm 000653 ** file mapping. Or EXCEPTION_CONTINUE_SEARCH otherwise. 000654 */ 000655 static int sehExceptionFilter(Wal *pWal, int eCode, EXCEPTION_POINTERS *p){ 000656 VVA_ONLY(pWal->nSehTry--); 000657 if( eCode==EXCEPTION_IN_PAGE_ERROR ){ 000658 if( p && p->ExceptionRecord && p->ExceptionRecord->NumberParameters>=3 ){ 000659 /* From MSDN: For this type of exception, the first element of the 000660 ** ExceptionInformation[] array is a read-write flag - 0 if the exception 000661 ** was thrown while reading, 1 if while writing. The second element is 000662 ** the virtual address being accessed. The "third array element specifies 000663 ** the underlying NTSTATUS code that resulted in the exception". */ 000664 pWal->iSysErrno = (int)p->ExceptionRecord->ExceptionInformation[2]; 000665 } 000666 return EXCEPTION_EXECUTE_HANDLER; 000667 } 000668 return EXCEPTION_CONTINUE_SEARCH; 000669 } 000670 000671 /* 000672 ** If one is configured, invoke the xTestCallback callback with 650 as 000673 ** the argument. If it returns true, throw the same exception that is 000674 ** thrown by the system if the *-shm file mapping is accessed after it 000675 ** has been invalidated. 000676 */ 000677 static void sehInjectFault(Wal *pWal){ 000678 int res; 000679 assert( pWal->nSehTry>0 ); 000680 000681 res = sqlite3FaultSim(650); 000682 if( res!=0 ){ 000683 ULONG_PTR aArg[3]; 000684 aArg[0] = 0; 000685 aArg[1] = 0; 000686 aArg[2] = (ULONG_PTR)res; 000687 RaiseException(EXCEPTION_IN_PAGE_ERROR, 0, 3, (const ULONG_PTR*)aArg); 000688 } 000689 } 000690 000691 /* 000692 ** There are two ways to use this macro. To set a pointer to be freed 000693 ** if an exception is thrown: 000694 ** 000695 ** SEH_FREE_ON_ERROR(0, pPtr); 000696 ** 000697 ** and to cancel the same: 000698 ** 000699 ** SEH_FREE_ON_ERROR(pPtr, 0); 000700 ** 000701 ** In the first case, there must not already be a pointer registered to 000702 ** be freed. In the second case, pPtr must be the registered pointer. 000703 */ 000704 #define SEH_FREE_ON_ERROR(X,Y) \ 000705 assert( (X==0 || Y==0) && pWal->pFree==X ); pWal->pFree = Y 000706 000707 /* 000708 ** There are two ways to use this macro. To arrange for pWal->apWiData[iPg] 000709 ** to be set to pValue if an exception is thrown: 000710 ** 000711 ** SEH_SET_ON_ERROR(iPg, pValue); 000712 ** 000713 ** and to cancel the same: 000714 ** 000715 ** SEH_SET_ON_ERROR(0, 0); 000716 */ 000717 #define SEH_SET_ON_ERROR(X,Y) pWal->iWiPg = X; pWal->pWiValue = Y 000718 000719 #else 000720 # define SEH_TRY VVA_ONLY(pWal->nSehTry++); 000721 # define SEH_EXCEPT(X) VVA_ONLY(pWal->nSehTry--); assert( pWal->nSehTry==0 ); 000722 # define SEH_INJECT_FAULT assert( pWal->nSehTry>0 ); 000723 # define SEH_FREE_ON_ERROR(X,Y) 000724 # define SEH_SET_ON_ERROR(X,Y) 000725 #endif /* ifdef SQLITE_USE_SEH */ 000726 000727 000728 /* 000729 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index 000730 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are 000731 ** numbered from zero. 000732 ** 000733 ** If the wal-index is currently smaller the iPage pages then the size 000734 ** of the wal-index might be increased, but only if it is safe to do 000735 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true 000736 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE. 000737 ** 000738 ** Three possible result scenarios: 000739 ** 000740 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page 000741 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL 000742 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0 000743 ** 000744 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0 000745 */ 000746 static SQLITE_NOINLINE int walIndexPageRealloc( 000747 Wal *pWal, /* The WAL context */ 000748 int iPage, /* The page we seek */ 000749 volatile u32 **ppPage /* Write the page pointer here */ 000750 ){ 000751 int rc = SQLITE_OK; 000752 000753 /* Enlarge the pWal->apWiData[] array if required */ 000754 if( pWal->nWiData<=iPage ){ 000755 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1); 000756 volatile u32 **apNew; 000757 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte); 000758 if( !apNew ){ 000759 *ppPage = 0; 000760 return SQLITE_NOMEM_BKPT; 000761 } 000762 memset((void*)&apNew[pWal->nWiData], 0, 000763 sizeof(u32*)*(iPage+1-pWal->nWiData)); 000764 pWal->apWiData = apNew; 000765 pWal->nWiData = iPage+1; 000766 } 000767 000768 /* Request a pointer to the required page from the VFS */ 000769 assert( pWal->apWiData[iPage]==0 ); 000770 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ 000771 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); 000772 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT; 000773 }else{ 000774 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 000775 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] 000776 ); 000777 assert( pWal->apWiData[iPage]!=0 000778 || rc!=SQLITE_OK 000779 || (pWal->writeLock==0 && iPage==0) ); 000780 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK ); 000781 if( rc==SQLITE_OK ){ 000782 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM; 000783 }else if( (rc&0xff)==SQLITE_READONLY ){ 000784 pWal->readOnly |= WAL_SHM_RDONLY; 000785 if( rc==SQLITE_READONLY ){ 000786 rc = SQLITE_OK; 000787 } 000788 } 000789 } 000790 000791 *ppPage = pWal->apWiData[iPage]; 000792 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); 000793 return rc; 000794 } 000795 static int walIndexPage( 000796 Wal *pWal, /* The WAL context */ 000797 int iPage, /* The page we seek */ 000798 volatile u32 **ppPage /* Write the page pointer here */ 000799 ){ 000800 SEH_INJECT_FAULT; 000801 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){ 000802 return walIndexPageRealloc(pWal, iPage, ppPage); 000803 } 000804 return SQLITE_OK; 000805 } 000806 000807 /* 000808 ** Return a pointer to the WalCkptInfo structure in the wal-index. 000809 */ 000810 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ 000811 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000812 SEH_INJECT_FAULT; 000813 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); 000814 } 000815 000816 /* 000817 ** Return a pointer to the WalIndexHdr structure in the wal-index. 000818 */ 000819 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ 000820 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 000821 SEH_INJECT_FAULT; 000822 return (volatile WalIndexHdr*)pWal->apWiData[0]; 000823 } 000824 000825 /* 000826 ** The argument to this macro must be of type u32. On a little-endian 000827 ** architecture, it returns the u32 value that results from interpreting 000828 ** the 4 bytes as a big-endian value. On a big-endian architecture, it 000829 ** returns the value that would be produced by interpreting the 4 bytes 000830 ** of the input value as a little-endian integer. 000831 */ 000832 #define BYTESWAP32(x) ( \ 000833 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ 000834 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ 000835 ) 000836 000837 /* 000838 ** Generate or extend an 8 byte checksum based on the data in 000839 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or 000840 ** initial values of 0 and 0 if aIn==NULL). 000841 ** 000842 ** The checksum is written back into aOut[] before returning. 000843 ** 000844 ** nByte must be a positive multiple of 8. 000845 */ 000846 static void walChecksumBytes( 000847 int nativeCksum, /* True for native byte-order, false for non-native */ 000848 u8 *a, /* Content to be checksummed */ 000849 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ 000850 const u32 *aIn, /* Initial checksum value input */ 000851 u32 *aOut /* OUT: Final checksum value output */ 000852 ){ 000853 u32 s1, s2; 000854 u32 *aData = (u32 *)a; 000855 u32 *aEnd = (u32 *)&a[nByte]; 000856 000857 if( aIn ){ 000858 s1 = aIn[0]; 000859 s2 = aIn[1]; 000860 }else{ 000861 s1 = s2 = 0; 000862 } 000863 000864 assert( nByte>=8 ); 000865 assert( (nByte&0x00000007)==0 ); 000866 assert( nByte<=65536 ); 000867 assert( nByte%4==0 ); 000868 000869 if( !nativeCksum ){ 000870 do { 000871 s1 += BYTESWAP32(aData[0]) + s2; 000872 s2 += BYTESWAP32(aData[1]) + s1; 000873 aData += 2; 000874 }while( aData<aEnd ); 000875 }else if( nByte%64==0 ){ 000876 do { 000877 s1 += *aData++ + s2; 000878 s2 += *aData++ + s1; 000879 s1 += *aData++ + s2; 000880 s2 += *aData++ + s1; 000881 s1 += *aData++ + s2; 000882 s2 += *aData++ + s1; 000883 s1 += *aData++ + s2; 000884 s2 += *aData++ + s1; 000885 s1 += *aData++ + s2; 000886 s2 += *aData++ + s1; 000887 s1 += *aData++ + s2; 000888 s2 += *aData++ + s1; 000889 s1 += *aData++ + s2; 000890 s2 += *aData++ + s1; 000891 s1 += *aData++ + s2; 000892 s2 += *aData++ + s1; 000893 }while( aData<aEnd ); 000894 }else{ 000895 do { 000896 s1 += *aData++ + s2; 000897 s2 += *aData++ + s1; 000898 }while( aData<aEnd ); 000899 } 000900 assert( aData==aEnd ); 000901 000902 aOut[0] = s1; 000903 aOut[1] = s2; 000904 } 000905 000906 /* 000907 ** If there is the possibility of concurrent access to the SHM file 000908 ** from multiple threads and/or processes, then do a memory barrier. 000909 */ 000910 static void walShmBarrier(Wal *pWal){ 000911 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 000912 sqlite3OsShmBarrier(pWal->pDbFd); 000913 } 000914 } 000915 000916 /* 000917 ** Add the SQLITE_NO_TSAN as part of the return-type of a function 000918 ** definition as a hint that the function contains constructs that 000919 ** might give false-positive TSAN warnings. 000920 ** 000921 ** See tag-20200519-1. 000922 */ 000923 #if defined(__clang__) && !defined(SQLITE_NO_TSAN) 000924 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread)) 000925 #else 000926 # define SQLITE_NO_TSAN 000927 #endif 000928 000929 /* 000930 ** Write the header information in pWal->hdr into the wal-index. 000931 ** 000932 ** The checksum on pWal->hdr is updated before it is written. 000933 */ 000934 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){ 000935 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); 000936 const int nCksum = offsetof(WalIndexHdr, aCksum); 000937 000938 assert( pWal->writeLock ); 000939 pWal->hdr.isInit = 1; 000940 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; 000941 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); 000942 /* Possible TSAN false-positive. See tag-20200519-1 */ 000943 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000944 walShmBarrier(pWal); 000945 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); 000946 } 000947 000948 /* 000949 ** This function encodes a single frame header and writes it to a buffer 000950 ** supplied by the caller. A frame-header is made up of a series of 000951 ** 4-byte big-endian integers, as follows: 000952 ** 000953 ** 0: Page number. 000954 ** 4: For commit records, the size of the database image in pages 000955 ** after the commit. For all other records, zero. 000956 ** 8: Salt-1 (copied from the wal-header) 000957 ** 12: Salt-2 (copied from the wal-header) 000958 ** 16: Checksum-1. 000959 ** 20: Checksum-2. 000960 */ 000961 static void walEncodeFrame( 000962 Wal *pWal, /* The write-ahead log */ 000963 u32 iPage, /* Database page number for frame */ 000964 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ 000965 u8 *aData, /* Pointer to page data */ 000966 u8 *aFrame /* OUT: Write encoded frame here */ 000967 ){ 000968 int nativeCksum; /* True for native byte-order checksums */ 000969 u32 *aCksum = pWal->hdr.aFrameCksum; 000970 assert( WAL_FRAME_HDRSIZE==24 ); 000971 sqlite3Put4byte(&aFrame[0], iPage); 000972 sqlite3Put4byte(&aFrame[4], nTruncate); 000973 if( pWal->iReCksum==0 ){ 000974 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); 000975 000976 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 000977 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 000978 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 000979 000980 sqlite3Put4byte(&aFrame[16], aCksum[0]); 000981 sqlite3Put4byte(&aFrame[20], aCksum[1]); 000982 }else{ 000983 memset(&aFrame[8], 0, 16); 000984 } 000985 } 000986 000987 /* 000988 ** Check to see if the frame with header in aFrame[] and content 000989 ** in aData[] is valid. If it is a valid frame, fill *piPage and 000990 ** *pnTruncate and return true. Return if the frame is not valid. 000991 */ 000992 static int walDecodeFrame( 000993 Wal *pWal, /* The write-ahead log */ 000994 u32 *piPage, /* OUT: Database page number for frame */ 000995 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ 000996 u8 *aData, /* Pointer to page data (for checksum) */ 000997 u8 *aFrame /* Frame data */ 000998 ){ 000999 int nativeCksum; /* True for native byte-order checksums */ 001000 u32 *aCksum = pWal->hdr.aFrameCksum; 001001 u32 pgno; /* Page number of the frame */ 001002 assert( WAL_FRAME_HDRSIZE==24 ); 001003 001004 /* A frame is only valid if the salt values in the frame-header 001005 ** match the salt values in the wal-header. 001006 */ 001007 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ 001008 return 0; 001009 } 001010 001011 /* A frame is only valid if the page number is greater than zero. 001012 */ 001013 pgno = sqlite3Get4byte(&aFrame[0]); 001014 if( pgno==0 ){ 001015 return 0; 001016 } 001017 001018 /* A frame is only valid if a checksum of the WAL header, 001019 ** all prior frames, the first 16 bytes of this frame-header, 001020 ** and the frame-data matches the checksum in the last 8 001021 ** bytes of this frame-header. 001022 */ 001023 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); 001024 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); 001025 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); 001026 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 001027 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 001028 ){ 001029 /* Checksum failed. */ 001030 return 0; 001031 } 001032 001033 /* If we reach this point, the frame is valid. Return the page number 001034 ** and the new database size. 001035 */ 001036 *piPage = pgno; 001037 *pnTruncate = sqlite3Get4byte(&aFrame[4]); 001038 return 1; 001039 } 001040 001041 001042 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 001043 /* 001044 ** Names of locks. This routine is used to provide debugging output and is not 001045 ** a part of an ordinary build. 001046 */ 001047 static const char *walLockName(int lockIdx){ 001048 if( lockIdx==WAL_WRITE_LOCK ){ 001049 return "WRITE-LOCK"; 001050 }else if( lockIdx==WAL_CKPT_LOCK ){ 001051 return "CKPT-LOCK"; 001052 }else if( lockIdx==WAL_RECOVER_LOCK ){ 001053 return "RECOVER-LOCK"; 001054 }else{ 001055 static char zName[15]; 001056 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", 001057 lockIdx-WAL_READ_LOCK(0)); 001058 return zName; 001059 } 001060 } 001061 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ 001062 001063 001064 /* 001065 ** Set or release locks on the WAL. Locks are either shared or exclusive. 001066 ** A lock cannot be moved directly between shared and exclusive - it must go 001067 ** through the unlocked state first. 001068 ** 001069 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. 001070 */ 001071 static int walLockShared(Wal *pWal, int lockIdx){ 001072 int rc; 001073 if( pWal->exclusiveMode ) return SQLITE_OK; 001074 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001075 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); 001076 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, 001077 walLockName(lockIdx), rc ? "failed" : "ok")); 001078 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001079 #ifdef SQLITE_USE_SEH 001080 if( rc==SQLITE_OK ) pWal->lockMask |= (1 << lockIdx); 001081 #endif 001082 return rc; 001083 } 001084 static void walUnlockShared(Wal *pWal, int lockIdx){ 001085 if( pWal->exclusiveMode ) return; 001086 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, 001087 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); 001088 #ifdef SQLITE_USE_SEH 001089 pWal->lockMask &= ~(1 << lockIdx); 001090 #endif 001091 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); 001092 } 001093 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ 001094 int rc; 001095 if( pWal->exclusiveMode ) return SQLITE_OK; 001096 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001097 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); 001098 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, 001099 walLockName(lockIdx), n, rc ? "failed" : "ok")); 001100 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); ) 001101 #ifdef SQLITE_USE_SEH 001102 if( rc==SQLITE_OK ){ 001103 pWal->lockMask |= (((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001104 } 001105 #endif 001106 return rc; 001107 } 001108 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ 001109 if( pWal->exclusiveMode ) return; 001110 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, 001111 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); 001112 #ifdef SQLITE_USE_SEH 001113 pWal->lockMask &= ~(((1<<n)-1) << (SQLITE_SHM_NLOCK+lockIdx)); 001114 #endif 001115 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, 001116 walLockName(lockIdx), n)); 001117 } 001118 001119 /* 001120 ** Compute a hash on a page number. The resulting hash value must land 001121 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances 001122 ** the hash to the next value in the event of a collision. 001123 */ 001124 static int walHash(u32 iPage){ 001125 assert( iPage>0 ); 001126 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); 001127 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); 001128 } 001129 static int walNextHash(int iPriorHash){ 001130 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); 001131 } 001132 001133 /* 001134 ** An instance of the WalHashLoc object is used to describe the location 001135 ** of a page hash table in the wal-index. This becomes the return value 001136 ** from walHashGet(). 001137 */ 001138 typedef struct WalHashLoc WalHashLoc; 001139 struct WalHashLoc { 001140 volatile ht_slot *aHash; /* Start of the wal-index hash table */ 001141 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */ 001142 u32 iZero; /* One less than the frame number of first indexed*/ 001143 }; 001144 001145 /* 001146 ** Return pointers to the hash table and page number array stored on 001147 ** page iHash of the wal-index. The wal-index is broken into 32KB pages 001148 ** numbered starting from 0. 001149 ** 001150 ** Set output variable pLoc->aHash to point to the start of the hash table 001151 ** in the wal-index file. Set pLoc->iZero to one less than the frame 001152 ** number of the first frame indexed by this hash table. If a 001153 ** slot in the hash table is set to N, it refers to frame number 001154 ** (pLoc->iZero+N) in the log. 001155 ** 001156 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the 001157 ** first frame indexed by the hash table, frame (pLoc->iZero). 001158 */ 001159 static int walHashGet( 001160 Wal *pWal, /* WAL handle */ 001161 int iHash, /* Find the iHash'th table */ 001162 WalHashLoc *pLoc /* OUT: Hash table location */ 001163 ){ 001164 int rc; /* Return code */ 001165 001166 rc = walIndexPage(pWal, iHash, &pLoc->aPgno); 001167 assert( rc==SQLITE_OK || iHash>0 ); 001168 001169 if( pLoc->aPgno ){ 001170 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE]; 001171 if( iHash==0 ){ 001172 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; 001173 pLoc->iZero = 0; 001174 }else{ 001175 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; 001176 } 001177 }else if( NEVER(rc==SQLITE_OK) ){ 001178 rc = SQLITE_ERROR; 001179 } 001180 return rc; 001181 } 001182 001183 /* 001184 ** Return the number of the wal-index page that contains the hash-table 001185 ** and page-number array that contain entries corresponding to WAL frame 001186 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 001187 ** are numbered starting from 0. 001188 */ 001189 static int walFramePage(u32 iFrame){ 001190 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; 001191 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) 001192 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) 001193 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) 001194 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) 001195 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) 001196 ); 001197 assert( iHash>=0 ); 001198 return iHash; 001199 } 001200 001201 /* 001202 ** Return the page number associated with frame iFrame in this WAL. 001203 */ 001204 static u32 walFramePgno(Wal *pWal, u32 iFrame){ 001205 int iHash = walFramePage(iFrame); 001206 SEH_INJECT_FAULT; 001207 if( iHash==0 ){ 001208 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; 001209 } 001210 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; 001211 } 001212 001213 /* 001214 ** Remove entries from the hash table that point to WAL slots greater 001215 ** than pWal->hdr.mxFrame. 001216 ** 001217 ** This function is called whenever pWal->hdr.mxFrame is decreased due 001218 ** to a rollback or savepoint. 001219 ** 001220 ** At most only the hash table containing pWal->hdr.mxFrame needs to be 001221 ** updated. Any later hash tables will be automatically cleared when 001222 ** pWal->hdr.mxFrame advances to the point where those hash tables are 001223 ** actually needed. 001224 */ 001225 static void walCleanupHash(Wal *pWal){ 001226 WalHashLoc sLoc; /* Hash table location */ 001227 int iLimit = 0; /* Zero values greater than this */ 001228 int nByte; /* Number of bytes to zero in aPgno[] */ 001229 int i; /* Used to iterate through aHash[] */ 001230 001231 assert( pWal->writeLock ); 001232 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); 001233 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); 001234 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); 001235 001236 if( pWal->hdr.mxFrame==0 ) return; 001237 001238 /* Obtain pointers to the hash-table and page-number array containing 001239 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed 001240 ** that the page said hash-table and array reside on is already mapped.(1) 001241 */ 001242 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); 001243 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); 001244 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc); 001245 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */ 001246 001247 /* Zero all hash-table entries that correspond to frame numbers greater 001248 ** than pWal->hdr.mxFrame. 001249 */ 001250 iLimit = pWal->hdr.mxFrame - sLoc.iZero; 001251 assert( iLimit>0 ); 001252 for(i=0; i<HASHTABLE_NSLOT; i++){ 001253 if( sLoc.aHash[i]>iLimit ){ 001254 sLoc.aHash[i] = 0; 001255 } 001256 } 001257 001258 /* Zero the entries in the aPgno array that correspond to frames with 001259 ** frame numbers greater than pWal->hdr.mxFrame. 001260 */ 001261 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]); 001262 assert( nByte>=0 ); 001263 memset((void *)&sLoc.aPgno[iLimit], 0, nByte); 001264 001265 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001266 /* Verify that the every entry in the mapping region is still reachable 001267 ** via the hash table even after the cleanup. 001268 */ 001269 if( iLimit ){ 001270 int j; /* Loop counter */ 001271 int iKey; /* Hash key */ 001272 for(j=0; j<iLimit; j++){ 001273 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){ 001274 if( sLoc.aHash[iKey]==j+1 ) break; 001275 } 001276 assert( sLoc.aHash[iKey]==j+1 ); 001277 } 001278 } 001279 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001280 } 001281 001282 001283 /* 001284 ** Set an entry in the wal-index that will map database page number 001285 ** pPage into WAL frame iFrame. 001286 */ 001287 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ 001288 int rc; /* Return code */ 001289 WalHashLoc sLoc; /* Wal-index hash table location */ 001290 001291 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc); 001292 001293 /* Assuming the wal-index file was successfully mapped, populate the 001294 ** page number array and hash table entry. 001295 */ 001296 if( rc==SQLITE_OK ){ 001297 int iKey; /* Hash table key */ 001298 int idx; /* Value to write to hash-table slot */ 001299 int nCollide; /* Number of hash collisions */ 001300 001301 idx = iFrame - sLoc.iZero; 001302 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); 001303 001304 /* If this is the first entry to be added to this hash-table, zero the 001305 ** entire hash table and aPgno[] array before proceeding. 001306 */ 001307 if( idx==1 ){ 001308 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno); 001309 assert( nByte>=0 ); 001310 memset((void*)sLoc.aPgno, 0, nByte); 001311 } 001312 001313 /* If the entry in aPgno[] is already set, then the previous writer 001314 ** must have exited unexpectedly in the middle of a transaction (after 001315 ** writing one or more dirty pages to the WAL to free up memory). 001316 ** Remove the remnants of that writers uncommitted transaction from 001317 ** the hash-table before writing any new entries. 001318 */ 001319 if( sLoc.aPgno[idx-1] ){ 001320 walCleanupHash(pWal); 001321 assert( !sLoc.aPgno[idx-1] ); 001322 } 001323 001324 /* Write the aPgno[] array entry and the hash-table slot. */ 001325 nCollide = idx; 001326 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){ 001327 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; 001328 } 001329 sLoc.aPgno[idx-1] = iPage; 001330 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx); 001331 001332 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 001333 /* Verify that the number of entries in the hash table exactly equals 001334 ** the number of entries in the mapping region. 001335 */ 001336 { 001337 int i; /* Loop counter */ 001338 int nEntry = 0; /* Number of entries in the hash table */ 001339 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; } 001340 assert( nEntry==idx ); 001341 } 001342 001343 /* Verify that the every entry in the mapping region is reachable 001344 ** via the hash table. This turns out to be a really, really expensive 001345 ** thing to check, so only do this occasionally - not on every 001346 ** iteration. 001347 */ 001348 if( (idx&0x3ff)==0 ){ 001349 int i; /* Loop counter */ 001350 for(i=0; i<idx; i++){ 001351 for(iKey=walHash(sLoc.aPgno[i]); 001352 sLoc.aHash[iKey]; 001353 iKey=walNextHash(iKey)){ 001354 if( sLoc.aHash[iKey]==i+1 ) break; 001355 } 001356 assert( sLoc.aHash[iKey]==i+1 ); 001357 } 001358 } 001359 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ 001360 } 001361 001362 return rc; 001363 } 001364 001365 001366 /* 001367 ** Recover the wal-index by reading the write-ahead log file. 001368 ** 001369 ** This routine first tries to establish an exclusive lock on the 001370 ** wal-index to prevent other threads/processes from doing anything 001371 ** with the WAL or wal-index while recovery is running. The 001372 ** WAL_RECOVER_LOCK is also held so that other threads will know 001373 ** that this thread is running recovery. If unable to establish 001374 ** the necessary locks, this routine returns SQLITE_BUSY. 001375 */ 001376 static int walIndexRecover(Wal *pWal){ 001377 int rc; /* Return Code */ 001378 i64 nSize; /* Size of log file */ 001379 u32 aFrameCksum[2] = {0, 0}; 001380 int iLock; /* Lock offset to lock for checkpoint */ 001381 001382 /* Obtain an exclusive lock on all byte in the locking range not already 001383 ** locked by the caller. The caller is guaranteed to have locked the 001384 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. 001385 ** If successful, the same bytes that are locked here are unlocked before 001386 ** this function returns. 001387 */ 001388 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); 001389 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); 001390 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); 001391 assert( pWal->writeLock ); 001392 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; 001393 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001394 if( rc ){ 001395 return rc; 001396 } 001397 001398 WALTRACE(("WAL%p: recovery begin...\n", pWal)); 001399 001400 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 001401 001402 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); 001403 if( rc!=SQLITE_OK ){ 001404 goto recovery_error; 001405 } 001406 001407 if( nSize>WAL_HDRSIZE ){ 001408 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 001409 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */ 001410 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 001411 int szFrame; /* Number of bytes in buffer aFrame[] */ 001412 u8 *aData; /* Pointer to data part of aFrame buffer */ 001413 int szPage; /* Page size according to the log */ 001414 u32 magic; /* Magic value read from WAL header */ 001415 u32 version; /* Magic value read from WAL header */ 001416 int isValid; /* True if this frame is valid */ 001417 u32 iPg; /* Current 32KB wal-index page */ 001418 u32 iLastFrame; /* Last frame in wal, based on nSize alone */ 001419 001420 /* Read in the WAL header. */ 001421 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 001422 if( rc!=SQLITE_OK ){ 001423 goto recovery_error; 001424 } 001425 001426 /* If the database page size is not a power of two, or is greater than 001427 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 001428 ** data. Similarly, if the 'magic' value is invalid, ignore the whole 001429 ** WAL file. 001430 */ 001431 magic = sqlite3Get4byte(&aBuf[0]); 001432 szPage = sqlite3Get4byte(&aBuf[8]); 001433 if( (magic&0xFFFFFFFE)!=WAL_MAGIC 001434 || szPage&(szPage-1) 001435 || szPage>SQLITE_MAX_PAGE_SIZE 001436 || szPage<512 001437 ){ 001438 goto finished; 001439 } 001440 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); 001441 pWal->szPage = szPage; 001442 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); 001443 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); 001444 001445 /* Verify that the WAL header checksum is correct */ 001446 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 001447 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum 001448 ); 001449 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) 001450 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) 001451 ){ 001452 goto finished; 001453 } 001454 001455 /* Verify that the version number on the WAL format is one that 001456 ** are able to understand */ 001457 version = sqlite3Get4byte(&aBuf[4]); 001458 if( version!=WAL_MAX_VERSION ){ 001459 rc = SQLITE_CANTOPEN_BKPT; 001460 goto finished; 001461 } 001462 001463 /* Malloc a buffer to read frames into. */ 001464 szFrame = szPage + WAL_FRAME_HDRSIZE; 001465 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ); 001466 SEH_FREE_ON_ERROR(0, aFrame); 001467 if( !aFrame ){ 001468 rc = SQLITE_NOMEM_BKPT; 001469 goto recovery_error; 001470 } 001471 aData = &aFrame[WAL_FRAME_HDRSIZE]; 001472 aPrivate = (u32*)&aData[szPage]; 001473 001474 /* Read all frames from the log file. */ 001475 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame; 001476 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){ 001477 u32 *aShare; 001478 u32 iFrame; /* Index of last frame read */ 001479 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE); 001480 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE); 001481 u32 nHdr, nHdr32; 001482 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare); 001483 assert( aShare!=0 || rc!=SQLITE_OK ); 001484 if( aShare==0 ) break; 001485 SEH_SET_ON_ERROR(iPg, aShare); 001486 pWal->apWiData[iPg] = aPrivate; 001487 001488 for(iFrame=iFirst; iFrame<=iLast; iFrame++){ 001489 i64 iOffset = walFrameOffset(iFrame, szPage); 001490 u32 pgno; /* Database page number for frame */ 001491 u32 nTruncate; /* dbsize field from frame header */ 001492 001493 /* Read and decode the next log frame. */ 001494 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 001495 if( rc!=SQLITE_OK ) break; 001496 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); 001497 if( !isValid ) break; 001498 rc = walIndexAppend(pWal, iFrame, pgno); 001499 if( NEVER(rc!=SQLITE_OK) ) break; 001500 001501 /* If nTruncate is non-zero, this is a commit record. */ 001502 if( nTruncate ){ 001503 pWal->hdr.mxFrame = iFrame; 001504 pWal->hdr.nPage = nTruncate; 001505 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 001506 testcase( szPage<=32768 ); 001507 testcase( szPage>=65536 ); 001508 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; 001509 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; 001510 } 001511 } 001512 pWal->apWiData[iPg] = aShare; 001513 SEH_SET_ON_ERROR(0,0); 001514 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0); 001515 nHdr32 = nHdr / sizeof(u32); 001516 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY 001517 /* Memcpy() should work fine here, on all reasonable implementations. 001518 ** Technically, memcpy() might change the destination to some 001519 ** intermediate value before setting to the final value, and that might 001520 ** cause a concurrent reader to malfunction. Memcpy() is allowed to 001521 ** do that, according to the spec, but no memcpy() implementation that 001522 ** we know of actually does that, which is why we say that memcpy() 001523 ** is safe for this. Memcpy() is certainly a lot faster. 001524 */ 001525 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr); 001526 #else 001527 /* In the event that some platform is found for which memcpy() 001528 ** changes the destination to some intermediate value before 001529 ** setting the final value, this alternative copy routine is 001530 ** provided. 001531 */ 001532 { 001533 int i; 001534 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){ 001535 if( aShare[i]!=aPrivate[i] ){ 001536 /* Atomic memory operations are not required here because if 001537 ** the value needs to be changed, that means it is not being 001538 ** accessed concurrently. */ 001539 aShare[i] = aPrivate[i]; 001540 } 001541 } 001542 } 001543 #endif 001544 SEH_INJECT_FAULT; 001545 if( iFrame<=iLast ) break; 001546 } 001547 001548 SEH_FREE_ON_ERROR(aFrame, 0); 001549 sqlite3_free(aFrame); 001550 } 001551 001552 finished: 001553 if( rc==SQLITE_OK ){ 001554 volatile WalCkptInfo *pInfo; 001555 int i; 001556 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; 001557 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; 001558 walIndexWriteHdr(pWal); 001559 001560 /* Reset the checkpoint-header. This is safe because this thread is 001561 ** currently holding locks that exclude all other writers and 001562 ** checkpointers. Then set the values of read-mark slots 1 through N. 001563 */ 001564 pInfo = walCkptInfo(pWal); 001565 pInfo->nBackfill = 0; 001566 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; 001567 pInfo->aReadMark[0] = 0; 001568 for(i=1; i<WAL_NREADER; i++){ 001569 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 001570 if( rc==SQLITE_OK ){ 001571 if( i==1 && pWal->hdr.mxFrame ){ 001572 pInfo->aReadMark[i] = pWal->hdr.mxFrame; 001573 }else{ 001574 pInfo->aReadMark[i] = READMARK_NOT_USED; 001575 } 001576 SEH_INJECT_FAULT; 001577 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 001578 }else if( rc!=SQLITE_BUSY ){ 001579 goto recovery_error; 001580 } 001581 } 001582 001583 /* If more than one frame was recovered from the log file, report an 001584 ** event via sqlite3_log(). This is to help with identifying performance 001585 ** problems caused by applications routinely shutting down without 001586 ** checkpointing the log file. 001587 */ 001588 if( pWal->hdr.nPage ){ 001589 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, 001590 "recovered %d frames from WAL file %s", 001591 pWal->hdr.mxFrame, pWal->zWalName 001592 ); 001593 } 001594 } 001595 001596 recovery_error: 001597 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); 001598 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock); 001599 return rc; 001600 } 001601 001602 /* 001603 ** Close an open wal-index. 001604 */ 001605 static void walIndexClose(Wal *pWal, int isDelete){ 001606 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){ 001607 int i; 001608 for(i=0; i<pWal->nWiData; i++){ 001609 sqlite3_free((void *)pWal->apWiData[i]); 001610 pWal->apWiData[i] = 0; 001611 } 001612 } 001613 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ 001614 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); 001615 } 001616 } 001617 001618 /* 001619 ** Open a connection to the WAL file zWalName. The database file must 001620 ** already be opened on connection pDbFd. The buffer that zWalName points 001621 ** to must remain valid for the lifetime of the returned Wal* handle. 001622 ** 001623 ** A SHARED lock should be held on the database file when this function 001624 ** is called. The purpose of this SHARED lock is to prevent any other 001625 ** client from unlinking the WAL or wal-index file. If another process 001626 ** were to do this just after this client opened one of these files, the 001627 ** system would be badly broken. 001628 ** 001629 ** If the log file is successfully opened, SQLITE_OK is returned and 001630 ** *ppWal is set to point to a new WAL handle. If an error occurs, 001631 ** an SQLite error code is returned and *ppWal is left unmodified. 001632 */ 001633 int sqlite3WalOpen( 001634 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ 001635 sqlite3_file *pDbFd, /* The open database file */ 001636 const char *zWalName, /* Name of the WAL file */ 001637 int bNoShm, /* True to run in heap-memory mode */ 001638 i64 mxWalSize, /* Truncate WAL to this size on reset */ 001639 Wal **ppWal /* OUT: Allocated Wal handle */ 001640 ){ 001641 int rc; /* Return Code */ 001642 Wal *pRet; /* Object to allocate and return */ 001643 int flags; /* Flags passed to OsOpen() */ 001644 001645 assert( zWalName && zWalName[0] ); 001646 assert( pDbFd ); 001647 001648 /* Verify the values of various constants. Any changes to the values 001649 ** of these constants would result in an incompatible on-disk format 001650 ** for the -shm file. Any change that causes one of these asserts to 001651 ** fail is a backward compatibility problem, even if the change otherwise 001652 ** works. 001653 ** 001654 ** This table also serves as a helpful cross-reference when trying to 001655 ** interpret hex dumps of the -shm file. 001656 */ 001657 assert( 48 == sizeof(WalIndexHdr) ); 001658 assert( 40 == sizeof(WalCkptInfo) ); 001659 assert( 120 == WALINDEX_LOCK_OFFSET ); 001660 assert( 136 == WALINDEX_HDR_SIZE ); 001661 assert( 4096 == HASHTABLE_NPAGE ); 001662 assert( 4062 == HASHTABLE_NPAGE_ONE ); 001663 assert( 8192 == HASHTABLE_NSLOT ); 001664 assert( 383 == HASHTABLE_HASH_1 ); 001665 assert( 32768 == WALINDEX_PGSZ ); 001666 assert( 8 == SQLITE_SHM_NLOCK ); 001667 assert( 5 == WAL_NREADER ); 001668 assert( 24 == WAL_FRAME_HDRSIZE ); 001669 assert( 32 == WAL_HDRSIZE ); 001670 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK ); 001671 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK ); 001672 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK ); 001673 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) ); 001674 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) ); 001675 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) ); 001676 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) ); 001677 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) ); 001678 001679 /* In the amalgamation, the os_unix.c and os_win.c source files come before 001680 ** this source file. Verify that the #defines of the locking byte offsets 001681 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. 001682 ** For that matter, if the lock offset ever changes from its initial design 001683 ** value of 120, we need to know that so there is an assert() to check it. 001684 */ 001685 #ifdef WIN_SHM_BASE 001686 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001687 #endif 001688 #ifdef UNIX_SHM_BASE 001689 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); 001690 #endif 001691 001692 001693 /* Allocate an instance of struct Wal to return. */ 001694 *ppWal = 0; 001695 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); 001696 if( !pRet ){ 001697 return SQLITE_NOMEM_BKPT; 001698 } 001699 001700 pRet->pVfs = pVfs; 001701 pRet->pWalFd = (sqlite3_file *)&pRet[1]; 001702 pRet->pDbFd = pDbFd; 001703 pRet->readLock = -1; 001704 pRet->mxWalSize = mxWalSize; 001705 pRet->zWalName = zWalName; 001706 pRet->syncHeader = 1; 001707 pRet->padToSectorBoundary = 1; 001708 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); 001709 001710 /* Open file handle on the write-ahead log file. */ 001711 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); 001712 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); 001713 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ 001714 pRet->readOnly = WAL_RDONLY; 001715 } 001716 001717 if( rc!=SQLITE_OK ){ 001718 walIndexClose(pRet, 0); 001719 sqlite3OsClose(pRet->pWalFd); 001720 sqlite3_free(pRet); 001721 }else{ 001722 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); 001723 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } 001724 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ 001725 pRet->padToSectorBoundary = 0; 001726 } 001727 *ppWal = pRet; 001728 WALTRACE(("WAL%d: opened\n", pRet)); 001729 } 001730 return rc; 001731 } 001732 001733 /* 001734 ** Change the size to which the WAL file is truncated on each reset. 001735 */ 001736 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ 001737 if( pWal ) pWal->mxWalSize = iLimit; 001738 } 001739 001740 /* 001741 ** Find the smallest page number out of all pages held in the WAL that 001742 ** has not been returned by any prior invocation of this method on the 001743 ** same WalIterator object. Write into *piFrame the frame index where 001744 ** that page was last written into the WAL. Write into *piPage the page 001745 ** number. 001746 ** 001747 ** Return 0 on success. If there are no pages in the WAL with a page 001748 ** number larger than *piPage, then return 1. 001749 */ 001750 static int walIteratorNext( 001751 WalIterator *p, /* Iterator */ 001752 u32 *piPage, /* OUT: The page number of the next page */ 001753 u32 *piFrame /* OUT: Wal frame index of next page */ 001754 ){ 001755 u32 iMin; /* Result pgno must be greater than iMin */ 001756 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ 001757 int i; /* For looping through segments */ 001758 001759 iMin = p->iPrior; 001760 assert( iMin<0xffffffff ); 001761 for(i=p->nSegment-1; i>=0; i--){ 001762 struct WalSegment *pSegment = &p->aSegment[i]; 001763 while( pSegment->iNext<pSegment->nEntry ){ 001764 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; 001765 if( iPg>iMin ){ 001766 if( iPg<iRet ){ 001767 iRet = iPg; 001768 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; 001769 } 001770 break; 001771 } 001772 pSegment->iNext++; 001773 } 001774 } 001775 001776 *piPage = p->iPrior = iRet; 001777 return (iRet==0xFFFFFFFF); 001778 } 001779 001780 /* 001781 ** This function merges two sorted lists into a single sorted list. 001782 ** 001783 ** aLeft[] and aRight[] are arrays of indices. The sort key is 001784 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following 001785 ** is guaranteed for all J<K: 001786 ** 001787 ** aContent[aLeft[J]] < aContent[aLeft[K]] 001788 ** aContent[aRight[J]] < aContent[aRight[K]] 001789 ** 001790 ** This routine overwrites aRight[] with a new (probably longer) sequence 001791 ** of indices such that the aRight[] contains every index that appears in 001792 ** either aLeft[] or the old aRight[] and such that the second condition 001793 ** above is still met. 001794 ** 001795 ** The aContent[aLeft[X]] values will be unique for all X. And the 001796 ** aContent[aRight[X]] values will be unique too. But there might be 001797 ** one or more combinations of X and Y such that 001798 ** 001799 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] 001800 ** 001801 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. 001802 */ 001803 static void walMerge( 001804 const u32 *aContent, /* Pages in wal - keys for the sort */ 001805 ht_slot *aLeft, /* IN: Left hand input list */ 001806 int nLeft, /* IN: Elements in array *paLeft */ 001807 ht_slot **paRight, /* IN/OUT: Right hand input list */ 001808 int *pnRight, /* IN/OUT: Elements in *paRight */ 001809 ht_slot *aTmp /* Temporary buffer */ 001810 ){ 001811 int iLeft = 0; /* Current index in aLeft */ 001812 int iRight = 0; /* Current index in aRight */ 001813 int iOut = 0; /* Current index in output buffer */ 001814 int nRight = *pnRight; 001815 ht_slot *aRight = *paRight; 001816 001817 assert( nLeft>0 && nRight>0 ); 001818 while( iRight<nRight || iLeft<nLeft ){ 001819 ht_slot logpage; 001820 Pgno dbpage; 001821 001822 if( (iLeft<nLeft) 001823 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) 001824 ){ 001825 logpage = aLeft[iLeft++]; 001826 }else{ 001827 logpage = aRight[iRight++]; 001828 } 001829 dbpage = aContent[logpage]; 001830 001831 aTmp[iOut++] = logpage; 001832 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; 001833 001834 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); 001835 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); 001836 } 001837 001838 *paRight = aLeft; 001839 *pnRight = iOut; 001840 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); 001841 } 001842 001843 /* 001844 ** Sort the elements in list aList using aContent[] as the sort key. 001845 ** Remove elements with duplicate keys, preferring to keep the 001846 ** larger aList[] values. 001847 ** 001848 ** The aList[] entries are indices into aContent[]. The values in 001849 ** aList[] are to be sorted so that for all J<K: 001850 ** 001851 ** aContent[aList[J]] < aContent[aList[K]] 001852 ** 001853 ** For any X and Y such that 001854 ** 001855 ** aContent[aList[X]] == aContent[aList[Y]] 001856 ** 001857 ** Keep the larger of the two values aList[X] and aList[Y] and discard 001858 ** the smaller. 001859 */ 001860 static void walMergesort( 001861 const u32 *aContent, /* Pages in wal */ 001862 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ 001863 ht_slot *aList, /* IN/OUT: List to sort */ 001864 int *pnList /* IN/OUT: Number of elements in aList[] */ 001865 ){ 001866 struct Sublist { 001867 int nList; /* Number of elements in aList */ 001868 ht_slot *aList; /* Pointer to sub-list content */ 001869 }; 001870 001871 const int nList = *pnList; /* Size of input list */ 001872 int nMerge = 0; /* Number of elements in list aMerge */ 001873 ht_slot *aMerge = 0; /* List to be merged */ 001874 int iList; /* Index into input list */ 001875 u32 iSub = 0; /* Index into aSub array */ 001876 struct Sublist aSub[13]; /* Array of sub-lists */ 001877 001878 memset(aSub, 0, sizeof(aSub)); 001879 assert( nList<=HASHTABLE_NPAGE && nList>0 ); 001880 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); 001881 001882 for(iList=0; iList<nList; iList++){ 001883 nMerge = 1; 001884 aMerge = &aList[iList]; 001885 for(iSub=0; iList & (1<<iSub); iSub++){ 001886 struct Sublist *p; 001887 assert( iSub<ArraySize(aSub) ); 001888 p = &aSub[iSub]; 001889 assert( p->aList && p->nList<=(1<<iSub) ); 001890 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); 001891 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001892 } 001893 aSub[iSub].aList = aMerge; 001894 aSub[iSub].nList = nMerge; 001895 } 001896 001897 for(iSub++; iSub<ArraySize(aSub); iSub++){ 001898 if( nList & (1<<iSub) ){ 001899 struct Sublist *p; 001900 assert( iSub<ArraySize(aSub) ); 001901 p = &aSub[iSub]; 001902 assert( p->nList<=(1<<iSub) ); 001903 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); 001904 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); 001905 } 001906 } 001907 assert( aMerge==aList ); 001908 *pnList = nMerge; 001909 001910 #ifdef SQLITE_DEBUG 001911 { 001912 int i; 001913 for(i=1; i<*pnList; i++){ 001914 assert( aContent[aList[i]] > aContent[aList[i-1]] ); 001915 } 001916 } 001917 #endif 001918 } 001919 001920 /* 001921 ** Free an iterator allocated by walIteratorInit(). 001922 */ 001923 static void walIteratorFree(WalIterator *p){ 001924 sqlite3_free(p); 001925 } 001926 001927 /* 001928 ** Construct a WalInterator object that can be used to loop over all 001929 ** pages in the WAL following frame nBackfill in ascending order. Frames 001930 ** nBackfill or earlier may be included - excluding them is an optimization 001931 ** only. The caller must hold the checkpoint lock. 001932 ** 001933 ** On success, make *pp point to the newly allocated WalInterator object 001934 ** return SQLITE_OK. Otherwise, return an error code. If this routine 001935 ** returns an error, the value of *pp is undefined. 001936 ** 001937 ** The calling routine should invoke walIteratorFree() to destroy the 001938 ** WalIterator object when it has finished with it. 001939 */ 001940 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){ 001941 WalIterator *p; /* Return value */ 001942 int nSegment; /* Number of segments to merge */ 001943 u32 iLast; /* Last frame in log */ 001944 sqlite3_int64 nByte; /* Number of bytes to allocate */ 001945 int i; /* Iterator variable */ 001946 ht_slot *aTmp; /* Temp space used by merge-sort */ 001947 int rc = SQLITE_OK; /* Return Code */ 001948 001949 /* This routine only runs while holding the checkpoint lock. And 001950 ** it only runs if there is actually content in the log (mxFrame>0). 001951 */ 001952 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); 001953 iLast = pWal->hdr.mxFrame; 001954 001955 /* Allocate space for the WalIterator object. */ 001956 nSegment = walFramePage(iLast) + 1; 001957 nByte = sizeof(WalIterator) 001958 + (nSegment-1)*sizeof(struct WalSegment) 001959 + iLast*sizeof(ht_slot); 001960 p = (WalIterator *)sqlite3_malloc64(nByte 001961 + sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) 001962 ); 001963 if( !p ){ 001964 return SQLITE_NOMEM_BKPT; 001965 } 001966 memset(p, 0, nByte); 001967 p->nSegment = nSegment; 001968 aTmp = (ht_slot*)&(((u8*)p)[nByte]); 001969 SEH_FREE_ON_ERROR(0, p); 001970 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){ 001971 WalHashLoc sLoc; 001972 001973 rc = walHashGet(pWal, i, &sLoc); 001974 if( rc==SQLITE_OK ){ 001975 int j; /* Counter variable */ 001976 int nEntry; /* Number of entries in this segment */ 001977 ht_slot *aIndex; /* Sorted index for this segment */ 001978 001979 if( (i+1)==nSegment ){ 001980 nEntry = (int)(iLast - sLoc.iZero); 001981 }else{ 001982 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno); 001983 } 001984 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero]; 001985 sLoc.iZero++; 001986 001987 for(j=0; j<nEntry; j++){ 001988 aIndex[j] = (ht_slot)j; 001989 } 001990 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry); 001991 p->aSegment[i].iZero = sLoc.iZero; 001992 p->aSegment[i].nEntry = nEntry; 001993 p->aSegment[i].aIndex = aIndex; 001994 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno; 001995 } 001996 } 001997 if( rc!=SQLITE_OK ){ 001998 SEH_FREE_ON_ERROR(p, 0); 001999 walIteratorFree(p); 002000 p = 0; 002001 } 002002 *pp = p; 002003 return rc; 002004 } 002005 002006 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002007 002008 002009 /* 002010 ** Attempt to enable blocking locks that block for nMs ms. Return 1 if 002011 ** blocking locks are successfully enabled, or 0 otherwise. 002012 */ 002013 static int walEnableBlockingMs(Wal *pWal, int nMs){ 002014 int rc = sqlite3OsFileControl( 002015 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&nMs 002016 ); 002017 return (rc==SQLITE_OK); 002018 } 002019 002020 /* 002021 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a) 002022 ** they are supported by the VFS, and (b) the database handle is configured 002023 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled, 002024 ** or 0 otherwise. 002025 */ 002026 static int walEnableBlocking(Wal *pWal){ 002027 int res = 0; 002028 if( pWal->db ){ 002029 int tmout = pWal->db->busyTimeout; 002030 if( tmout ){ 002031 res = walEnableBlockingMs(pWal, tmout); 002032 } 002033 } 002034 return res; 002035 } 002036 002037 /* 002038 ** Disable blocking locks. 002039 */ 002040 static void walDisableBlocking(Wal *pWal){ 002041 int tmout = 0; 002042 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout); 002043 } 002044 002045 /* 002046 ** If parameter bLock is true, attempt to enable blocking locks, take 002047 ** the WRITER lock, and then disable blocking locks. If blocking locks 002048 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return 002049 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not 002050 ** an error if blocking locks can not be enabled. 002051 ** 002052 ** If the bLock parameter is false and the WRITER lock is held, release it. 002053 */ 002054 int sqlite3WalWriteLock(Wal *pWal, int bLock){ 002055 int rc = SQLITE_OK; 002056 assert( pWal->readLock<0 || bLock==0 ); 002057 if( bLock ){ 002058 assert( pWal->db ); 002059 if( walEnableBlocking(pWal) ){ 002060 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 002061 if( rc==SQLITE_OK ){ 002062 pWal->writeLock = 1; 002063 } 002064 walDisableBlocking(pWal); 002065 } 002066 }else if( pWal->writeLock ){ 002067 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002068 pWal->writeLock = 0; 002069 } 002070 return rc; 002071 } 002072 002073 /* 002074 ** Set the database handle used to determine if blocking locks are required. 002075 */ 002076 void sqlite3WalDb(Wal *pWal, sqlite3 *db){ 002077 pWal->db = db; 002078 } 002079 002080 #else 002081 # define walEnableBlocking(x) 0 002082 # define walDisableBlocking(x) 002083 # define walEnableBlockingMs(pWal, ms) 0 002084 # define sqlite3WalDb(pWal, db) 002085 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */ 002086 002087 002088 /* 002089 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and 002090 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a 002091 ** busy-handler function. Invoke it and retry the lock until either the 002092 ** lock is successfully obtained or the busy-handler returns 0. 002093 */ 002094 static int walBusyLock( 002095 Wal *pWal, /* WAL connection */ 002096 int (*xBusy)(void*), /* Function to call when busy */ 002097 void *pBusyArg, /* Context argument for xBusyHandler */ 002098 int lockIdx, /* Offset of first byte to lock */ 002099 int n /* Number of bytes to lock */ 002100 ){ 002101 int rc; 002102 do { 002103 rc = walLockExclusive(pWal, lockIdx, n); 002104 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); 002105 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002106 if( rc==SQLITE_BUSY_TIMEOUT ){ 002107 walDisableBlocking(pWal); 002108 rc = SQLITE_BUSY; 002109 } 002110 #endif 002111 return rc; 002112 } 002113 002114 /* 002115 ** The cache of the wal-index header must be valid to call this function. 002116 ** Return the page-size in bytes used by the database. 002117 */ 002118 static int walPagesize(Wal *pWal){ 002119 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002120 } 002121 002122 /* 002123 ** The following is guaranteed when this function is called: 002124 ** 002125 ** a) the WRITER lock is held, 002126 ** b) the entire log file has been checkpointed, and 002127 ** c) any existing readers are reading exclusively from the database 002128 ** file - there are no readers that may attempt to read a frame from 002129 ** the log file. 002130 ** 002131 ** This function updates the shared-memory structures so that the next 002132 ** client to write to the database (which may be this one) does so by 002133 ** writing frames into the start of the log file. 002134 ** 002135 ** The value of parameter salt1 is used as the aSalt[1] value in the 002136 ** new wal-index header. It should be passed a pseudo-random value (i.e. 002137 ** one obtained from sqlite3_randomness()). 002138 */ 002139 static void walRestartHdr(Wal *pWal, u32 salt1){ 002140 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 002141 int i; /* Loop counter */ 002142 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ 002143 pWal->nCkpt++; 002144 pWal->hdr.mxFrame = 0; 002145 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); 002146 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); 002147 walIndexWriteHdr(pWal); 002148 AtomicStore(&pInfo->nBackfill, 0); 002149 pInfo->nBackfillAttempted = 0; 002150 pInfo->aReadMark[1] = 0; 002151 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; 002152 assert( pInfo->aReadMark[0]==0 ); 002153 } 002154 002155 /* 002156 ** Copy as much content as we can from the WAL back into the database file 002157 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. 002158 ** 002159 ** The amount of information copies from WAL to database might be limited 002160 ** by active readers. This routine will never overwrite a database page 002161 ** that a concurrent reader might be using. 002162 ** 002163 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when 002164 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if 002165 ** checkpoints are always run by a background thread or background 002166 ** process, foreground threads will never block on a lengthy fsync call. 002167 ** 002168 ** Fsync is called on the WAL before writing content out of the WAL and 002169 ** into the database. This ensures that if the new content is persistent 002170 ** in the WAL and can be recovered following a power-loss or hard reset. 002171 ** 002172 ** Fsync is also called on the database file if (and only if) the entire 002173 ** WAL content is copied into the database file. This second fsync makes 002174 ** it safe to delete the WAL since the new content will persist in the 002175 ** database file. 002176 ** 002177 ** This routine uses and updates the nBackfill field of the wal-index header. 002178 ** This is the only routine that will increase the value of nBackfill. 002179 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase 002180 ** its value.) 002181 ** 002182 ** The caller must be holding sufficient locks to ensure that no other 002183 ** checkpoint is running (in any other thread or process) at the same 002184 ** time. 002185 */ 002186 static int walCheckpoint( 002187 Wal *pWal, /* Wal connection */ 002188 sqlite3 *db, /* Check for interrupts on this handle */ 002189 int eMode, /* One of PASSIVE, FULL or RESTART */ 002190 int (*xBusy)(void*), /* Function to call when busy */ 002191 void *pBusyArg, /* Context argument for xBusyHandler */ 002192 int sync_flags, /* Flags for OsSync() (or 0) */ 002193 u8 *zBuf /* Temporary buffer to use */ 002194 ){ 002195 int rc = SQLITE_OK; /* Return code */ 002196 int szPage; /* Database page-size */ 002197 WalIterator *pIter = 0; /* Wal iterator context */ 002198 u32 iDbpage = 0; /* Next database page to write */ 002199 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ 002200 u32 mxSafeFrame; /* Max frame that can be backfilled */ 002201 u32 mxPage; /* Max database page to write */ 002202 int i; /* Loop counter */ 002203 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ 002204 002205 szPage = walPagesize(pWal); 002206 testcase( szPage<=32768 ); 002207 testcase( szPage>=65536 ); 002208 pInfo = walCkptInfo(pWal); 002209 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002210 002211 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 002212 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 002213 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 002214 002215 /* Compute in mxSafeFrame the index of the last frame of the WAL that is 002216 ** safe to write into the database. Frames beyond mxSafeFrame might 002217 ** overwrite database pages that are in use by active readers and thus 002218 ** cannot be backfilled from the WAL. 002219 */ 002220 mxSafeFrame = pWal->hdr.mxFrame; 002221 mxPage = pWal->hdr.nPage; 002222 for(i=1; i<WAL_NREADER; i++){ 002223 u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 002224 if( mxSafeFrame>y ){ 002225 assert( y<=pWal->hdr.mxFrame ); 002226 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); 002227 if( rc==SQLITE_OK ){ 002228 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED); 002229 AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT; 002230 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 002231 }else if( rc==SQLITE_BUSY ){ 002232 mxSafeFrame = y; 002233 xBusy = 0; 002234 }else{ 002235 goto walcheckpoint_out; 002236 } 002237 } 002238 } 002239 002240 /* Allocate the iterator */ 002241 if( pInfo->nBackfill<mxSafeFrame ){ 002242 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter); 002243 assert( rc==SQLITE_OK || pIter==0 ); 002244 } 002245 002246 if( pIter 002247 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK 002248 ){ 002249 u32 nBackfill = pInfo->nBackfill; 002250 pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT; 002251 002252 /* Sync the WAL to disk */ 002253 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 002254 002255 /* If the database may grow as a result of this checkpoint, hint 002256 ** about the eventual size of the db file to the VFS layer. 002257 */ 002258 if( rc==SQLITE_OK ){ 002259 i64 nReq = ((i64)mxPage * szPage); 002260 i64 nSize; /* Current size of database file */ 002261 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0); 002262 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); 002263 if( rc==SQLITE_OK && nSize<nReq ){ 002264 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){ 002265 /* If the size of the final database is larger than the current 002266 ** database plus the amount of data in the wal file, plus the 002267 ** maximum size of the pending-byte page (65536 bytes), then 002268 ** must be corruption somewhere. */ 002269 rc = SQLITE_CORRUPT_BKPT; 002270 }else{ 002271 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq); 002272 } 002273 } 002274 002275 } 002276 002277 /* Iterate through the contents of the WAL, copying data to the db file */ 002278 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ 002279 i64 iOffset; 002280 assert( walFramePgno(pWal, iFrame)==iDbpage ); 002281 SEH_INJECT_FAULT; 002282 if( AtomicLoad(&db->u1.isInterrupted) ){ 002283 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT; 002284 break; 002285 } 002286 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ 002287 continue; 002288 } 002289 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; 002290 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ 002291 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); 002292 if( rc!=SQLITE_OK ) break; 002293 iOffset = (iDbpage-1)*(i64)szPage; 002294 testcase( IS_BIG_INT(iOffset) ); 002295 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); 002296 if( rc!=SQLITE_OK ) break; 002297 } 002298 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0); 002299 002300 /* If work was actually accomplished... */ 002301 if( rc==SQLITE_OK ){ 002302 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ 002303 i64 szDb = pWal->hdr.nPage*(i64)szPage; 002304 testcase( IS_BIG_INT(szDb) ); 002305 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); 002306 if( rc==SQLITE_OK ){ 002307 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags)); 002308 } 002309 } 002310 if( rc==SQLITE_OK ){ 002311 AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT; 002312 } 002313 } 002314 002315 /* Release the reader lock held while backfilling */ 002316 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); 002317 } 002318 002319 if( rc==SQLITE_BUSY ){ 002320 /* Reset the return code so as not to report a checkpoint failure 002321 ** just because there are active readers. */ 002322 rc = SQLITE_OK; 002323 } 002324 } 002325 002326 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the 002327 ** entire wal file has been copied into the database file, then block 002328 ** until all readers have finished using the wal file. This ensures that 002329 ** the next process to write to the database restarts the wal file. 002330 */ 002331 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 002332 assert( pWal->writeLock ); 002333 SEH_INJECT_FAULT; 002334 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ 002335 rc = SQLITE_BUSY; 002336 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ 002337 u32 salt1; 002338 sqlite3_randomness(4, &salt1); 002339 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 002340 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); 002341 if( rc==SQLITE_OK ){ 002342 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ 002343 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as 002344 ** SQLITE_CHECKPOINT_RESTART with the addition that it also 002345 ** truncates the log file to zero bytes just prior to a 002346 ** successful return. 002347 ** 002348 ** In theory, it might be safe to do this without updating the 002349 ** wal-index header in shared memory, as all subsequent reader or 002350 ** writer clients should see that the entire log file has been 002351 ** checkpointed and behave accordingly. This seems unsafe though, 002352 ** as it would leave the system in a state where the contents of 002353 ** the wal-index header do not match the contents of the 002354 ** file-system. To avoid this, update the wal-index header to 002355 ** indicate that the log file contains zero valid frames. */ 002356 walRestartHdr(pWal, salt1); 002357 rc = sqlite3OsTruncate(pWal->pWalFd, 0); 002358 } 002359 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 002360 } 002361 } 002362 } 002363 002364 walcheckpoint_out: 002365 SEH_FREE_ON_ERROR(pIter, 0); 002366 walIteratorFree(pIter); 002367 return rc; 002368 } 002369 002370 /* 002371 ** If the WAL file is currently larger than nMax bytes in size, truncate 002372 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. 002373 */ 002374 static void walLimitSize(Wal *pWal, i64 nMax){ 002375 i64 sz; 002376 int rx; 002377 sqlite3BeginBenignMalloc(); 002378 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); 002379 if( rx==SQLITE_OK && (sz > nMax ) ){ 002380 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); 002381 } 002382 sqlite3EndBenignMalloc(); 002383 if( rx ){ 002384 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); 002385 } 002386 } 002387 002388 #ifdef SQLITE_USE_SEH 002389 /* 002390 ** This is the "standard" exception handler used in a few places to handle 002391 ** an exception thrown by reading from the *-shm mapping after it has become 002392 ** invalid in SQLITE_USE_SEH builds. It is used as follows: 002393 ** 002394 ** SEH_TRY { ... } 002395 ** SEH_EXCEPT( rc = walHandleException(pWal); ) 002396 ** 002397 ** This function does three things: 002398 ** 002399 ** 1) Determines the locks that should be held, based on the contents of 002400 ** the Wal.readLock, Wal.writeLock and Wal.ckptLock variables. All other 002401 ** held locks are assumed to be transient locks that would have been 002402 ** released had the exception not been thrown and are dropped. 002403 ** 002404 ** 2) Frees the pointer at Wal.pFree, if any, using sqlite3_free(). 002405 ** 002406 ** 3) Set pWal->apWiData[pWal->iWiPg] to pWal->pWiValue if not NULL 002407 ** 002408 ** 4) Returns SQLITE_IOERR. 002409 */ 002410 static int walHandleException(Wal *pWal){ 002411 if( pWal->exclusiveMode==0 ){ 002412 static const int S = 1; 002413 static const int E = (1<<SQLITE_SHM_NLOCK); 002414 int ii; 002415 u32 mUnlock = pWal->lockMask & ~( 002416 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002417 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002418 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002419 ); 002420 for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){ 002421 if( (S<<ii) & mUnlock ) walUnlockShared(pWal, ii); 002422 if( (E<<ii) & mUnlock ) walUnlockExclusive(pWal, ii, 1); 002423 } 002424 } 002425 sqlite3_free(pWal->pFree); 002426 pWal->pFree = 0; 002427 if( pWal->pWiValue ){ 002428 pWal->apWiData[pWal->iWiPg] = pWal->pWiValue; 002429 pWal->pWiValue = 0; 002430 } 002431 return SQLITE_IOERR_IN_PAGE; 002432 } 002433 002434 /* 002435 ** Assert that the Wal.lockMask mask, which indicates the locks held 002436 ** by the connenction, is consistent with the Wal.readLock, Wal.writeLock 002437 ** and Wal.ckptLock variables. To be used as: 002438 ** 002439 ** assert( walAssertLockmask(pWal) ); 002440 */ 002441 static int walAssertLockmask(Wal *pWal){ 002442 if( pWal->exclusiveMode==0 ){ 002443 static const int S = 1; 002444 static const int E = (1<<SQLITE_SHM_NLOCK); 002445 u32 mExpect = ( 002446 (pWal->readLock<0 ? 0 : (S << WAL_READ_LOCK(pWal->readLock))) 002447 | (pWal->writeLock ? (E << WAL_WRITE_LOCK) : 0) 002448 | (pWal->ckptLock ? (E << WAL_CKPT_LOCK) : 0) 002449 #ifdef SQLITE_ENABLE_SNAPSHOT 002450 | (pWal->pSnapshot ? (pWal->lockMask & (1 << WAL_CKPT_LOCK)) : 0) 002451 #endif 002452 ); 002453 assert( mExpect==pWal->lockMask ); 002454 } 002455 return 1; 002456 } 002457 002458 /* 002459 ** Return and zero the "system error" field set when an 002460 ** EXCEPTION_IN_PAGE_ERROR exception is caught. 002461 */ 002462 int sqlite3WalSystemErrno(Wal *pWal){ 002463 int iRet = 0; 002464 if( pWal ){ 002465 iRet = pWal->iSysErrno; 002466 pWal->iSysErrno = 0; 002467 } 002468 return iRet; 002469 } 002470 002471 #else 002472 # define walAssertLockmask(x) 1 002473 #endif /* ifdef SQLITE_USE_SEH */ 002474 002475 /* 002476 ** Close a connection to a log file. 002477 */ 002478 int sqlite3WalClose( 002479 Wal *pWal, /* Wal to close */ 002480 sqlite3 *db, /* For interrupt flag */ 002481 int sync_flags, /* Flags to pass to OsSync() (or 0) */ 002482 int nBuf, 002483 u8 *zBuf /* Buffer of at least nBuf bytes */ 002484 ){ 002485 int rc = SQLITE_OK; 002486 if( pWal ){ 002487 int isDelete = 0; /* True to unlink wal and wal-index files */ 002488 002489 assert( walAssertLockmask(pWal) ); 002490 002491 /* If an EXCLUSIVE lock can be obtained on the database file (using the 002492 ** ordinary, rollback-mode locking methods, this guarantees that the 002493 ** connection associated with this log file is the only connection to 002494 ** the database. In this case checkpoint the database and unlink both 002495 ** the wal and wal-index files. 002496 ** 002497 ** The EXCLUSIVE lock is not released before returning. 002498 */ 002499 if( zBuf!=0 002500 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE)) 002501 ){ 002502 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ 002503 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 002504 } 002505 rc = sqlite3WalCheckpoint(pWal, db, 002506 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 002507 ); 002508 if( rc==SQLITE_OK ){ 002509 int bPersist = -1; 002510 sqlite3OsFileControlHint( 002511 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist 002512 ); 002513 if( bPersist!=1 ){ 002514 /* Try to delete the WAL file if the checkpoint completed and 002515 ** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal 002516 ** mode (!bPersist) */ 002517 isDelete = 1; 002518 }else if( pWal->mxWalSize>=0 ){ 002519 /* Try to truncate the WAL file to zero bytes if the checkpoint 002520 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent 002521 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a 002522 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate 002523 ** to zero bytes as truncating to the journal_size_limit might 002524 ** leave a corrupt WAL file on disk. */ 002525 walLimitSize(pWal, 0); 002526 } 002527 } 002528 } 002529 002530 walIndexClose(pWal, isDelete); 002531 sqlite3OsClose(pWal->pWalFd); 002532 if( isDelete ){ 002533 sqlite3BeginBenignMalloc(); 002534 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); 002535 sqlite3EndBenignMalloc(); 002536 } 002537 WALTRACE(("WAL%p: closed\n", pWal)); 002538 sqlite3_free((void *)pWal->apWiData); 002539 sqlite3_free(pWal); 002540 } 002541 return rc; 002542 } 002543 002544 /* 002545 ** Try to read the wal-index header. Return 0 on success and 1 if 002546 ** there is a problem. 002547 ** 002548 ** The wal-index is in shared memory. Another thread or process might 002549 ** be writing the header at the same time this procedure is trying to 002550 ** read it, which might result in inconsistency. A dirty read is detected 002551 ** by verifying that both copies of the header are the same and also by 002552 ** a checksum on the header. 002553 ** 002554 ** If and only if the read is consistent and the header is different from 002555 ** pWal->hdr, then pWal->hdr is updated to the content of the new header 002556 ** and *pChanged is set to 1. 002557 ** 002558 ** If the checksum cannot be verified return non-zero. If the header 002559 ** is read successfully and the checksum verified, return zero. 002560 */ 002561 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){ 002562 u32 aCksum[2]; /* Checksum on the header content */ 002563 WalIndexHdr h1, h2; /* Two copies of the header content */ 002564 WalIndexHdr volatile *aHdr; /* Header in shared memory */ 002565 002566 /* The first page of the wal-index must be mapped at this point. */ 002567 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002568 002569 /* Read the header. This might happen concurrently with a write to the 002570 ** same area of shared memory on a different CPU in a SMP, 002571 ** meaning it is possible that an inconsistent snapshot is read 002572 ** from the file. If this happens, return non-zero. 002573 ** 002574 ** tag-20200519-1: 002575 ** There are two copies of the header at the beginning of the wal-index. 002576 ** When reading, read [0] first then [1]. Writes are in the reverse order. 002577 ** Memory barriers are used to prevent the compiler or the hardware from 002578 ** reordering the reads and writes. TSAN and similar tools can sometimes 002579 ** give false-positive warnings about these accesses because the tools do not 002580 ** account for the double-read and the memory barrier. The use of mutexes 002581 ** here would be problematic as the memory being accessed is potentially 002582 ** shared among multiple processes and not all mutex implementations work 002583 ** reliably in that environment. 002584 */ 002585 aHdr = walIndexHdr(pWal); 002586 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */ 002587 walShmBarrier(pWal); 002588 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); 002589 002590 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ 002591 return 1; /* Dirty read */ 002592 } 002593 if( h1.isInit==0 ){ 002594 return 1; /* Malformed header - probably all zeros */ 002595 } 002596 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); 002597 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ 002598 return 1; /* Checksum does not match */ 002599 } 002600 002601 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ 002602 *pChanged = 1; 002603 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); 002604 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); 002605 testcase( pWal->szPage<=32768 ); 002606 testcase( pWal->szPage>=65536 ); 002607 } 002608 002609 /* The header was successfully read. Return zero. */ 002610 return 0; 002611 } 002612 002613 /* 002614 ** This is the value that walTryBeginRead returns when it needs to 002615 ** be retried. 002616 */ 002617 #define WAL_RETRY (-1) 002618 002619 /* 002620 ** Read the wal-index header from the wal-index and into pWal->hdr. 002621 ** If the wal-header appears to be corrupt, try to reconstruct the 002622 ** wal-index from the WAL before returning. 002623 ** 002624 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is 002625 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged 002626 ** to 0. 002627 ** 002628 ** If the wal-index header is successfully read, return SQLITE_OK. 002629 ** Otherwise an SQLite error code. 002630 */ 002631 static int walIndexReadHdr(Wal *pWal, int *pChanged){ 002632 int rc; /* Return code */ 002633 int badHdr; /* True if a header read failed */ 002634 volatile u32 *page0; /* Chunk of wal-index containing header */ 002635 002636 /* Ensure that page 0 of the wal-index (the page that contains the 002637 ** wal-index header) is mapped. Return early if an error occurs here. 002638 */ 002639 assert( pChanged ); 002640 rc = walIndexPage(pWal, 0, &page0); 002641 if( rc!=SQLITE_OK ){ 002642 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */ 002643 if( rc==SQLITE_READONLY_CANTINIT ){ 002644 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory 002645 ** was openable but is not writable, and this thread is unable to 002646 ** confirm that another write-capable connection has the shared-memory 002647 ** open, and hence the content of the shared-memory is unreliable, 002648 ** since the shared-memory might be inconsistent with the WAL file 002649 ** and there is no writer on hand to fix it. */ 002650 assert( page0==0 ); 002651 assert( pWal->writeLock==0 ); 002652 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002653 pWal->bShmUnreliable = 1; 002654 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE; 002655 *pChanged = 1; 002656 }else{ 002657 return rc; /* Any other non-OK return is just an error */ 002658 } 002659 }else{ 002660 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock 002661 ** is zero, which prevents the SHM from growing */ 002662 testcase( page0!=0 ); 002663 } 002664 assert( page0!=0 || pWal->writeLock==0 ); 002665 002666 /* If the first page of the wal-index has been mapped, try to read the 002667 ** wal-index header immediately, without holding any lock. This usually 002668 ** works, but may fail if the wal-index header is corrupt or currently 002669 ** being modified by another thread or process. 002670 */ 002671 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); 002672 002673 /* If the first attempt failed, it might have been due to a race 002674 ** with a writer. So get a WRITE lock and try again. 002675 */ 002676 if( badHdr ){ 002677 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){ 002678 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ 002679 walUnlockShared(pWal, WAL_WRITE_LOCK); 002680 rc = SQLITE_READONLY_RECOVERY; 002681 } 002682 }else{ 002683 int bWriteLock = pWal->writeLock; 002684 if( bWriteLock 002685 || SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) 002686 ){ 002687 pWal->writeLock = 1; 002688 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ 002689 badHdr = walIndexTryHdr(pWal, pChanged); 002690 if( badHdr ){ 002691 /* If the wal-index header is still malformed even while holding 002692 ** a WRITE lock, it can only mean that the header is corrupted and 002693 ** needs to be reconstructed. So run recovery to do exactly that. 002694 ** Disable blocking locks first. */ 002695 walDisableBlocking(pWal); 002696 rc = walIndexRecover(pWal); 002697 *pChanged = 1; 002698 } 002699 } 002700 if( bWriteLock==0 ){ 002701 pWal->writeLock = 0; 002702 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 002703 } 002704 } 002705 } 002706 } 002707 002708 /* If the header is read successfully, check the version number to make 002709 ** sure the wal-index was not constructed with some future format that 002710 ** this version of SQLite cannot understand. 002711 */ 002712 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ 002713 rc = SQLITE_CANTOPEN_BKPT; 002714 } 002715 if( pWal->bShmUnreliable ){ 002716 if( rc!=SQLITE_OK ){ 002717 walIndexClose(pWal, 0); 002718 pWal->bShmUnreliable = 0; 002719 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 ); 002720 /* walIndexRecover() might have returned SHORT_READ if a concurrent 002721 ** writer truncated the WAL out from under it. If that happens, it 002722 ** indicates that a writer has fixed the SHM file for us, so retry */ 002723 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY; 002724 } 002725 pWal->exclusiveMode = WAL_NORMAL_MODE; 002726 } 002727 002728 return rc; 002729 } 002730 002731 /* 002732 ** Open a transaction in a connection where the shared-memory is read-only 002733 ** and where we cannot verify that there is a separate write-capable connection 002734 ** on hand to keep the shared-memory up-to-date with the WAL file. 002735 ** 002736 ** This can happen, for example, when the shared-memory is implemented by 002737 ** memory-mapping a *-shm file, where a prior writer has shut down and 002738 ** left the *-shm file on disk, and now the present connection is trying 002739 ** to use that database but lacks write permission on the *-shm file. 002740 ** Other scenarios are also possible, depending on the VFS implementation. 002741 ** 002742 ** Precondition: 002743 ** 002744 ** The *-wal file has been read and an appropriate wal-index has been 002745 ** constructed in pWal->apWiData[] using heap memory instead of shared 002746 ** memory. 002747 ** 002748 ** If this function returns SQLITE_OK, then the read transaction has 002749 ** been successfully opened. In this case output variable (*pChanged) 002750 ** is set to true before returning if the caller should discard the 002751 ** contents of the page cache before proceeding. Or, if it returns 002752 ** WAL_RETRY, then the heap memory wal-index has been discarded and 002753 ** the caller should retry opening the read transaction from the 002754 ** beginning (including attempting to map the *-shm file). 002755 ** 002756 ** If an error occurs, an SQLite error code is returned. 002757 */ 002758 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){ 002759 i64 szWal; /* Size of wal file on disk in bytes */ 002760 i64 iOffset; /* Current offset when reading wal file */ 002761 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ 002762 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ 002763 int szFrame; /* Number of bytes in buffer aFrame[] */ 002764 u8 *aData; /* Pointer to data part of aFrame buffer */ 002765 volatile void *pDummy; /* Dummy argument for xShmMap */ 002766 int rc; /* Return code */ 002767 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */ 002768 002769 assert( pWal->bShmUnreliable ); 002770 assert( pWal->readOnly & WAL_SHM_RDONLY ); 002771 assert( pWal->nWiData>0 && pWal->apWiData[0] ); 002772 002773 /* Take WAL_READ_LOCK(0). This has the effect of preventing any 002774 ** writers from running a checkpoint, but does not stop them 002775 ** from running recovery. */ 002776 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 002777 if( rc!=SQLITE_OK ){ 002778 if( rc==SQLITE_BUSY ) rc = WAL_RETRY; 002779 goto begin_unreliable_shm_out; 002780 } 002781 pWal->readLock = 0; 002782 002783 /* Check to see if a separate writer has attached to the shared-memory area, 002784 ** thus making the shared-memory "reliable" again. Do this by invoking 002785 ** the xShmMap() routine of the VFS and looking to see if the return 002786 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT. 002787 ** 002788 ** If the shared-memory is now "reliable" return WAL_RETRY, which will 002789 ** cause the heap-memory WAL-index to be discarded and the actual 002790 ** shared memory to be used in its place. 002791 ** 002792 ** This step is important because, even though this connection is holding 002793 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might 002794 ** have already checkpointed the WAL file and, while the current 002795 ** is active, wrap the WAL and start overwriting frames that this 002796 ** process wants to use. 002797 ** 002798 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has 002799 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY 002800 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations, 002801 ** even if some external agent does a "chmod" to make the shared-memory 002802 ** writable by us, until sqlite3OsShmUnmap() has been called. 002803 ** This is a requirement on the VFS implementation. 002804 */ 002805 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy); 002806 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */ 002807 if( rc!=SQLITE_READONLY_CANTINIT ){ 002808 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc); 002809 goto begin_unreliable_shm_out; 002810 } 002811 002812 /* We reach this point only if the real shared-memory is still unreliable. 002813 ** Assume the in-memory WAL-index substitute is correct and load it 002814 ** into pWal->hdr. 002815 */ 002816 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr)); 002817 002818 /* Make sure some writer hasn't come in and changed the WAL file out 002819 ** from under us, then disconnected, while we were not looking. 002820 */ 002821 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal); 002822 if( rc!=SQLITE_OK ){ 002823 goto begin_unreliable_shm_out; 002824 } 002825 if( szWal<WAL_HDRSIZE ){ 002826 /* If the wal file is too small to contain a wal-header and the 002827 ** wal-index header has mxFrame==0, then it must be safe to proceed 002828 ** reading the database file only. However, the page cache cannot 002829 ** be trusted, as a read/write connection may have connected, written 002830 ** the db, run a checkpoint, truncated the wal file and disconnected 002831 ** since this client's last read transaction. */ 002832 *pChanged = 1; 002833 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY); 002834 goto begin_unreliable_shm_out; 002835 } 002836 002837 /* Check the salt keys at the start of the wal file still match. */ 002838 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); 002839 if( rc!=SQLITE_OK ){ 002840 goto begin_unreliable_shm_out; 002841 } 002842 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){ 002843 /* Some writer has wrapped the WAL file while we were not looking. 002844 ** Return WAL_RETRY which will cause the in-memory WAL-index to be 002845 ** rebuilt. */ 002846 rc = WAL_RETRY; 002847 goto begin_unreliable_shm_out; 002848 } 002849 002850 /* Allocate a buffer to read frames into */ 002851 assert( (pWal->szPage & (pWal->szPage-1))==0 ); 002852 assert( pWal->szPage>=512 && pWal->szPage<=65536 ); 002853 szFrame = pWal->szPage + WAL_FRAME_HDRSIZE; 002854 aFrame = (u8 *)sqlite3_malloc64(szFrame); 002855 if( aFrame==0 ){ 002856 rc = SQLITE_NOMEM_BKPT; 002857 goto begin_unreliable_shm_out; 002858 } 002859 aData = &aFrame[WAL_FRAME_HDRSIZE]; 002860 002861 /* Check to see if a complete transaction has been appended to the 002862 ** wal file since the heap-memory wal-index was created. If so, the 002863 ** heap-memory wal-index is discarded and WAL_RETRY returned to 002864 ** the caller. */ 002865 aSaveCksum[0] = pWal->hdr.aFrameCksum[0]; 002866 aSaveCksum[1] = pWal->hdr.aFrameCksum[1]; 002867 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage); 002868 iOffset+szFrame<=szWal; 002869 iOffset+=szFrame 002870 ){ 002871 u32 pgno; /* Database page number for frame */ 002872 u32 nTruncate; /* dbsize field from frame header */ 002873 002874 /* Read and decode the next log frame. */ 002875 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); 002876 if( rc!=SQLITE_OK ) break; 002877 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break; 002878 002879 /* If nTruncate is non-zero, then a complete transaction has been 002880 ** appended to this wal file. Set rc to WAL_RETRY and break out of 002881 ** the loop. */ 002882 if( nTruncate ){ 002883 rc = WAL_RETRY; 002884 break; 002885 } 002886 } 002887 pWal->hdr.aFrameCksum[0] = aSaveCksum[0]; 002888 pWal->hdr.aFrameCksum[1] = aSaveCksum[1]; 002889 002890 begin_unreliable_shm_out: 002891 sqlite3_free(aFrame); 002892 if( rc!=SQLITE_OK ){ 002893 int i; 002894 for(i=0; i<pWal->nWiData; i++){ 002895 sqlite3_free((void*)pWal->apWiData[i]); 002896 pWal->apWiData[i] = 0; 002897 } 002898 pWal->bShmUnreliable = 0; 002899 sqlite3WalEndReadTransaction(pWal); 002900 *pChanged = 1; 002901 } 002902 return rc; 002903 } 002904 002905 /* 002906 ** The final argument passed to walTryBeginRead() is of type (int*). The 002907 ** caller should invoke walTryBeginRead as follows: 002908 ** 002909 ** int cnt = 0; 002910 ** do { 002911 ** rc = walTryBeginRead(..., &cnt); 002912 ** }while( rc==WAL_RETRY ); 002913 ** 002914 ** The final value of "cnt" is of no use to the caller. It is used by 002915 ** the implementation of walTryBeginRead() as follows: 002916 ** 002917 ** + Each time walTryBeginRead() is called, it is incremented. Once 002918 ** it reaches WAL_RETRY_PROTOCOL_LIMIT - indicating that walTryBeginRead() 002919 ** has many times been invoked and failed with WAL_RETRY - walTryBeginRead() 002920 ** returns SQLITE_PROTOCOL. 002921 ** 002922 ** + If SQLITE_ENABLE_SETLK_TIMEOUT is defined and walTryBeginRead() failed 002923 ** because a blocking lock timed out (SQLITE_BUSY_TIMEOUT from the OS 002924 ** layer), the WAL_RETRY_BLOCKED_MASK bit is set in "cnt". In this case 002925 ** the next invocation of walTryBeginRead() may omit an expected call to 002926 ** sqlite3OsSleep(). There has already been a delay when the previous call 002927 ** waited on a lock. 002928 */ 002929 #define WAL_RETRY_PROTOCOL_LIMIT 100 002930 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002931 # define WAL_RETRY_BLOCKED_MASK 0x10000000 002932 #else 002933 # define WAL_RETRY_BLOCKED_MASK 0 002934 #endif 002935 002936 /* 002937 ** Attempt to start a read transaction. This might fail due to a race or 002938 ** other transient condition. When that happens, it returns WAL_RETRY to 002939 ** indicate to the caller that it is safe to retry immediately. 002940 ** 002941 ** On success return SQLITE_OK. On a permanent failure (such an 002942 ** I/O error or an SQLITE_BUSY because another process is running 002943 ** recovery) return a positive error code. 002944 ** 002945 ** The useWal parameter is true to force the use of the WAL and disable 002946 ** the case where the WAL is bypassed because it has been completely 002947 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() 002948 ** to make a copy of the wal-index header into pWal->hdr. If the 002949 ** wal-index header has changed, *pChanged is set to 1 (as an indication 002950 ** to the caller that the local page cache is obsolete and needs to be 002951 ** flushed.) When useWal==1, the wal-index header is assumed to already 002952 ** be loaded and the pChanged parameter is unused. 002953 ** 002954 ** The caller must set the cnt parameter to the number of prior calls to 002955 ** this routine during the current read attempt that returned WAL_RETRY. 002956 ** This routine will start taking more aggressive measures to clear the 002957 ** race conditions after multiple WAL_RETRY returns, and after an excessive 002958 ** number of errors will ultimately return SQLITE_PROTOCOL. The 002959 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue 002960 ** and is not honoring the locking protocol. There is a vanishingly small 002961 ** chance that SQLITE_PROTOCOL could be returned because of a run of really 002962 ** bad luck when there is lots of contention for the wal-index, but that 002963 ** possibility is so small that it can be safely neglected, we believe. 002964 ** 002965 ** On success, this routine obtains a read lock on 002966 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is 002967 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) 002968 ** that means the Wal does not hold any read lock. The reader must not 002969 ** access any database page that is modified by a WAL frame up to and 002970 ** including frame number aReadMark[pWal->readLock]. The reader will 002971 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 002972 ** Or if pWal->readLock==0, then the reader will ignore the WAL 002973 ** completely and get all content directly from the database file. 002974 ** If the useWal parameter is 1 then the WAL will never be ignored and 002975 ** this routine will always set pWal->readLock>0 on success. 002976 ** When the read transaction is completed, the caller must release the 002977 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. 002978 ** 002979 ** This routine uses the nBackfill and aReadMark[] fields of the header 002980 ** to select a particular WAL_READ_LOCK() that strives to let the 002981 ** checkpoint process do as much work as possible. This routine might 002982 ** update values of the aReadMark[] array in the header, but if it does 002983 ** so it takes care to hold an exclusive lock on the corresponding 002984 ** WAL_READ_LOCK() while changing values. 002985 */ 002986 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){ 002987 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ 002988 u32 mxReadMark; /* Largest aReadMark[] value */ 002989 int mxI; /* Index of largest aReadMark[] value */ 002990 int i; /* Loop counter */ 002991 int rc = SQLITE_OK; /* Return code */ 002992 u32 mxFrame; /* Wal frame to lock to */ 002993 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 002994 int nBlockTmout = 0; 002995 #endif 002996 002997 assert( pWal->readLock<0 ); /* Not currently locked */ 002998 002999 /* useWal may only be set for read/write connections */ 003000 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 ); 003001 003002 /* Take steps to avoid spinning forever if there is a protocol error. 003003 ** 003004 ** Circumstances that cause a RETRY should only last for the briefest 003005 ** instances of time. No I/O or other system calls are done while the 003006 ** locks are held, so the locks should not be held for very long. But 003007 ** if we are unlucky, another process that is holding a lock might get 003008 ** paged out or take a page-fault that is time-consuming to resolve, 003009 ** during the few nanoseconds that it is holding the lock. In that case, 003010 ** it might take longer than normal for the lock to free. 003011 ** 003012 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few 003013 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this 003014 ** is more of a scheduler yield than an actual delay. But on the 10th 003015 ** an subsequent retries, the delays start becoming longer and longer, 003016 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. 003017 ** The total delay time before giving up is less than 10 seconds. 003018 */ 003019 (*pCnt)++; 003020 if( *pCnt>5 ){ 003021 int nDelay = 1; /* Pause time in microseconds */ 003022 int cnt = (*pCnt & ~WAL_RETRY_BLOCKED_MASK); 003023 if( cnt>WAL_RETRY_PROTOCOL_LIMIT ){ 003024 VVA_ONLY( pWal->lockError = 1; ) 003025 return SQLITE_PROTOCOL; 003026 } 003027 if( *pCnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; 003028 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003029 /* In SQLITE_ENABLE_SETLK_TIMEOUT builds, configure the file-descriptor 003030 ** to block for locks for approximately nDelay us. This affects three 003031 ** locks: (a) the shared lock taken on the DMS slot in os_unix.c (if 003032 ** using os_unix.c), (b) the WRITER lock taken in walIndexReadHdr() if the 003033 ** first attempted read fails, and (c) the shared lock taken on the 003034 ** read-mark. 003035 ** 003036 ** If the previous call failed due to an SQLITE_BUSY_TIMEOUT error, 003037 ** then sleep for the minimum of 1us. The previous call already provided 003038 ** an extra delay while it was blocking on the lock. 003039 */ 003040 nBlockTmout = (nDelay+998) / 1000; 003041 if( !useWal && walEnableBlockingMs(pWal, nBlockTmout) ){ 003042 if( *pCnt & WAL_RETRY_BLOCKED_MASK ) nDelay = 1; 003043 } 003044 #endif 003045 sqlite3OsSleep(pWal->pVfs, nDelay); 003046 *pCnt &= ~WAL_RETRY_BLOCKED_MASK; 003047 } 003048 003049 if( !useWal ){ 003050 assert( rc==SQLITE_OK ); 003051 if( pWal->bShmUnreliable==0 ){ 003052 rc = walIndexReadHdr(pWal, pChanged); 003053 } 003054 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003055 walDisableBlocking(pWal); 003056 if( rc==SQLITE_BUSY_TIMEOUT ){ 003057 rc = SQLITE_BUSY; 003058 *pCnt |= WAL_RETRY_BLOCKED_MASK; 003059 } 003060 #endif 003061 if( rc==SQLITE_BUSY ){ 003062 /* If there is not a recovery running in another thread or process 003063 ** then convert BUSY errors to WAL_RETRY. If recovery is known to 003064 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here 003065 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY 003066 ** would be technically correct. But the race is benign since with 003067 ** WAL_RETRY this routine will be called again and will probably be 003068 ** right on the second iteration. 003069 */ 003070 if( pWal->apWiData[0]==0 ){ 003071 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. 003072 ** We assume this is a transient condition, so return WAL_RETRY. The 003073 ** xShmMap() implementation used by the default unix and win32 VFS 003074 ** modules may return SQLITE_BUSY due to a race condition in the 003075 ** code that determines whether or not the shared-memory region 003076 ** must be zeroed before the requested page is returned. 003077 */ 003078 rc = WAL_RETRY; 003079 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ 003080 walUnlockShared(pWal, WAL_RECOVER_LOCK); 003081 rc = WAL_RETRY; 003082 }else if( rc==SQLITE_BUSY ){ 003083 rc = SQLITE_BUSY_RECOVERY; 003084 } 003085 } 003086 if( rc!=SQLITE_OK ){ 003087 return rc; 003088 } 003089 else if( pWal->bShmUnreliable ){ 003090 return walBeginShmUnreliable(pWal, pChanged); 003091 } 003092 } 003093 003094 assert( pWal->nWiData>0 ); 003095 assert( pWal->apWiData[0]!=0 ); 003096 pInfo = walCkptInfo(pWal); 003097 SEH_INJECT_FAULT; 003098 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame 003099 #ifdef SQLITE_ENABLE_SNAPSHOT 003100 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0) 003101 #endif 003102 ){ 003103 /* The WAL has been completely backfilled (or it is empty). 003104 ** and can be safely ignored. 003105 */ 003106 rc = walLockShared(pWal, WAL_READ_LOCK(0)); 003107 walShmBarrier(pWal); 003108 if( rc==SQLITE_OK ){ 003109 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ 003110 /* It is not safe to allow the reader to continue here if frames 003111 ** may have been appended to the log before READ_LOCK(0) was obtained. 003112 ** When holding READ_LOCK(0), the reader ignores the entire log file, 003113 ** which implies that the database file contains a trustworthy 003114 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from 003115 ** happening, this is usually correct. 003116 ** 003117 ** However, if frames have been appended to the log (or if the log 003118 ** is wrapped and written for that matter) before the READ_LOCK(0) 003119 ** is obtained, that is not necessarily true. A checkpointer may 003120 ** have started to backfill the appended frames but crashed before 003121 ** it finished. Leaving a corrupt image in the database file. 003122 */ 003123 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003124 return WAL_RETRY; 003125 } 003126 pWal->readLock = 0; 003127 return SQLITE_OK; 003128 }else if( rc!=SQLITE_BUSY ){ 003129 return rc; 003130 } 003131 } 003132 003133 /* If we get this far, it means that the reader will want to use 003134 ** the WAL to get at content from recent commits. The job now is 003135 ** to select one of the aReadMark[] entries that is closest to 003136 ** but not exceeding pWal->hdr.mxFrame and lock that entry. 003137 */ 003138 mxReadMark = 0; 003139 mxI = 0; 003140 mxFrame = pWal->hdr.mxFrame; 003141 #ifdef SQLITE_ENABLE_SNAPSHOT 003142 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ 003143 mxFrame = pWal->pSnapshot->mxFrame; 003144 } 003145 #endif 003146 for(i=1; i<WAL_NREADER; i++){ 003147 u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT; 003148 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ 003149 assert( thisMark!=READMARK_NOT_USED ); 003150 mxReadMark = thisMark; 003151 mxI = i; 003152 } 003153 } 003154 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 003155 && (mxReadMark<mxFrame || mxI==0) 003156 ){ 003157 for(i=1; i<WAL_NREADER; i++){ 003158 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); 003159 if( rc==SQLITE_OK ){ 003160 AtomicStore(pInfo->aReadMark+i,mxFrame); 003161 mxReadMark = mxFrame; 003162 mxI = i; 003163 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); 003164 break; 003165 }else if( rc!=SQLITE_BUSY ){ 003166 return rc; 003167 } 003168 } 003169 } 003170 if( mxI==0 ){ 003171 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); 003172 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT; 003173 } 003174 003175 (void)walEnableBlockingMs(pWal, nBlockTmout); 003176 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); 003177 walDisableBlocking(pWal); 003178 if( rc ){ 003179 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003180 if( rc==SQLITE_BUSY_TIMEOUT ){ 003181 *pCnt |= WAL_RETRY_BLOCKED_MASK; 003182 } 003183 #else 003184 assert( rc!=SQLITE_BUSY_TIMEOUT ); 003185 #endif 003186 assert( (rc&0xFF)!=SQLITE_BUSY||rc==SQLITE_BUSY||rc==SQLITE_BUSY_TIMEOUT ); 003187 return (rc&0xFF)==SQLITE_BUSY ? WAL_RETRY : rc; 003188 } 003189 /* Now that the read-lock has been obtained, check that neither the 003190 ** value in the aReadMark[] array or the contents of the wal-index 003191 ** header have changed. 003192 ** 003193 ** It is necessary to check that the wal-index header did not change 003194 ** between the time it was read and when the shared-lock was obtained 003195 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility 003196 ** that the log file may have been wrapped by a writer, or that frames 003197 ** that occur later in the log than pWal->hdr.mxFrame may have been 003198 ** copied into the database by a checkpointer. If either of these things 003199 ** happened, then reading the database with the current value of 003200 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry 003201 ** instead. 003202 ** 003203 ** Before checking that the live wal-index header has not changed 003204 ** since it was read, set Wal.minFrame to the first frame in the wal 003205 ** file that has not yet been checkpointed. This client will not need 003206 ** to read any frames earlier than minFrame from the wal file - they 003207 ** can be safely read directly from the database file. 003208 ** 003209 ** Because a ShmBarrier() call is made between taking the copy of 003210 ** nBackfill and checking that the wal-header in shared-memory still 003211 ** matches the one cached in pWal->hdr, it is guaranteed that the 003212 ** checkpointer that set nBackfill was not working with a wal-index 003213 ** header newer than that cached in pWal->hdr. If it were, that could 003214 ** cause a problem. The checkpointer could omit to checkpoint 003215 ** a version of page X that lies before pWal->minFrame (call that version 003216 ** A) on the basis that there is a newer version (version B) of the same 003217 ** page later in the wal file. But if version B happens to like past 003218 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume 003219 ** that it can read version A from the database file. However, since 003220 ** we can guarantee that the checkpointer that set nBackfill could not 003221 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. 003222 */ 003223 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT; 003224 walShmBarrier(pWal); 003225 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark 003226 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) 003227 ){ 003228 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); 003229 return WAL_RETRY; 003230 }else{ 003231 assert( mxReadMark<=pWal->hdr.mxFrame ); 003232 pWal->readLock = (i16)mxI; 003233 } 003234 return rc; 003235 } 003236 003237 #ifdef SQLITE_ENABLE_SNAPSHOT 003238 /* 003239 ** This function does the work of sqlite3WalSnapshotRecover(). 003240 */ 003241 static int walSnapshotRecover( 003242 Wal *pWal, /* WAL handle */ 003243 void *pBuf1, /* Temp buffer pWal->szPage bytes in size */ 003244 void *pBuf2 /* Temp buffer pWal->szPage bytes in size */ 003245 ){ 003246 int szPage = (int)pWal->szPage; 003247 int rc; 003248 i64 szDb; /* Size of db file in bytes */ 003249 003250 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb); 003251 if( rc==SQLITE_OK ){ 003252 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003253 u32 i = pInfo->nBackfillAttempted; 003254 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){ 003255 WalHashLoc sLoc; /* Hash table location */ 003256 u32 pgno; /* Page number in db file */ 003257 i64 iDbOff; /* Offset of db file entry */ 003258 i64 iWalOff; /* Offset of wal file entry */ 003259 003260 rc = walHashGet(pWal, walFramePage(i), &sLoc); 003261 if( rc!=SQLITE_OK ) break; 003262 assert( i - sLoc.iZero - 1 >=0 ); 003263 pgno = sLoc.aPgno[i-sLoc.iZero-1]; 003264 iDbOff = (i64)(pgno-1) * szPage; 003265 003266 if( iDbOff+szPage<=szDb ){ 003267 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE; 003268 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff); 003269 003270 if( rc==SQLITE_OK ){ 003271 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff); 003272 } 003273 003274 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){ 003275 break; 003276 } 003277 } 003278 003279 pInfo->nBackfillAttempted = i-1; 003280 } 003281 } 003282 003283 return rc; 003284 } 003285 003286 /* 003287 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 003288 ** variable so that older snapshots can be accessed. To do this, loop 003289 ** through all wal frames from nBackfillAttempted to (nBackfill+1), 003290 ** comparing their content to the corresponding page with the database 003291 ** file, if any. Set nBackfillAttempted to the frame number of the 003292 ** first frame for which the wal file content matches the db file. 003293 ** 003294 ** This is only really safe if the file-system is such that any page 003295 ** writes made by earlier checkpointers were atomic operations, which 003296 ** is not always true. It is also possible that nBackfillAttempted 003297 ** may be left set to a value larger than expected, if a wal frame 003298 ** contains content that duplicate of an earlier version of the same 003299 ** page. 003300 ** 003301 ** SQLITE_OK is returned if successful, or an SQLite error code if an 003302 ** error occurs. It is not an error if nBackfillAttempted cannot be 003303 ** decreased at all. 003304 */ 003305 int sqlite3WalSnapshotRecover(Wal *pWal){ 003306 int rc; 003307 003308 assert( pWal->readLock>=0 ); 003309 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 003310 if( rc==SQLITE_OK ){ 003311 void *pBuf1 = sqlite3_malloc(pWal->szPage); 003312 void *pBuf2 = sqlite3_malloc(pWal->szPage); 003313 if( pBuf1==0 || pBuf2==0 ){ 003314 rc = SQLITE_NOMEM; 003315 }else{ 003316 pWal->ckptLock = 1; 003317 SEH_TRY { 003318 rc = walSnapshotRecover(pWal, pBuf1, pBuf2); 003319 } 003320 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003321 pWal->ckptLock = 0; 003322 } 003323 003324 sqlite3_free(pBuf1); 003325 sqlite3_free(pBuf2); 003326 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 003327 } 003328 003329 return rc; 003330 } 003331 #endif /* SQLITE_ENABLE_SNAPSHOT */ 003332 003333 /* 003334 ** This function does the work of sqlite3WalBeginReadTransaction() (see 003335 ** below). That function simply calls this one inside an SEH_TRY{...} block. 003336 */ 003337 static int walBeginReadTransaction(Wal *pWal, int *pChanged){ 003338 int rc; /* Return code */ 003339 int cnt = 0; /* Number of TryBeginRead attempts */ 003340 #ifdef SQLITE_ENABLE_SNAPSHOT 003341 int ckptLock = 0; 003342 int bChanged = 0; 003343 WalIndexHdr *pSnapshot = pWal->pSnapshot; 003344 #endif 003345 003346 assert( pWal->ckptLock==0 ); 003347 assert( pWal->nSehTry>0 ); 003348 003349 #ifdef SQLITE_ENABLE_SNAPSHOT 003350 if( pSnapshot ){ 003351 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003352 bChanged = 1; 003353 } 003354 003355 /* It is possible that there is a checkpointer thread running 003356 ** concurrent with this code. If this is the case, it may be that the 003357 ** checkpointer has already determined that it will checkpoint 003358 ** snapshot X, where X is later in the wal file than pSnapshot, but 003359 ** has not yet set the pInfo->nBackfillAttempted variable to indicate 003360 ** its intent. To avoid the race condition this leads to, ensure that 003361 ** there is no checkpointer process by taking a shared CKPT lock 003362 ** before checking pInfo->nBackfillAttempted. */ 003363 (void)walEnableBlocking(pWal); 003364 rc = walLockShared(pWal, WAL_CKPT_LOCK); 003365 walDisableBlocking(pWal); 003366 003367 if( rc!=SQLITE_OK ){ 003368 return rc; 003369 } 003370 ckptLock = 1; 003371 } 003372 #endif 003373 003374 do{ 003375 rc = walTryBeginRead(pWal, pChanged, 0, &cnt); 003376 }while( rc==WAL_RETRY ); 003377 testcase( (rc&0xff)==SQLITE_BUSY ); 003378 testcase( (rc&0xff)==SQLITE_IOERR ); 003379 testcase( rc==SQLITE_PROTOCOL ); 003380 testcase( rc==SQLITE_OK ); 003381 003382 #ifdef SQLITE_ENABLE_SNAPSHOT 003383 if( rc==SQLITE_OK ){ 003384 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ 003385 /* At this point the client has a lock on an aReadMark[] slot holding 003386 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr 003387 ** is populated with the wal-index header corresponding to the head 003388 ** of the wal file. Verify that pSnapshot is still valid before 003389 ** continuing. Reasons why pSnapshot might no longer be valid: 003390 ** 003391 ** (1) The WAL file has been reset since the snapshot was taken. 003392 ** In this case, the salt will have changed. 003393 ** 003394 ** (2) A checkpoint as been attempted that wrote frames past 003395 ** pSnapshot->mxFrame into the database file. Note that the 003396 ** checkpoint need not have completed for this to cause problems. 003397 */ 003398 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003399 003400 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); 003401 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); 003402 003403 /* Check that the wal file has not been wrapped. Assuming that it has 003404 ** not, also check that no checkpointer has attempted to checkpoint any 003405 ** frames beyond pSnapshot->mxFrame. If either of these conditions are 003406 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr 003407 ** with *pSnapshot and set *pChanged as appropriate for opening the 003408 ** snapshot. */ 003409 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 003410 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted 003411 ){ 003412 assert( pWal->readLock>0 ); 003413 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); 003414 *pChanged = bChanged; 003415 }else{ 003416 rc = SQLITE_ERROR_SNAPSHOT; 003417 } 003418 003419 /* A client using a non-current snapshot may not ignore any frames 003420 ** from the start of the wal file. This is because, for a system 003421 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may 003422 ** have omitted to checkpoint a frame earlier than minFrame in 003423 ** the file because there exists a frame after iSnapshot that 003424 ** is the same database page. */ 003425 pWal->minFrame = 1; 003426 003427 if( rc!=SQLITE_OK ){ 003428 sqlite3WalEndReadTransaction(pWal); 003429 } 003430 } 003431 } 003432 003433 /* Release the shared CKPT lock obtained above. */ 003434 if( ckptLock ){ 003435 assert( pSnapshot ); 003436 walUnlockShared(pWal, WAL_CKPT_LOCK); 003437 } 003438 #endif 003439 return rc; 003440 } 003441 003442 /* 003443 ** Begin a read transaction on the database. 003444 ** 003445 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: 003446 ** it takes a snapshot of the state of the WAL and wal-index for the current 003447 ** instant in time. The current thread will continue to use this snapshot. 003448 ** Other threads might append new content to the WAL and wal-index but 003449 ** that extra content is ignored by the current thread. 003450 ** 003451 ** If the database contents have changes since the previous read 003452 ** transaction, then *pChanged is set to 1 before returning. The 003453 ** Pager layer will use this to know that its cache is stale and 003454 ** needs to be flushed. 003455 */ 003456 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ 003457 int rc; 003458 SEH_TRY { 003459 rc = walBeginReadTransaction(pWal, pChanged); 003460 } 003461 SEH_EXCEPT( rc = walHandleException(pWal); ) 003462 return rc; 003463 } 003464 003465 /* 003466 ** Finish with a read transaction. All this does is release the 003467 ** read-lock. 003468 */ 003469 void sqlite3WalEndReadTransaction(Wal *pWal){ 003470 sqlite3WalEndWriteTransaction(pWal); 003471 if( pWal->readLock>=0 ){ 003472 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 003473 pWal->readLock = -1; 003474 } 003475 } 003476 003477 /* 003478 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003479 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003480 ** to zero. 003481 ** 003482 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003483 ** error does occur, the final value of *piRead is undefined. 003484 */ 003485 static int walFindFrame( 003486 Wal *pWal, /* WAL handle */ 003487 Pgno pgno, /* Database page number to read data for */ 003488 u32 *piRead /* OUT: Frame number (or zero) */ 003489 ){ 003490 u32 iRead = 0; /* If !=0, WAL frame to return data from */ 003491 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ 003492 int iHash; /* Used to loop through N hash tables */ 003493 int iMinHash; 003494 003495 /* This routine is only be called from within a read transaction. */ 003496 assert( pWal->readLock>=0 || pWal->lockError ); 003497 003498 /* If the "last page" field of the wal-index header snapshot is 0, then 003499 ** no data will be read from the wal under any circumstances. Return early 003500 ** in this case as an optimization. Likewise, if pWal->readLock==0, 003501 ** then the WAL is ignored by the reader so return early, as if the 003502 ** WAL were empty. 003503 */ 003504 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){ 003505 *piRead = 0; 003506 return SQLITE_OK; 003507 } 003508 003509 /* Search the hash table or tables for an entry matching page number 003510 ** pgno. Each iteration of the following for() loop searches one 003511 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). 003512 ** 003513 ** This code might run concurrently to the code in walIndexAppend() 003514 ** that adds entries to the wal-index (and possibly to this hash 003515 ** table). This means the value just read from the hash 003516 ** slot (aHash[iKey]) may have been added before or after the 003517 ** current read transaction was opened. Values added after the 003518 ** read transaction was opened may have been written incorrectly - 003519 ** i.e. these slots may contain garbage data. However, we assume 003520 ** that any slots written before the current read transaction was 003521 ** opened remain unmodified. 003522 ** 003523 ** For the reasons above, the if(...) condition featured in the inner 003524 ** loop of the following block is more stringent that would be required 003525 ** if we had exclusive access to the hash-table: 003526 ** 003527 ** (aPgno[iFrame]==pgno): 003528 ** This condition filters out normal hash-table collisions. 003529 ** 003530 ** (iFrame<=iLast): 003531 ** This condition filters out entries that were added to the hash 003532 ** table after the current read-transaction had started. 003533 */ 003534 iMinHash = walFramePage(pWal->minFrame); 003535 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){ 003536 WalHashLoc sLoc; /* Hash table location */ 003537 int iKey; /* Hash slot index */ 003538 int nCollide; /* Number of hash collisions remaining */ 003539 int rc; /* Error code */ 003540 u32 iH; 003541 003542 rc = walHashGet(pWal, iHash, &sLoc); 003543 if( rc!=SQLITE_OK ){ 003544 return rc; 003545 } 003546 nCollide = HASHTABLE_NSLOT; 003547 iKey = walHash(pgno); 003548 SEH_INJECT_FAULT; 003549 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){ 003550 u32 iFrame = iH + sLoc.iZero; 003551 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){ 003552 assert( iFrame>iRead || CORRUPT_DB ); 003553 iRead = iFrame; 003554 } 003555 if( (nCollide--)==0 ){ 003556 *piRead = 0; 003557 return SQLITE_CORRUPT_BKPT; 003558 } 003559 iKey = walNextHash(iKey); 003560 } 003561 if( iRead ) break; 003562 } 003563 003564 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT 003565 /* If expensive assert() statements are available, do a linear search 003566 ** of the wal-index file content. Make sure the results agree with the 003567 ** result obtained using the hash indexes above. */ 003568 { 003569 u32 iRead2 = 0; 003570 u32 iTest; 003571 assert( pWal->bShmUnreliable || pWal->minFrame>0 ); 003572 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){ 003573 if( walFramePgno(pWal, iTest)==pgno ){ 003574 iRead2 = iTest; 003575 break; 003576 } 003577 } 003578 assert( iRead==iRead2 ); 003579 } 003580 #endif 003581 003582 *piRead = iRead; 003583 return SQLITE_OK; 003584 } 003585 003586 /* 003587 ** Search the wal file for page pgno. If found, set *piRead to the frame that 003588 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead 003589 ** to zero. 003590 ** 003591 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an 003592 ** error does occur, the final value of *piRead is undefined. 003593 ** 003594 ** The difference between this function and walFindFrame() is that this 003595 ** function wraps walFindFrame() in an SEH_TRY{...} block. 003596 */ 003597 int sqlite3WalFindFrame( 003598 Wal *pWal, /* WAL handle */ 003599 Pgno pgno, /* Database page number to read data for */ 003600 u32 *piRead /* OUT: Frame number (or zero) */ 003601 ){ 003602 int rc; 003603 SEH_TRY { 003604 rc = walFindFrame(pWal, pgno, piRead); 003605 } 003606 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003607 return rc; 003608 } 003609 003610 /* 003611 ** Read the contents of frame iRead from the wal file into buffer pOut 003612 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an 003613 ** error code otherwise. 003614 */ 003615 int sqlite3WalReadFrame( 003616 Wal *pWal, /* WAL handle */ 003617 u32 iRead, /* Frame to read */ 003618 int nOut, /* Size of buffer pOut in bytes */ 003619 u8 *pOut /* Buffer to write page data to */ 003620 ){ 003621 int sz; 003622 i64 iOffset; 003623 sz = pWal->hdr.szPage; 003624 sz = (sz&0xfe00) + ((sz&0x0001)<<16); 003625 testcase( sz<=32768 ); 003626 testcase( sz>=65536 ); 003627 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; 003628 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ 003629 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); 003630 } 003631 003632 /* 003633 ** Return the size of the database in pages (or zero, if unknown). 003634 */ 003635 Pgno sqlite3WalDbsize(Wal *pWal){ 003636 if( pWal && ALWAYS(pWal->readLock>=0) ){ 003637 return pWal->hdr.nPage; 003638 } 003639 return 0; 003640 } 003641 003642 003643 /* 003644 ** This function starts a write transaction on the WAL. 003645 ** 003646 ** A read transaction must have already been started by a prior call 003647 ** to sqlite3WalBeginReadTransaction(). 003648 ** 003649 ** If another thread or process has written into the database since 003650 ** the read transaction was started, then it is not possible for this 003651 ** thread to write as doing so would cause a fork. So this routine 003652 ** returns SQLITE_BUSY in that case and no write transaction is started. 003653 ** 003654 ** There can only be a single writer active at a time. 003655 */ 003656 int sqlite3WalBeginWriteTransaction(Wal *pWal){ 003657 int rc; 003658 003659 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 003660 /* If the write-lock is already held, then it was obtained before the 003661 ** read-transaction was even opened, making this call a no-op. 003662 ** Return early. */ 003663 if( pWal->writeLock ){ 003664 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) ); 003665 return SQLITE_OK; 003666 } 003667 #endif 003668 003669 /* Cannot start a write transaction without first holding a read 003670 ** transaction. */ 003671 assert( pWal->readLock>=0 ); 003672 assert( pWal->writeLock==0 && pWal->iReCksum==0 ); 003673 003674 if( pWal->readOnly ){ 003675 return SQLITE_READONLY; 003676 } 003677 003678 /* Only one writer allowed at a time. Get the write lock. Return 003679 ** SQLITE_BUSY if unable. 003680 */ 003681 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); 003682 if( rc ){ 003683 return rc; 003684 } 003685 pWal->writeLock = 1; 003686 003687 /* If another connection has written to the database file since the 003688 ** time the read transaction on this connection was started, then 003689 ** the write is disallowed. 003690 */ 003691 SEH_TRY { 003692 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ 003693 rc = SQLITE_BUSY_SNAPSHOT; 003694 } 003695 } 003696 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003697 003698 if( rc!=SQLITE_OK ){ 003699 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003700 pWal->writeLock = 0; 003701 } 003702 return rc; 003703 } 003704 003705 /* 003706 ** End a write transaction. The commit has already been done. This 003707 ** routine merely releases the lock. 003708 */ 003709 int sqlite3WalEndWriteTransaction(Wal *pWal){ 003710 if( pWal->writeLock ){ 003711 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); 003712 pWal->writeLock = 0; 003713 pWal->iReCksum = 0; 003714 pWal->truncateOnCommit = 0; 003715 } 003716 return SQLITE_OK; 003717 } 003718 003719 /* 003720 ** If any data has been written (but not committed) to the log file, this 003721 ** function moves the write-pointer back to the start of the transaction. 003722 ** 003723 ** Additionally, the callback function is invoked for each frame written 003724 ** to the WAL since the start of the transaction. If the callback returns 003725 ** other than SQLITE_OK, it is not invoked again and the error code is 003726 ** returned to the caller. 003727 ** 003728 ** Otherwise, if the callback function does not return an error, this 003729 ** function returns SQLITE_OK. 003730 */ 003731 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ 003732 int rc = SQLITE_OK; 003733 if( ALWAYS(pWal->writeLock) ){ 003734 Pgno iMax = pWal->hdr.mxFrame; 003735 Pgno iFrame; 003736 003737 SEH_TRY { 003738 /* Restore the clients cache of the wal-index header to the state it 003739 ** was in before the client began writing to the database. 003740 */ 003741 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); 003742 003743 for(iFrame=pWal->hdr.mxFrame+1; 003744 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; 003745 iFrame++ 003746 ){ 003747 /* This call cannot fail. Unless the page for which the page number 003748 ** is passed as the second argument is (a) in the cache and 003749 ** (b) has an outstanding reference, then xUndo is either a no-op 003750 ** (if (a) is false) or simply expels the page from the cache (if (b) 003751 ** is false). 003752 ** 003753 ** If the upper layer is doing a rollback, it is guaranteed that there 003754 ** are no outstanding references to any page other than page 1. And 003755 ** page 1 is never written to the log until the transaction is 003756 ** committed. As a result, the call to xUndo may not fail. 003757 */ 003758 assert( walFramePgno(pWal, iFrame)!=1 ); 003759 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); 003760 } 003761 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); 003762 } 003763 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003764 } 003765 return rc; 003766 } 003767 003768 /* 003769 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 003770 ** values. This function populates the array with values required to 003771 ** "rollback" the write position of the WAL handle back to the current 003772 ** point in the event of a savepoint rollback (via WalSavepointUndo()). 003773 */ 003774 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ 003775 assert( pWal->writeLock ); 003776 aWalData[0] = pWal->hdr.mxFrame; 003777 aWalData[1] = pWal->hdr.aFrameCksum[0]; 003778 aWalData[2] = pWal->hdr.aFrameCksum[1]; 003779 aWalData[3] = pWal->nCkpt; 003780 } 003781 003782 /* 003783 ** Move the write position of the WAL back to the point identified by 003784 ** the values in the aWalData[] array. aWalData must point to an array 003785 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated 003786 ** by a call to WalSavepoint(). 003787 */ 003788 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ 003789 int rc = SQLITE_OK; 003790 003791 assert( pWal->writeLock ); 003792 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); 003793 003794 if( aWalData[3]!=pWal->nCkpt ){ 003795 /* This savepoint was opened immediately after the write-transaction 003796 ** was started. Right after that, the writer decided to wrap around 003797 ** to the start of the log. Update the savepoint values to match. 003798 */ 003799 aWalData[0] = 0; 003800 aWalData[3] = pWal->nCkpt; 003801 } 003802 003803 if( aWalData[0]<pWal->hdr.mxFrame ){ 003804 pWal->hdr.mxFrame = aWalData[0]; 003805 pWal->hdr.aFrameCksum[0] = aWalData[1]; 003806 pWal->hdr.aFrameCksum[1] = aWalData[2]; 003807 SEH_TRY { 003808 walCleanupHash(pWal); 003809 } 003810 SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; ) 003811 } 003812 003813 return rc; 003814 } 003815 003816 /* 003817 ** This function is called just before writing a set of frames to the log 003818 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending 003819 ** to the current log file, it is possible to overwrite the start of the 003820 ** existing log file with the new frames (i.e. "reset" the log). If so, 003821 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left 003822 ** unchanged. 003823 ** 003824 ** SQLITE_OK is returned if no error is encountered (regardless of whether 003825 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned 003826 ** if an error occurs. 003827 */ 003828 static int walRestartLog(Wal *pWal){ 003829 int rc = SQLITE_OK; 003830 int cnt; 003831 003832 if( pWal->readLock==0 ){ 003833 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); 003834 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); 003835 if( pInfo->nBackfill>0 ){ 003836 u32 salt1; 003837 sqlite3_randomness(4, &salt1); 003838 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003839 if( rc==SQLITE_OK ){ 003840 /* If all readers are using WAL_READ_LOCK(0) (in other words if no 003841 ** readers are currently using the WAL), then the transactions 003842 ** frames will overwrite the start of the existing log. Update the 003843 ** wal-index header to reflect this. 003844 ** 003845 ** In theory it would be Ok to update the cache of the header only 003846 ** at this point. But updating the actual wal-index header is also 003847 ** safe and means there is no special case for sqlite3WalUndo() 003848 ** to handle if this transaction is rolled back. */ 003849 walRestartHdr(pWal, salt1); 003850 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); 003851 }else if( rc!=SQLITE_BUSY ){ 003852 return rc; 003853 } 003854 } 003855 walUnlockShared(pWal, WAL_READ_LOCK(0)); 003856 pWal->readLock = -1; 003857 cnt = 0; 003858 do{ 003859 int notUsed; 003860 rc = walTryBeginRead(pWal, ¬Used, 1, &cnt); 003861 }while( rc==WAL_RETRY ); 003862 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ 003863 testcase( (rc&0xff)==SQLITE_IOERR ); 003864 testcase( rc==SQLITE_PROTOCOL ); 003865 testcase( rc==SQLITE_OK ); 003866 } 003867 return rc; 003868 } 003869 003870 /* 003871 ** Information about the current state of the WAL file and where 003872 ** the next fsync should occur - passed from sqlite3WalFrames() into 003873 ** walWriteToLog(). 003874 */ 003875 typedef struct WalWriter { 003876 Wal *pWal; /* The complete WAL information */ 003877 sqlite3_file *pFd; /* The WAL file to which we write */ 003878 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ 003879 int syncFlags; /* Flags for the fsync */ 003880 int szPage; /* Size of one page */ 003881 } WalWriter; 003882 003883 /* 003884 ** Write iAmt bytes of content into the WAL file beginning at iOffset. 003885 ** Do a sync when crossing the p->iSyncPoint boundary. 003886 ** 003887 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, 003888 ** first write the part before iSyncPoint, then sync, then write the 003889 ** rest. 003890 */ 003891 static int walWriteToLog( 003892 WalWriter *p, /* WAL to write to */ 003893 void *pContent, /* Content to be written */ 003894 int iAmt, /* Number of bytes to write */ 003895 sqlite3_int64 iOffset /* Start writing at this offset */ 003896 ){ 003897 int rc; 003898 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ 003899 int iFirstAmt = (int)(p->iSyncPoint - iOffset); 003900 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); 003901 if( rc ) return rc; 003902 iOffset += iFirstAmt; 003903 iAmt -= iFirstAmt; 003904 pContent = (void*)(iFirstAmt + (char*)pContent); 003905 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 ); 003906 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags)); 003907 if( iAmt==0 || rc ) return rc; 003908 } 003909 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); 003910 return rc; 003911 } 003912 003913 /* 003914 ** Write out a single frame of the WAL 003915 */ 003916 static int walWriteOneFrame( 003917 WalWriter *p, /* Where to write the frame */ 003918 PgHdr *pPage, /* The page of the frame to be written */ 003919 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ 003920 sqlite3_int64 iOffset /* Byte offset at which to write */ 003921 ){ 003922 int rc; /* Result code from subfunctions */ 003923 void *pData; /* Data actually written */ 003924 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ 003925 pData = pPage->pData; 003926 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); 003927 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); 003928 if( rc ) return rc; 003929 /* Write the page data */ 003930 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); 003931 return rc; 003932 } 003933 003934 /* 003935 ** This function is called as part of committing a transaction within which 003936 ** one or more frames have been overwritten. It updates the checksums for 003937 ** all frames written to the wal file by the current transaction starting 003938 ** with the earliest to have been overwritten. 003939 ** 003940 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise. 003941 */ 003942 static int walRewriteChecksums(Wal *pWal, u32 iLast){ 003943 const int szPage = pWal->szPage;/* Database page size */ 003944 int rc = SQLITE_OK; /* Return code */ 003945 u8 *aBuf; /* Buffer to load data from wal file into */ 003946 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */ 003947 u32 iRead; /* Next frame to read from wal file */ 003948 i64 iCksumOff; 003949 003950 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE); 003951 if( aBuf==0 ) return SQLITE_NOMEM_BKPT; 003952 003953 /* Find the checksum values to use as input for the recalculating the 003954 ** first checksum. If the first frame is frame 1 (implying that the current 003955 ** transaction restarted the wal file), these values must be read from the 003956 ** wal-file header. Otherwise, read them from the frame header of the 003957 ** previous frame. */ 003958 assert( pWal->iReCksum>0 ); 003959 if( pWal->iReCksum==1 ){ 003960 iCksumOff = 24; 003961 }else{ 003962 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16; 003963 } 003964 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff); 003965 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf); 003966 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]); 003967 003968 iRead = pWal->iReCksum; 003969 pWal->iReCksum = 0; 003970 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){ 003971 i64 iOff = walFrameOffset(iRead, szPage); 003972 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff); 003973 if( rc==SQLITE_OK ){ 003974 u32 iPgno, nDbSize; 003975 iPgno = sqlite3Get4byte(aBuf); 003976 nDbSize = sqlite3Get4byte(&aBuf[4]); 003977 003978 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame); 003979 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff); 003980 } 003981 } 003982 003983 sqlite3_free(aBuf); 003984 return rc; 003985 } 003986 003987 /* 003988 ** Write a set of frames to the log. The caller must hold the write-lock 003989 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 003990 */ 003991 static int walFrames( 003992 Wal *pWal, /* Wal handle to write to */ 003993 int szPage, /* Database page-size in bytes */ 003994 PgHdr *pList, /* List of dirty pages to write */ 003995 Pgno nTruncate, /* Database size after this commit */ 003996 int isCommit, /* True if this is a commit */ 003997 int sync_flags /* Flags to pass to OsSync() (or 0) */ 003998 ){ 003999 int rc; /* Used to catch return codes */ 004000 u32 iFrame; /* Next frame address */ 004001 PgHdr *p; /* Iterator to run through pList with. */ 004002 PgHdr *pLast = 0; /* Last frame in list */ 004003 int nExtra = 0; /* Number of extra copies of last page */ 004004 int szFrame; /* The size of a single frame */ 004005 i64 iOffset; /* Next byte to write in WAL file */ 004006 WalWriter w; /* The writer */ 004007 u32 iFirst = 0; /* First frame that may be overwritten */ 004008 WalIndexHdr *pLive; /* Pointer to shared header */ 004009 004010 assert( pList ); 004011 assert( pWal->writeLock ); 004012 004013 /* If this frame set completes a transaction, then nTruncate>0. If 004014 ** nTruncate==0 then this frame set does not complete the transaction. */ 004015 assert( (isCommit!=0)==(nTruncate!=0) ); 004016 004017 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 004018 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} 004019 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", 004020 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); 004021 } 004022 #endif 004023 004024 pLive = (WalIndexHdr*)walIndexHdr(pWal); 004025 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){ 004026 iFirst = pLive->mxFrame+1; 004027 } 004028 004029 /* See if it is possible to write these frames into the start of the 004030 ** log file, instead of appending to it at pWal->hdr.mxFrame. 004031 */ 004032 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ 004033 return rc; 004034 } 004035 004036 /* If this is the first frame written into the log, write the WAL 004037 ** header to the start of the WAL file. See comments at the top of 004038 ** this source file for a description of the WAL header format. 004039 */ 004040 iFrame = pWal->hdr.mxFrame; 004041 if( iFrame==0 ){ 004042 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ 004043 u32 aCksum[2]; /* Checksum for wal-header */ 004044 004045 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); 004046 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); 004047 sqlite3Put4byte(&aWalHdr[8], szPage); 004048 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); 004049 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); 004050 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); 004051 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); 004052 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); 004053 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); 004054 004055 pWal->szPage = szPage; 004056 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; 004057 pWal->hdr.aFrameCksum[0] = aCksum[0]; 004058 pWal->hdr.aFrameCksum[1] = aCksum[1]; 004059 pWal->truncateOnCommit = 1; 004060 004061 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); 004062 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); 004063 if( rc!=SQLITE_OK ){ 004064 return rc; 004065 } 004066 004067 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless 004068 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise 004069 ** an out-of-order write following a WAL restart could result in 004070 ** database corruption. See the ticket: 004071 ** 004072 ** https://sqlite.org/src/info/ff5be73dee 004073 */ 004074 if( pWal->syncHeader ){ 004075 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags)); 004076 if( rc ) return rc; 004077 } 004078 } 004079 if( (int)pWal->szPage!=szPage ){ 004080 return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */ 004081 } 004082 004083 /* Setup information needed to write frames into the WAL */ 004084 w.pWal = pWal; 004085 w.pFd = pWal->pWalFd; 004086 w.iSyncPoint = 0; 004087 w.syncFlags = sync_flags; 004088 w.szPage = szPage; 004089 iOffset = walFrameOffset(iFrame+1, szPage); 004090 szFrame = szPage + WAL_FRAME_HDRSIZE; 004091 004092 /* Write all frames into the log file exactly once */ 004093 for(p=pList; p; p=p->pDirty){ 004094 int nDbSize; /* 0 normally. Positive == commit flag */ 004095 004096 /* Check if this page has already been written into the wal file by 004097 ** the current transaction. If so, overwrite the existing frame and 004098 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 004099 ** checksums must be recomputed when the transaction is committed. */ 004100 if( iFirst && (p->pDirty || isCommit==0) ){ 004101 u32 iWrite = 0; 004102 VVA_ONLY(rc =) walFindFrame(pWal, p->pgno, &iWrite); 004103 assert( rc==SQLITE_OK || iWrite==0 ); 004104 if( iWrite>=iFirst ){ 004105 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE; 004106 void *pData; 004107 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){ 004108 pWal->iReCksum = iWrite; 004109 } 004110 pData = p->pData; 004111 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff); 004112 if( rc ) return rc; 004113 p->flags &= ~PGHDR_WAL_APPEND; 004114 continue; 004115 } 004116 } 004117 004118 iFrame++; 004119 assert( iOffset==walFrameOffset(iFrame, szPage) ); 004120 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; 004121 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); 004122 if( rc ) return rc; 004123 pLast = p; 004124 iOffset += szFrame; 004125 p->flags |= PGHDR_WAL_APPEND; 004126 } 004127 004128 /* Recalculate checksums within the wal file if required. */ 004129 if( isCommit && pWal->iReCksum ){ 004130 rc = walRewriteChecksums(pWal, iFrame); 004131 if( rc ) return rc; 004132 } 004133 004134 /* If this is the end of a transaction, then we might need to pad 004135 ** the transaction and/or sync the WAL file. 004136 ** 004137 ** Padding and syncing only occur if this set of frames complete a 004138 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL 004139 ** or synchronous==OFF, then no padding or syncing are needed. 004140 ** 004141 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not 004142 ** needed and only the sync is done. If padding is needed, then the 004143 ** final frame is repeated (with its commit mark) until the next sector 004144 ** boundary is crossed. Only the part of the WAL prior to the last 004145 ** sector boundary is synced; the part of the last frame that extends 004146 ** past the sector boundary is written after the sync. 004147 */ 004148 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){ 004149 int bSync = 1; 004150 if( pWal->padToSectorBoundary ){ 004151 int sectorSize = sqlite3SectorSize(pWal->pWalFd); 004152 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; 004153 bSync = (w.iSyncPoint==iOffset); 004154 testcase( bSync ); 004155 while( iOffset<w.iSyncPoint ){ 004156 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); 004157 if( rc ) return rc; 004158 iOffset += szFrame; 004159 nExtra++; 004160 assert( pLast!=0 ); 004161 } 004162 } 004163 if( bSync ){ 004164 assert( rc==SQLITE_OK ); 004165 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags)); 004166 } 004167 } 004168 004169 /* If this frame set completes the first transaction in the WAL and 004170 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the 004171 ** journal size limit, if possible. 004172 */ 004173 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ 004174 i64 sz = pWal->mxWalSize; 004175 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ 004176 sz = walFrameOffset(iFrame+nExtra+1, szPage); 004177 } 004178 walLimitSize(pWal, sz); 004179 pWal->truncateOnCommit = 0; 004180 } 004181 004182 /* Append data to the wal-index. It is not necessary to lock the 004183 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index 004184 ** guarantees that there are no other writers, and no data that may 004185 ** be in use by existing readers is being overwritten. 004186 */ 004187 iFrame = pWal->hdr.mxFrame; 004188 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ 004189 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue; 004190 iFrame++; 004191 rc = walIndexAppend(pWal, iFrame, p->pgno); 004192 } 004193 assert( pLast!=0 || nExtra==0 ); 004194 while( rc==SQLITE_OK && nExtra>0 ){ 004195 iFrame++; 004196 nExtra--; 004197 rc = walIndexAppend(pWal, iFrame, pLast->pgno); 004198 } 004199 004200 if( rc==SQLITE_OK ){ 004201 /* Update the private copy of the header. */ 004202 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); 004203 testcase( szPage<=32768 ); 004204 testcase( szPage>=65536 ); 004205 pWal->hdr.mxFrame = iFrame; 004206 if( isCommit ){ 004207 pWal->hdr.iChange++; 004208 pWal->hdr.nPage = nTruncate; 004209 } 004210 /* If this is a commit, update the wal-index header too. */ 004211 if( isCommit ){ 004212 walIndexWriteHdr(pWal); 004213 pWal->iCallback = iFrame; 004214 } 004215 } 004216 004217 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); 004218 return rc; 004219 } 004220 004221 /* 004222 ** Write a set of frames to the log. The caller must hold the write-lock 004223 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). 004224 ** 004225 ** The difference between this function and walFrames() is that this 004226 ** function wraps walFrames() in an SEH_TRY{...} block. 004227 */ 004228 int sqlite3WalFrames( 004229 Wal *pWal, /* Wal handle to write to */ 004230 int szPage, /* Database page-size in bytes */ 004231 PgHdr *pList, /* List of dirty pages to write */ 004232 Pgno nTruncate, /* Database size after this commit */ 004233 int isCommit, /* True if this is a commit */ 004234 int sync_flags /* Flags to pass to OsSync() (or 0) */ 004235 ){ 004236 int rc; 004237 SEH_TRY { 004238 rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags); 004239 } 004240 SEH_EXCEPT( rc = walHandleException(pWal); ) 004241 return rc; 004242 } 004243 004244 /* 004245 ** This routine is called to implement sqlite3_wal_checkpoint() and 004246 ** related interfaces. 004247 ** 004248 ** Obtain a CHECKPOINT lock and then backfill as much information as 004249 ** we can from WAL into the database. 004250 ** 004251 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler 004252 ** callback. In this case this function runs a blocking checkpoint. 004253 */ 004254 int sqlite3WalCheckpoint( 004255 Wal *pWal, /* Wal connection */ 004256 sqlite3 *db, /* Check this handle's interrupt flag */ 004257 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ 004258 int (*xBusy)(void*), /* Function to call when busy */ 004259 void *pBusyArg, /* Context argument for xBusyHandler */ 004260 int sync_flags, /* Flags to sync db file with (or 0) */ 004261 int nBuf, /* Size of temporary buffer */ 004262 u8 *zBuf, /* Temporary buffer to use */ 004263 int *pnLog, /* OUT: Number of frames in WAL */ 004264 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ 004265 ){ 004266 int rc; /* Return code */ 004267 int isChanged = 0; /* True if a new wal-index header is loaded */ 004268 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ 004269 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ 004270 004271 assert( pWal->ckptLock==0 ); 004272 assert( pWal->writeLock==0 ); 004273 004274 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked 004275 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ 004276 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); 004277 004278 if( pWal->readOnly ) return SQLITE_READONLY; 004279 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); 004280 004281 /* Enable blocking locks, if possible. */ 004282 sqlite3WalDb(pWal, db); 004283 if( xBusy2 ) (void)walEnableBlocking(pWal); 004284 004285 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 004286 ** "checkpoint" lock on the database file. 004287 ** EVIDENCE-OF: R-10421-19736 If any other process is running a 004288 ** checkpoint operation at the same time, the lock cannot be obtained and 004289 ** SQLITE_BUSY is returned. 004290 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, 004291 ** it will not be invoked in this case. 004292 */ 004293 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); 004294 testcase( rc==SQLITE_BUSY ); 004295 testcase( rc!=SQLITE_OK && xBusy2!=0 ); 004296 if( rc==SQLITE_OK ){ 004297 pWal->ckptLock = 1; 004298 004299 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and 004300 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database 004301 ** file. 004302 ** 004303 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained 004304 ** immediately, and a busy-handler is configured, it is invoked and the 004305 ** writer lock retried until either the busy-handler returns 0 or the 004306 ** lock is successfully obtained. 004307 */ 004308 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ 004309 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1); 004310 if( rc==SQLITE_OK ){ 004311 pWal->writeLock = 1; 004312 }else if( rc==SQLITE_BUSY ){ 004313 eMode2 = SQLITE_CHECKPOINT_PASSIVE; 004314 xBusy2 = 0; 004315 rc = SQLITE_OK; 004316 } 004317 } 004318 } 004319 004320 004321 /* Read the wal-index header. */ 004322 SEH_TRY { 004323 if( rc==SQLITE_OK ){ 004324 /* For a passive checkpoint, do not re-enable blocking locks after 004325 ** reading the wal-index header. A passive checkpoint should not block 004326 ** or invoke the busy handler. The only lock such a checkpoint may 004327 ** attempt to obtain is a lock on a read-slot, and it should give up 004328 ** immediately and do a partial checkpoint if it cannot obtain it. */ 004329 walDisableBlocking(pWal); 004330 rc = walIndexReadHdr(pWal, &isChanged); 004331 if( eMode2!=SQLITE_CHECKPOINT_PASSIVE ) (void)walEnableBlocking(pWal); 004332 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ 004333 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); 004334 } 004335 } 004336 004337 /* Copy data from the log to the database file. */ 004338 if( rc==SQLITE_OK ){ 004339 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ 004340 rc = SQLITE_CORRUPT_BKPT; 004341 }else{ 004342 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf); 004343 } 004344 004345 /* If no error occurred, set the output variables. */ 004346 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ 004347 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; 004348 SEH_INJECT_FAULT; 004349 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); 004350 } 004351 } 004352 } 004353 SEH_EXCEPT( rc = walHandleException(pWal); ) 004354 004355 if( isChanged ){ 004356 /* If a new wal-index header was loaded before the checkpoint was 004357 ** performed, then the pager-cache associated with pWal is now 004358 ** out of date. So zero the cached wal-index header to ensure that 004359 ** next time the pager opens a snapshot on this database it knows that 004360 ** the cache needs to be reset. 004361 */ 004362 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); 004363 } 004364 004365 walDisableBlocking(pWal); 004366 sqlite3WalDb(pWal, 0); 004367 004368 /* Release the locks. */ 004369 sqlite3WalEndWriteTransaction(pWal); 004370 if( pWal->ckptLock ){ 004371 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); 004372 pWal->ckptLock = 0; 004373 } 004374 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); 004375 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 004376 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY; 004377 #endif 004378 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); 004379 } 004380 004381 /* Return the value to pass to a sqlite3_wal_hook callback, the 004382 ** number of frames in the WAL at the point of the last commit since 004383 ** sqlite3WalCallback() was called. If no commits have occurred since 004384 ** the last call, then return 0. 004385 */ 004386 int sqlite3WalCallback(Wal *pWal){ 004387 u32 ret = 0; 004388 if( pWal ){ 004389 ret = pWal->iCallback; 004390 pWal->iCallback = 0; 004391 } 004392 return (int)ret; 004393 } 004394 004395 /* 004396 ** This function is called to change the WAL subsystem into or out 004397 ** of locking_mode=EXCLUSIVE. 004398 ** 004399 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE 004400 ** into locking_mode=NORMAL. This means that we must acquire a lock 004401 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL 004402 ** or if the acquisition of the lock fails, then return 0. If the 004403 ** transition out of exclusive-mode is successful, return 1. This 004404 ** operation must occur while the pager is still holding the exclusive 004405 ** lock on the main database file. 004406 ** 004407 ** If op is one, then change from locking_mode=NORMAL into 004408 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must 004409 ** be released. Return 1 if the transition is made and 0 if the 004410 ** WAL is already in exclusive-locking mode - meaning that this 004411 ** routine is a no-op. The pager must already hold the exclusive lock 004412 ** on the main database file before invoking this operation. 004413 ** 004414 ** If op is negative, then do a dry-run of the op==1 case but do 004415 ** not actually change anything. The pager uses this to see if it 004416 ** should acquire the database exclusive lock prior to invoking 004417 ** the op==1 case. 004418 */ 004419 int sqlite3WalExclusiveMode(Wal *pWal, int op){ 004420 int rc; 004421 assert( pWal->writeLock==0 ); 004422 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); 004423 004424 /* pWal->readLock is usually set, but might be -1 if there was a 004425 ** prior error while attempting to acquire are read-lock. This cannot 004426 ** happen if the connection is actually in exclusive mode (as no xShmLock 004427 ** locks are taken in this case). Nor should the pager attempt to 004428 ** upgrade to exclusive-mode following such an error. 004429 */ 004430 #ifndef SQLITE_USE_SEH 004431 assert( pWal->readLock>=0 || pWal->lockError ); 004432 #endif 004433 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); 004434 004435 if( op==0 ){ 004436 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){ 004437 pWal->exclusiveMode = WAL_NORMAL_MODE; 004438 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ 004439 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004440 } 004441 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004442 }else{ 004443 /* Already in locking_mode=NORMAL */ 004444 rc = 0; 004445 } 004446 }else if( op>0 ){ 004447 assert( pWal->exclusiveMode==WAL_NORMAL_MODE ); 004448 assert( pWal->readLock>=0 ); 004449 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); 004450 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; 004451 rc = 1; 004452 }else{ 004453 rc = pWal->exclusiveMode==WAL_NORMAL_MODE; 004454 } 004455 return rc; 004456 } 004457 004458 /* 004459 ** Return true if the argument is non-NULL and the WAL module is using 004460 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the 004461 ** WAL module is using shared-memory, return false. 004462 */ 004463 int sqlite3WalHeapMemory(Wal *pWal){ 004464 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); 004465 } 004466 004467 #ifdef SQLITE_ENABLE_SNAPSHOT 004468 /* Create a snapshot object. The content of a snapshot is opaque to 004469 ** every other subsystem, so the WAL module can put whatever it needs 004470 ** in the object. 004471 */ 004472 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ 004473 int rc = SQLITE_OK; 004474 WalIndexHdr *pRet; 004475 static const u32 aZero[4] = { 0, 0, 0, 0 }; 004476 004477 assert( pWal->readLock>=0 && pWal->writeLock==0 ); 004478 004479 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){ 004480 *ppSnapshot = 0; 004481 return SQLITE_ERROR; 004482 } 004483 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); 004484 if( pRet==0 ){ 004485 rc = SQLITE_NOMEM_BKPT; 004486 }else{ 004487 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); 004488 *ppSnapshot = (sqlite3_snapshot*)pRet; 004489 } 004490 004491 return rc; 004492 } 004493 004494 /* Try to open on pSnapshot when the next read-transaction starts 004495 */ 004496 void sqlite3WalSnapshotOpen( 004497 Wal *pWal, 004498 sqlite3_snapshot *pSnapshot 004499 ){ 004500 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; 004501 } 004502 004503 /* 004504 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if 004505 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot. 004506 */ 004507 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){ 004508 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1; 004509 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2; 004510 004511 /* aSalt[0] is a copy of the value stored in the wal file header. It 004512 ** is incremented each time the wal file is restarted. */ 004513 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1; 004514 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1; 004515 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1; 004516 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1; 004517 return 0; 004518 } 004519 004520 /* 004521 ** The caller currently has a read transaction open on the database. 004522 ** This function takes a SHARED lock on the CHECKPOINTER slot and then 004523 ** checks if the snapshot passed as the second argument is still 004524 ** available. If so, SQLITE_OK is returned. 004525 ** 004526 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 004527 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 004528 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 004529 ** lock is released before returning. 004530 */ 004531 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){ 004532 int rc; 004533 SEH_TRY { 004534 rc = walLockShared(pWal, WAL_CKPT_LOCK); 004535 if( rc==SQLITE_OK ){ 004536 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot; 004537 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) 004538 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted 004539 ){ 004540 rc = SQLITE_ERROR_SNAPSHOT; 004541 walUnlockShared(pWal, WAL_CKPT_LOCK); 004542 } 004543 } 004544 } 004545 SEH_EXCEPT( rc = walHandleException(pWal); ) 004546 return rc; 004547 } 004548 004549 /* 004550 ** Release a lock obtained by an earlier successful call to 004551 ** sqlite3WalSnapshotCheck(). 004552 */ 004553 void sqlite3WalSnapshotUnlock(Wal *pWal){ 004554 assert( pWal ); 004555 walUnlockShared(pWal, WAL_CKPT_LOCK); 004556 } 004557 004558 004559 #endif /* SQLITE_ENABLE_SNAPSHOT */ 004560 004561 #ifdef SQLITE_ENABLE_ZIPVFS 004562 /* 004563 ** If the argument is not NULL, it points to a Wal object that holds a 004564 ** read-lock. This function returns the database page-size if it is known, 004565 ** or zero if it is not (or if pWal is NULL). 004566 */ 004567 int sqlite3WalFramesize(Wal *pWal){ 004568 assert( pWal==0 || pWal->readLock>=0 ); 004569 return (pWal ? pWal->szPage : 0); 004570 } 004571 #endif 004572 004573 /* Return the sqlite3_file object for the WAL file 004574 */ 004575 sqlite3_file *sqlite3WalFile(Wal *pWal){ 004576 return pWal->pWalFd; 004577 } 004578 004579 #endif /* #ifndef SQLITE_OMIT_WAL */