000001 /* 000002 ** 2003 September 6 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains code used for creating, destroying, and populating 000013 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) 000014 */ 000015 #include "sqliteInt.h" 000016 #include "vdbeInt.h" 000017 000018 /* Forward references */ 000019 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef); 000020 static void vdbeFreeOpArray(sqlite3 *, Op *, int); 000021 000022 /* 000023 ** Create a new virtual database engine. 000024 */ 000025 Vdbe *sqlite3VdbeCreate(Parse *pParse){ 000026 sqlite3 *db = pParse->db; 000027 Vdbe *p; 000028 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) ); 000029 if( p==0 ) return 0; 000030 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp)); 000031 p->db = db; 000032 if( db->pVdbe ){ 000033 db->pVdbe->ppVPrev = &p->pVNext; 000034 } 000035 p->pVNext = db->pVdbe; 000036 p->ppVPrev = &db->pVdbe; 000037 db->pVdbe = p; 000038 assert( p->eVdbeState==VDBE_INIT_STATE ); 000039 p->pParse = pParse; 000040 pParse->pVdbe = p; 000041 assert( pParse->aLabel==0 ); 000042 assert( pParse->nLabel==0 ); 000043 assert( p->nOpAlloc==0 ); 000044 assert( pParse->szOpAlloc==0 ); 000045 sqlite3VdbeAddOp2(p, OP_Init, 0, 1); 000046 return p; 000047 } 000048 000049 /* 000050 ** Return the Parse object that owns a Vdbe object. 000051 */ 000052 Parse *sqlite3VdbeParser(Vdbe *p){ 000053 return p->pParse; 000054 } 000055 000056 /* 000057 ** Change the error string stored in Vdbe.zErrMsg 000058 */ 000059 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){ 000060 va_list ap; 000061 sqlite3DbFree(p->db, p->zErrMsg); 000062 va_start(ap, zFormat); 000063 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap); 000064 va_end(ap); 000065 } 000066 000067 /* 000068 ** Remember the SQL string for a prepared statement. 000069 */ 000070 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){ 000071 if( p==0 ) return; 000072 p->prepFlags = prepFlags; 000073 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ 000074 p->expmask = 0; 000075 } 000076 assert( p->zSql==0 ); 000077 p->zSql = sqlite3DbStrNDup(p->db, z, n); 000078 } 000079 000080 #ifdef SQLITE_ENABLE_NORMALIZE 000081 /* 000082 ** Add a new element to the Vdbe->pDblStr list. 000083 */ 000084 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){ 000085 if( p ){ 000086 int n = sqlite3Strlen30(z); 000087 DblquoteStr *pStr = sqlite3DbMallocRawNN(db, 000088 sizeof(*pStr)+n+1-sizeof(pStr->z)); 000089 if( pStr ){ 000090 pStr->pNextStr = p->pDblStr; 000091 p->pDblStr = pStr; 000092 memcpy(pStr->z, z, n+1); 000093 } 000094 } 000095 } 000096 #endif 000097 000098 #ifdef SQLITE_ENABLE_NORMALIZE 000099 /* 000100 ** zId of length nId is a double-quoted identifier. Check to see if 000101 ** that identifier is really used as a string literal. 000102 */ 000103 int sqlite3VdbeUsesDoubleQuotedString( 000104 Vdbe *pVdbe, /* The prepared statement */ 000105 const char *zId /* The double-quoted identifier, already dequoted */ 000106 ){ 000107 DblquoteStr *pStr; 000108 assert( zId!=0 ); 000109 if( pVdbe->pDblStr==0 ) return 0; 000110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){ 000111 if( strcmp(zId, pStr->z)==0 ) return 1; 000112 } 000113 return 0; 000114 } 000115 #endif 000116 000117 /* 000118 ** Swap byte-code between two VDBE structures. 000119 ** 000120 ** This happens after pB was previously run and returned 000121 ** SQLITE_SCHEMA. The statement was then reprepared in pA. 000122 ** This routine transfers the new bytecode in pA over to pB 000123 ** so that pB can be run again. The old pB byte code is 000124 ** moved back to pA so that it will be cleaned up when pA is 000125 ** finalized. 000126 */ 000127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ 000128 Vdbe tmp, *pTmp, **ppTmp; 000129 char *zTmp; 000130 assert( pA->db==pB->db ); 000131 tmp = *pA; 000132 *pA = *pB; 000133 *pB = tmp; 000134 pTmp = pA->pVNext; 000135 pA->pVNext = pB->pVNext; 000136 pB->pVNext = pTmp; 000137 ppTmp = pA->ppVPrev; 000138 pA->ppVPrev = pB->ppVPrev; 000139 pB->ppVPrev = ppTmp; 000140 zTmp = pA->zSql; 000141 pA->zSql = pB->zSql; 000142 pB->zSql = zTmp; 000143 #ifdef SQLITE_ENABLE_NORMALIZE 000144 zTmp = pA->zNormSql; 000145 pA->zNormSql = pB->zNormSql; 000146 pB->zNormSql = zTmp; 000147 #endif 000148 pB->expmask = pA->expmask; 000149 pB->prepFlags = pA->prepFlags; 000150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); 000151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; 000152 } 000153 000154 /* 000155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger 000156 ** than its current size. nOp is guaranteed to be less than or equal 000157 ** to 1024/sizeof(Op). 000158 ** 000159 ** If an out-of-memory error occurs while resizing the array, return 000160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain 000161 ** unchanged (this is so that any opcodes already allocated can be 000162 ** correctly deallocated along with the rest of the Vdbe). 000163 */ 000164 static int growOpArray(Vdbe *v, int nOp){ 000165 VdbeOp *pNew; 000166 Parse *p = v->pParse; 000167 000168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force 000169 ** more frequent reallocs and hence provide more opportunities for 000170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used 000171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array 000172 ** by the minimum* amount required until the size reaches 512. Normal 000173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current 000174 ** size of the op array or add 1KB of space, whichever is smaller. */ 000175 #ifdef SQLITE_TEST_REALLOC_STRESS 000176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc 000177 : (sqlite3_int64)v->nOpAlloc+nOp); 000178 #else 000179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc 000180 : (sqlite3_int64)(1024/sizeof(Op))); 000181 UNUSED_PARAMETER(nOp); 000182 #endif 000183 000184 /* Ensure that the size of a VDBE does not grow too large */ 000185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){ 000186 sqlite3OomFault(p->db); 000187 return SQLITE_NOMEM; 000188 } 000189 000190 assert( nOp<=(int)(1024/sizeof(Op)) ); 000191 assert( nNew>=(v->nOpAlloc+nOp) ); 000192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op)); 000193 if( pNew ){ 000194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew); 000195 v->nOpAlloc = p->szOpAlloc/sizeof(Op); 000196 v->aOp = pNew; 000197 } 000198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT); 000199 } 000200 000201 #ifdef SQLITE_DEBUG 000202 /* This routine is just a convenient place to set a breakpoint that will 000203 ** fire after each opcode is inserted and displayed using 000204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and 000205 ** pOp are available to make the breakpoint conditional. 000206 ** 000207 ** Other useful labels for breakpoints include: 000208 ** test_trace_breakpoint(pc,pOp) 000209 ** sqlite3CorruptError(lineno) 000210 ** sqlite3MisuseError(lineno) 000211 ** sqlite3CantopenError(lineno) 000212 */ 000213 static void test_addop_breakpoint(int pc, Op *pOp){ 000214 static u64 n = 0; 000215 (void)pc; 000216 (void)pOp; 000217 n++; 000218 if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */ 000219 } 000220 #endif 000221 000222 /* 000223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the 000224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array 000225 ** before adding the new opcode. 000226 */ 000227 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000228 assert( p->nOpAlloc<=p->nOp ); 000229 if( growOpArray(p, 1) ) return 1; 000230 assert( p->nOpAlloc>p->nOp ); 000231 return sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000232 } 000233 static SQLITE_NOINLINE int addOp4IntSlow( 000234 Vdbe *p, /* Add the opcode to this VM */ 000235 int op, /* The new opcode */ 000236 int p1, /* The P1 operand */ 000237 int p2, /* The P2 operand */ 000238 int p3, /* The P3 operand */ 000239 int p4 /* The P4 operand as an integer */ 000240 ){ 000241 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000242 if( p->db->mallocFailed==0 ){ 000243 VdbeOp *pOp = &p->aOp[addr]; 000244 pOp->p4type = P4_INT32; 000245 pOp->p4.i = p4; 000246 } 000247 return addr; 000248 } 000249 000250 000251 /* 000252 ** Add a new instruction to the list of instructions current in the 000253 ** VDBE. Return the address of the new instruction. 000254 ** 000255 ** Parameters: 000256 ** 000257 ** p Pointer to the VDBE 000258 ** 000259 ** op The opcode for this instruction 000260 ** 000261 ** p1, p2, p3, p4 Operands 000262 */ 000263 int sqlite3VdbeAddOp0(Vdbe *p, int op){ 000264 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); 000265 } 000266 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ 000267 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); 000268 } 000269 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ 000270 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); 000271 } 000272 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ 000273 int i; 000274 VdbeOp *pOp; 000275 000276 i = p->nOp; 000277 assert( p->eVdbeState==VDBE_INIT_STATE ); 000278 assert( op>=0 && op<0xff ); 000279 if( p->nOpAlloc<=i ){ 000280 return growOp3(p, op, p1, p2, p3); 000281 } 000282 assert( p->aOp!=0 ); 000283 p->nOp++; 000284 pOp = &p->aOp[i]; 000285 assert( pOp!=0 ); 000286 pOp->opcode = (u8)op; 000287 pOp->p5 = 0; 000288 pOp->p1 = p1; 000289 pOp->p2 = p2; 000290 pOp->p3 = p3; 000291 pOp->p4.p = 0; 000292 pOp->p4type = P4_NOTUSED; 000293 000294 /* Replicate this logic in sqlite3VdbeAddOp4Int() 000295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ 000296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000297 pOp->zComment = 0; 000298 #endif 000299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000300 pOp->nExec = 0; 000301 pOp->nCycle = 0; 000302 #endif 000303 #ifdef SQLITE_DEBUG 000304 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000305 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 000306 test_addop_breakpoint(i, &p->aOp[i]); 000307 } 000308 #endif 000309 #ifdef SQLITE_VDBE_COVERAGE 000310 pOp->iSrcLine = 0; 000311 #endif 000312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 000313 ** Replicate in sqlite3VdbeAddOp4Int() */ 000314 000315 return i; 000316 } 000317 int sqlite3VdbeAddOp4Int( 000318 Vdbe *p, /* Add the opcode to this VM */ 000319 int op, /* The new opcode */ 000320 int p1, /* The P1 operand */ 000321 int p2, /* The P2 operand */ 000322 int p3, /* The P3 operand */ 000323 int p4 /* The P4 operand as an integer */ 000324 ){ 000325 int i; 000326 VdbeOp *pOp; 000327 000328 i = p->nOp; 000329 if( p->nOpAlloc<=i ){ 000330 return addOp4IntSlow(p, op, p1, p2, p3, p4); 000331 } 000332 p->nOp++; 000333 pOp = &p->aOp[i]; 000334 assert( pOp!=0 ); 000335 pOp->opcode = (u8)op; 000336 pOp->p5 = 0; 000337 pOp->p1 = p1; 000338 pOp->p2 = p2; 000339 pOp->p3 = p3; 000340 pOp->p4.i = p4; 000341 pOp->p4type = P4_INT32; 000342 000343 /* Replicate this logic in sqlite3VdbeAddOp3() 000344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */ 000345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 000346 pOp->zComment = 0; 000347 #endif 000348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000349 pOp->nExec = 0; 000350 pOp->nCycle = 0; 000351 #endif 000352 #ifdef SQLITE_DEBUG 000353 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000354 sqlite3VdbePrintOp(0, i, &p->aOp[i]); 000355 test_addop_breakpoint(i, &p->aOp[i]); 000356 } 000357 #endif 000358 #ifdef SQLITE_VDBE_COVERAGE 000359 pOp->iSrcLine = 0; 000360 #endif 000361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 000362 ** Replicate in sqlite3VdbeAddOp3() */ 000363 000364 return i; 000365 } 000366 000367 /* Generate code for an unconditional jump to instruction iDest 000368 */ 000369 int sqlite3VdbeGoto(Vdbe *p, int iDest){ 000370 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0); 000371 } 000372 000373 /* Generate code to cause the string zStr to be loaded into 000374 ** register iDest 000375 */ 000376 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){ 000377 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0); 000378 } 000379 000380 /* 000381 ** Generate code that initializes multiple registers to string or integer 000382 ** constants. The registers begin with iDest and increase consecutively. 000383 ** One register is initialized for each characgter in zTypes[]. For each 000384 ** "s" character in zTypes[], the register is a string if the argument is 000385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character 000386 ** in zTypes[], the register is initialized to an integer. 000387 ** 000388 ** If the input string does not end with "X" then an OP_ResultRow instruction 000389 ** is generated for the values inserted. 000390 */ 000391 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){ 000392 va_list ap; 000393 int i; 000394 char c; 000395 va_start(ap, zTypes); 000396 for(i=0; (c = zTypes[i])!=0; i++){ 000397 if( c=='s' ){ 000398 const char *z = va_arg(ap, const char*); 000399 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0); 000400 }else if( c=='i' ){ 000401 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i); 000402 }else{ 000403 goto skip_op_resultrow; 000404 } 000405 } 000406 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i); 000407 skip_op_resultrow: 000408 va_end(ap); 000409 } 000410 000411 /* 000412 ** Add an opcode that includes the p4 value as a pointer. 000413 */ 000414 int sqlite3VdbeAddOp4( 000415 Vdbe *p, /* Add the opcode to this VM */ 000416 int op, /* The new opcode */ 000417 int p1, /* The P1 operand */ 000418 int p2, /* The P2 operand */ 000419 int p3, /* The P3 operand */ 000420 const char *zP4, /* The P4 operand */ 000421 int p4type /* P4 operand type */ 000422 ){ 000423 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); 000424 sqlite3VdbeChangeP4(p, addr, zP4, p4type); 000425 return addr; 000426 } 000427 000428 /* 000429 ** Add an OP_Function or OP_PureFunc opcode. 000430 ** 000431 ** The eCallCtx argument is information (typically taken from Expr.op2) 000432 ** that describes the calling context of the function. 0 means a general 000433 ** function call. NC_IsCheck means called by a check constraint, 000434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx 000435 ** means in the WHERE clause of a partial index. NC_GenCol means called 000436 ** while computing a generated column value. 0 is the usual case. 000437 */ 000438 int sqlite3VdbeAddFunctionCall( 000439 Parse *pParse, /* Parsing context */ 000440 int p1, /* Constant argument mask */ 000441 int p2, /* First argument register */ 000442 int p3, /* Register into which results are written */ 000443 int nArg, /* Number of argument */ 000444 const FuncDef *pFunc, /* The function to be invoked */ 000445 int eCallCtx /* Calling context */ 000446 ){ 000447 Vdbe *v = pParse->pVdbe; 000448 int nByte; 000449 int addr; 000450 sqlite3_context *pCtx; 000451 assert( v ); 000452 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*); 000453 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte); 000454 if( pCtx==0 ){ 000455 assert( pParse->db->mallocFailed ); 000456 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc); 000457 return 0; 000458 } 000459 pCtx->pOut = 0; 000460 pCtx->pFunc = (FuncDef*)pFunc; 000461 pCtx->pVdbe = 0; 000462 pCtx->isError = 0; 000463 pCtx->argc = nArg; 000464 pCtx->iOp = sqlite3VdbeCurrentAddr(v); 000465 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function, 000466 p1, p2, p3, (char*)pCtx, P4_FUNCCTX); 000467 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef); 000468 sqlite3MayAbort(pParse); 000469 return addr; 000470 } 000471 000472 /* 000473 ** Add an opcode that includes the p4 value with a P4_INT64 or 000474 ** P4_REAL type. 000475 */ 000476 int sqlite3VdbeAddOp4Dup8( 000477 Vdbe *p, /* Add the opcode to this VM */ 000478 int op, /* The new opcode */ 000479 int p1, /* The P1 operand */ 000480 int p2, /* The P2 operand */ 000481 int p3, /* The P3 operand */ 000482 const u8 *zP4, /* The P4 operand */ 000483 int p4type /* P4 operand type */ 000484 ){ 000485 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8); 000486 if( p4copy ) memcpy(p4copy, zP4, 8); 000487 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type); 000488 } 000489 000490 #ifndef SQLITE_OMIT_EXPLAIN 000491 /* 000492 ** Return the address of the current EXPLAIN QUERY PLAN baseline. 000493 ** 0 means "none". 000494 */ 000495 int sqlite3VdbeExplainParent(Parse *pParse){ 000496 VdbeOp *pOp; 000497 if( pParse->addrExplain==0 ) return 0; 000498 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain); 000499 return pOp->p2; 000500 } 000501 000502 /* 000503 ** Set a debugger breakpoint on the following routine in order to 000504 ** monitor the EXPLAIN QUERY PLAN code generation. 000505 */ 000506 #if defined(SQLITE_DEBUG) 000507 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){ 000508 (void)z1; 000509 (void)z2; 000510 } 000511 #endif 000512 000513 /* 000514 ** Add a new OP_Explain opcode. 000515 ** 000516 ** If the bPush flag is true, then make this opcode the parent for 000517 ** subsequent Explains until sqlite3VdbeExplainPop() is called. 000518 */ 000519 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){ 000520 int addr = 0; 000521 #if !defined(SQLITE_DEBUG) 000522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined. 000523 ** But omit them (for performance) during production builds */ 000524 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) ) 000525 #endif 000526 { 000527 char *zMsg; 000528 Vdbe *v; 000529 va_list ap; 000530 int iThis; 000531 va_start(ap, zFmt); 000532 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap); 000533 va_end(ap); 000534 v = pParse->pVdbe; 000535 iThis = v->nOp; 000536 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0, 000537 zMsg, P4_DYNAMIC); 000538 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z); 000539 if( bPush){ 000540 pParse->addrExplain = iThis; 000541 } 000542 sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0); 000543 } 000544 return addr; 000545 } 000546 000547 /* 000548 ** Pop the EXPLAIN QUERY PLAN stack one level. 000549 */ 000550 void sqlite3VdbeExplainPop(Parse *pParse){ 000551 sqlite3ExplainBreakpoint("POP", 0); 000552 pParse->addrExplain = sqlite3VdbeExplainParent(pParse); 000553 } 000554 #endif /* SQLITE_OMIT_EXPLAIN */ 000555 000556 /* 000557 ** Add an OP_ParseSchema opcode. This routine is broken out from 000558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees 000559 ** as having been used. 000560 ** 000561 ** The zWhere string must have been obtained from sqlite3_malloc(). 000562 ** This routine will take ownership of the allocated memory. 000563 */ 000564 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){ 000565 int j; 000566 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC); 000567 sqlite3VdbeChangeP5(p, p5); 000568 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); 000569 sqlite3MayAbort(p->pParse); 000570 } 000571 000572 /* Insert the end of a co-routine 000573 */ 000574 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){ 000575 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); 000576 000577 /* Clear the temporary register cache, thereby ensuring that each 000578 ** co-routine has its own independent set of registers, because co-routines 000579 ** might expect their registers to be preserved across an OP_Yield, and 000580 ** that could cause problems if two or more co-routines are using the same 000581 ** temporary register. 000582 */ 000583 v->pParse->nTempReg = 0; 000584 v->pParse->nRangeReg = 0; 000585 } 000586 000587 /* 000588 ** Create a new symbolic label for an instruction that has yet to be 000589 ** coded. The symbolic label is really just a negative number. The 000590 ** label can be used as the P2 value of an operation. Later, when 000591 ** the label is resolved to a specific address, the VDBE will scan 000592 ** through its operation list and change all values of P2 which match 000593 ** the label into the resolved address. 000594 ** 000595 ** The VDBE knows that a P2 value is a label because labels are 000596 ** always negative and P2 values are suppose to be non-negative. 000597 ** Hence, a negative P2 value is a label that has yet to be resolved. 000598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP 000599 ** property. 000600 ** 000601 ** Variable usage notes: 000602 ** 000603 ** Parse.aLabel[x] Stores the address that the x-th label resolves 000604 ** into. For testing (SQLITE_DEBUG), unresolved 000605 ** labels stores -1, but that is not required. 000606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[] 000607 ** Parse.nLabel The *negative* of the number of labels that have 000608 ** been issued. The negative is stored because 000609 ** that gives a performance improvement over storing 000610 ** the equivalent positive value. 000611 */ 000612 int sqlite3VdbeMakeLabel(Parse *pParse){ 000613 return --pParse->nLabel; 000614 } 000615 000616 /* 000617 ** Resolve label "x" to be the address of the next instruction to 000618 ** be inserted. The parameter "x" must have been obtained from 000619 ** a prior call to sqlite3VdbeMakeLabel(). 000620 */ 000621 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){ 000622 int nNewSize = 10 - p->nLabel; 000623 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 000624 nNewSize*sizeof(p->aLabel[0])); 000625 if( p->aLabel==0 ){ 000626 p->nLabelAlloc = 0; 000627 }else{ 000628 #ifdef SQLITE_DEBUG 000629 int i; 000630 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1; 000631 #endif 000632 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){ 000633 sqlite3ProgressCheck(p); 000634 } 000635 p->nLabelAlloc = nNewSize; 000636 p->aLabel[j] = v->nOp; 000637 } 000638 } 000639 void sqlite3VdbeResolveLabel(Vdbe *v, int x){ 000640 Parse *p = v->pParse; 000641 int j = ADDR(x); 000642 assert( v->eVdbeState==VDBE_INIT_STATE ); 000643 assert( j<-p->nLabel ); 000644 assert( j>=0 ); 000645 #ifdef SQLITE_DEBUG 000646 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 000647 printf("RESOLVE LABEL %d to %d\n", x, v->nOp); 000648 } 000649 #endif 000650 if( p->nLabelAlloc + p->nLabel < 0 ){ 000651 resizeResolveLabel(p,v,j); 000652 }else{ 000653 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */ 000654 p->aLabel[j] = v->nOp; 000655 } 000656 } 000657 000658 /* 000659 ** Mark the VDBE as one that can only be run one time. 000660 */ 000661 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ 000662 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1); 000663 } 000664 000665 /* 000666 ** Mark the VDBE as one that can be run multiple times. 000667 */ 000668 void sqlite3VdbeReusable(Vdbe *p){ 000669 int i; 000670 for(i=1; ALWAYS(i<p->nOp); i++){ 000671 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){ 000672 p->aOp[1].opcode = OP_Noop; 000673 break; 000674 } 000675 } 000676 } 000677 000678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ 000679 000680 /* 000681 ** The following type and function are used to iterate through all opcodes 000682 ** in a Vdbe main program and each of the sub-programs (triggers) it may 000683 ** invoke directly or indirectly. It should be used as follows: 000684 ** 000685 ** Op *pOp; 000686 ** VdbeOpIter sIter; 000687 ** 000688 ** memset(&sIter, 0, sizeof(sIter)); 000689 ** sIter.v = v; // v is of type Vdbe* 000690 ** while( (pOp = opIterNext(&sIter)) ){ 000691 ** // Do something with pOp 000692 ** } 000693 ** sqlite3DbFree(v->db, sIter.apSub); 000694 ** 000695 */ 000696 typedef struct VdbeOpIter VdbeOpIter; 000697 struct VdbeOpIter { 000698 Vdbe *v; /* Vdbe to iterate through the opcodes of */ 000699 SubProgram **apSub; /* Array of subprograms */ 000700 int nSub; /* Number of entries in apSub */ 000701 int iAddr; /* Address of next instruction to return */ 000702 int iSub; /* 0 = main program, 1 = first sub-program etc. */ 000703 }; 000704 static Op *opIterNext(VdbeOpIter *p){ 000705 Vdbe *v = p->v; 000706 Op *pRet = 0; 000707 Op *aOp; 000708 int nOp; 000709 000710 if( p->iSub<=p->nSub ){ 000711 000712 if( p->iSub==0 ){ 000713 aOp = v->aOp; 000714 nOp = v->nOp; 000715 }else{ 000716 aOp = p->apSub[p->iSub-1]->aOp; 000717 nOp = p->apSub[p->iSub-1]->nOp; 000718 } 000719 assert( p->iAddr<nOp ); 000720 000721 pRet = &aOp[p->iAddr]; 000722 p->iAddr++; 000723 if( p->iAddr==nOp ){ 000724 p->iSub++; 000725 p->iAddr = 0; 000726 } 000727 000728 if( pRet->p4type==P4_SUBPROGRAM ){ 000729 int nByte = (p->nSub+1)*sizeof(SubProgram*); 000730 int j; 000731 for(j=0; j<p->nSub; j++){ 000732 if( p->apSub[j]==pRet->p4.pProgram ) break; 000733 } 000734 if( j==p->nSub ){ 000735 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); 000736 if( !p->apSub ){ 000737 pRet = 0; 000738 }else{ 000739 p->apSub[p->nSub++] = pRet->p4.pProgram; 000740 } 000741 } 000742 } 000743 } 000744 000745 return pRet; 000746 } 000747 000748 /* 000749 ** Check if the program stored in the VM associated with pParse may 000750 ** throw an ABORT exception (causing the statement, but not entire transaction 000751 ** to be rolled back). This condition is true if the main program or any 000752 ** sub-programs contains any of the following: 000753 ** 000754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. 000756 ** * OP_Destroy 000757 ** * OP_VUpdate 000758 ** * OP_VCreate 000759 ** * OP_VRename 000760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) 000761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine 000762 ** (for CREATE TABLE AS SELECT ...) 000763 ** 000764 ** Then check that the value of Parse.mayAbort is true if an 000765 ** ABORT may be thrown, or false otherwise. Return true if it does 000766 ** match, or false otherwise. This function is intended to be used as 000767 ** part of an assert statement in the compiler. Similar to: 000768 ** 000769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); 000770 */ 000771 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ 000772 int hasAbort = 0; 000773 int hasFkCounter = 0; 000774 int hasCreateTable = 0; 000775 int hasCreateIndex = 0; 000776 int hasInitCoroutine = 0; 000777 Op *pOp; 000778 VdbeOpIter sIter; 000779 000780 if( v==0 ) return 0; 000781 memset(&sIter, 0, sizeof(sIter)); 000782 sIter.v = v; 000783 000784 while( (pOp = opIterNext(&sIter))!=0 ){ 000785 int opcode = pOp->opcode; 000786 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 000787 || opcode==OP_VDestroy 000788 || opcode==OP_VCreate 000789 || opcode==OP_ParseSchema 000790 || opcode==OP_Function || opcode==OP_PureFunc 000791 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 000792 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort)) 000793 ){ 000794 hasAbort = 1; 000795 break; 000796 } 000797 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1; 000798 if( mayAbort ){ 000799 /* hasCreateIndex may also be set for some DELETE statements that use 000800 ** OP_Clear. So this routine may end up returning true in the case 000801 ** where a "DELETE FROM tbl" has a statement-journal but does not 000802 ** require one. This is not so bad - it is an inefficiency, not a bug. */ 000803 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1; 000804 if( opcode==OP_Clear ) hasCreateIndex = 1; 000805 } 000806 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1; 000807 #ifndef SQLITE_OMIT_FOREIGN_KEY 000808 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){ 000809 hasFkCounter = 1; 000810 } 000811 #endif 000812 } 000813 sqlite3DbFree(v->db, sIter.apSub); 000814 000815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred. 000816 ** If malloc failed, then the while() loop above may not have iterated 000817 ** through all opcodes and hasAbort may be set incorrectly. Return 000818 ** true for this case to prevent the assert() in the callers frame 000819 ** from failing. */ 000820 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter 000821 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex 000822 ); 000823 } 000824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ 000825 000826 #ifdef SQLITE_DEBUG 000827 /* 000828 ** Increment the nWrite counter in the VDBE if the cursor is not an 000829 ** ephemeral cursor, or if the cursor argument is NULL. 000830 */ 000831 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){ 000832 if( pC==0 000833 || (pC->eCurType!=CURTYPE_SORTER 000834 && pC->eCurType!=CURTYPE_PSEUDO 000835 && !pC->isEphemeral) 000836 ){ 000837 p->nWrite++; 000838 } 000839 } 000840 #endif 000841 000842 #ifdef SQLITE_DEBUG 000843 /* 000844 ** Assert if an Abort at this point in time might result in a corrupt 000845 ** database. 000846 */ 000847 void sqlite3VdbeAssertAbortable(Vdbe *p){ 000848 assert( p->nWrite==0 || p->usesStmtJournal ); 000849 } 000850 #endif 000851 000852 /* 000853 ** This routine is called after all opcodes have been inserted. It loops 000854 ** through all the opcodes and fixes up some details. 000855 ** 000856 ** (1) For each jump instruction with a negative P2 value (a label) 000857 ** resolve the P2 value to an actual address. 000858 ** 000859 ** (2) Compute the maximum number of arguments used by any SQL function 000860 ** and store that value in *pMaxFuncArgs. 000861 ** 000862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately 000863 ** indicate what the prepared statement actually does. 000864 ** 000865 ** (4) (discontinued) 000866 ** 000867 ** (5) Reclaim the memory allocated for storing labels. 000868 ** 000869 ** This routine will only function correctly if the mkopcodeh.tcl generator 000870 ** script numbers the opcodes correctly. Changes to this routine must be 000871 ** coordinated with changes to mkopcodeh.tcl. 000872 */ 000873 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ 000874 int nMaxArgs = *pMaxFuncArgs; 000875 Op *pOp; 000876 Parse *pParse = p->pParse; 000877 int *aLabel = pParse->aLabel; 000878 000879 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */ 000880 p->readOnly = 1; 000881 p->bIsReader = 0; 000882 pOp = &p->aOp[p->nOp-1]; 000883 assert( p->aOp[0].opcode==OP_Init ); 000884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){ 000885 /* Only JUMP opcodes and the short list of special opcodes in the switch 000886 ** below need to be considered. The mkopcodeh.tcl generator script groups 000887 ** all these opcodes together near the front of the opcode list. Skip 000888 ** any opcode that does not need processing by virtual of the fact that 000889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization. 000890 */ 000891 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){ 000892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing 000893 ** cases from this switch! */ 000894 switch( pOp->opcode ){ 000895 case OP_Transaction: { 000896 if( pOp->p2!=0 ) p->readOnly = 0; 000897 /* no break */ deliberate_fall_through 000898 } 000899 case OP_AutoCommit: 000900 case OP_Savepoint: { 000901 p->bIsReader = 1; 000902 break; 000903 } 000904 #ifndef SQLITE_OMIT_WAL 000905 case OP_Checkpoint: 000906 #endif 000907 case OP_Vacuum: 000908 case OP_JournalMode: { 000909 p->readOnly = 0; 000910 p->bIsReader = 1; 000911 break; 000912 } 000913 case OP_Init: { 000914 assert( pOp->p2>=0 ); 000915 goto resolve_p2_values_loop_exit; 000916 } 000917 #ifndef SQLITE_OMIT_VIRTUALTABLE 000918 case OP_VUpdate: { 000919 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; 000920 break; 000921 } 000922 case OP_VFilter: { 000923 int n; 000924 assert( (pOp - p->aOp) >= 3 ); 000925 assert( pOp[-1].opcode==OP_Integer ); 000926 n = pOp[-1].p1; 000927 if( n>nMaxArgs ) nMaxArgs = n; 000928 /* Fall through into the default case */ 000929 /* no break */ deliberate_fall_through 000930 } 000931 #endif 000932 default: { 000933 if( pOp->p2<0 ){ 000934 /* The mkopcodeh.tcl script has so arranged things that the only 000935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 000936 ** have non-negative values for P2. */ 000937 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ); 000938 assert( ADDR(pOp->p2)<-pParse->nLabel ); 000939 assert( aLabel!=0 ); /* True because of tag-20230419-1 */ 000940 pOp->p2 = aLabel[ADDR(pOp->p2)]; 000941 } 000942 000943 /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes 000944 ** might */ 000945 assert( pOp->p2>0 000946 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP0)!=0 ); 000947 000948 /* Jumps never go off the end of the bytecode array */ 000949 assert( pOp->p2<p->nOp 000950 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)==0 ); 000951 break; 000952 } 000953 } 000954 /* The mkopcodeh.tcl script has so arranged things that the only 000955 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to 000956 ** have non-negative values for P2. */ 000957 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0); 000958 } 000959 assert( pOp>p->aOp ); 000960 pOp--; 000961 } 000962 resolve_p2_values_loop_exit: 000963 if( aLabel ){ 000964 sqlite3DbNNFreeNN(p->db, pParse->aLabel); 000965 pParse->aLabel = 0; 000966 } 000967 pParse->nLabel = 0; 000968 *pMaxFuncArgs = nMaxArgs; 000969 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) ); 000970 } 000971 000972 #ifdef SQLITE_DEBUG 000973 /* 000974 ** Check to see if a subroutine contains a jump to a location outside of 000975 ** the subroutine. If a jump outside the subroutine is detected, add code 000976 ** that will cause the program to halt with an error message. 000977 ** 000978 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to 000979 ** locations within the subroutine are acceptable. iRetReg is a register 000980 ** that contains the return address. Jumps to outside the range of iFirst 000981 ** through iLast are also acceptable as long as the jump destination is 000982 ** an OP_Return to iReturnAddr. 000983 ** 000984 ** A jump to an unresolved label means that the jump destination will be 000985 ** beyond the current address. That is normally a jump to an early 000986 ** termination and is consider acceptable. 000987 ** 000988 ** This routine only runs during debug builds. The purpose is (of course) 000989 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode 000990 ** is generated rather than an assert() or other error, so that ".eqp full" 000991 ** will still work to show the original bytecode, to aid in debugging. 000992 */ 000993 void sqlite3VdbeNoJumpsOutsideSubrtn( 000994 Vdbe *v, /* The byte-code program under construction */ 000995 int iFirst, /* First opcode of the subroutine */ 000996 int iLast, /* Last opcode of the subroutine */ 000997 int iRetReg /* Subroutine return address register */ 000998 ){ 000999 VdbeOp *pOp; 001000 Parse *pParse; 001001 int i; 001002 sqlite3_str *pErr = 0; 001003 assert( v!=0 ); 001004 pParse = v->pParse; 001005 assert( pParse!=0 ); 001006 if( pParse->nErr ) return; 001007 assert( iLast>=iFirst ); 001008 assert( iLast<v->nOp ); 001009 pOp = &v->aOp[iFirst]; 001010 for(i=iFirst; i<=iLast; i++, pOp++){ 001011 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){ 001012 int iDest = pOp->p2; /* Jump destination */ 001013 if( iDest==0 ) continue; 001014 if( pOp->opcode==OP_Gosub ) continue; 001015 if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){ 001016 /* This is a deliberately taken illegal branch. tag-20230325-2 */ 001017 continue; 001018 } 001019 if( iDest<0 ){ 001020 int j = ADDR(iDest); 001021 assert( j>=0 ); 001022 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){ 001023 continue; 001024 } 001025 iDest = pParse->aLabel[j]; 001026 } 001027 if( iDest<iFirst || iDest>iLast ){ 001028 int j = iDest; 001029 for(; j<v->nOp; j++){ 001030 VdbeOp *pX = &v->aOp[j]; 001031 if( pX->opcode==OP_Return ){ 001032 if( pX->p1==iRetReg ) break; 001033 continue; 001034 } 001035 if( pX->opcode==OP_Noop ) continue; 001036 if( pX->opcode==OP_Explain ) continue; 001037 if( pErr==0 ){ 001038 pErr = sqlite3_str_new(0); 001039 }else{ 001040 sqlite3_str_appendchar(pErr, 1, '\n'); 001041 } 001042 sqlite3_str_appendf(pErr, 001043 "Opcode at %d jumps to %d which is outside the " 001044 "subroutine at %d..%d", 001045 i, iDest, iFirst, iLast); 001046 break; 001047 } 001048 } 001049 } 001050 } 001051 if( pErr ){ 001052 char *zErr = sqlite3_str_finish(pErr); 001053 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0); 001054 sqlite3_free(zErr); 001055 sqlite3MayAbort(pParse); 001056 } 001057 } 001058 #endif /* SQLITE_DEBUG */ 001059 001060 /* 001061 ** Return the address of the next instruction to be inserted. 001062 */ 001063 int sqlite3VdbeCurrentAddr(Vdbe *p){ 001064 assert( p->eVdbeState==VDBE_INIT_STATE ); 001065 return p->nOp; 001066 } 001067 001068 /* 001069 ** Verify that at least N opcode slots are available in p without 001070 ** having to malloc for more space (except when compiled using 001071 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing 001072 ** to verify that certain calls to sqlite3VdbeAddOpList() can never 001073 ** fail due to a OOM fault and hence that the return value from 001074 ** sqlite3VdbeAddOpList() will always be non-NULL. 001075 */ 001076 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 001077 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){ 001078 assert( p->nOp + N <= p->nOpAlloc ); 001079 } 001080 #endif 001081 001082 /* 001083 ** Verify that the VM passed as the only argument does not contain 001084 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used 001085 ** by code in pragma.c to ensure that the implementation of certain 001086 ** pragmas comports with the flags specified in the mkpragmatab.tcl 001087 ** script. 001088 */ 001089 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS) 001090 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){ 001091 int i; 001092 for(i=0; i<p->nOp; i++){ 001093 assert( p->aOp[i].opcode!=OP_ResultRow ); 001094 } 001095 } 001096 #endif 001097 001098 /* 001099 ** Generate code (a single OP_Abortable opcode) that will 001100 ** verify that the VDBE program can safely call Abort in the current 001101 ** context. 001102 */ 001103 #if defined(SQLITE_DEBUG) 001104 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){ 001105 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable); 001106 } 001107 #endif 001108 001109 /* 001110 ** This function returns a pointer to the array of opcodes associated with 001111 ** the Vdbe passed as the first argument. It is the callers responsibility 001112 ** to arrange for the returned array to be eventually freed using the 001113 ** vdbeFreeOpArray() function. 001114 ** 001115 ** Before returning, *pnOp is set to the number of entries in the returned 001116 ** array. Also, *pnMaxArg is set to the larger of its current value and 001117 ** the number of entries in the Vdbe.apArg[] array required to execute the 001118 ** returned program. 001119 */ 001120 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ 001121 VdbeOp *aOp = p->aOp; 001122 assert( aOp && !p->db->mallocFailed ); 001123 001124 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ 001125 assert( DbMaskAllZero(p->btreeMask) ); 001126 001127 resolveP2Values(p, pnMaxArg); 001128 *pnOp = p->nOp; 001129 p->aOp = 0; 001130 return aOp; 001131 } 001132 001133 /* 001134 ** Add a whole list of operations to the operation stack. Return a 001135 ** pointer to the first operation inserted. 001136 ** 001137 ** Non-zero P2 arguments to jump instructions are automatically adjusted 001138 ** so that the jump target is relative to the first operation inserted. 001139 */ 001140 VdbeOp *sqlite3VdbeAddOpList( 001141 Vdbe *p, /* Add opcodes to the prepared statement */ 001142 int nOp, /* Number of opcodes to add */ 001143 VdbeOpList const *aOp, /* The opcodes to be added */ 001144 int iLineno /* Source-file line number of first opcode */ 001145 ){ 001146 int i; 001147 VdbeOp *pOut, *pFirst; 001148 assert( nOp>0 ); 001149 assert( p->eVdbeState==VDBE_INIT_STATE ); 001150 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){ 001151 return 0; 001152 } 001153 pFirst = pOut = &p->aOp[p->nOp]; 001154 for(i=0; i<nOp; i++, aOp++, pOut++){ 001155 pOut->opcode = aOp->opcode; 001156 pOut->p1 = aOp->p1; 001157 pOut->p2 = aOp->p2; 001158 assert( aOp->p2>=0 ); 001159 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){ 001160 pOut->p2 += p->nOp; 001161 } 001162 pOut->p3 = aOp->p3; 001163 pOut->p4type = P4_NOTUSED; 001164 pOut->p4.p = 0; 001165 pOut->p5 = 0; 001166 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001167 pOut->zComment = 0; 001168 #endif 001169 #ifdef SQLITE_VDBE_COVERAGE 001170 pOut->iSrcLine = iLineno+i; 001171 #else 001172 (void)iLineno; 001173 #endif 001174 #ifdef SQLITE_DEBUG 001175 if( p->db->flags & SQLITE_VdbeAddopTrace ){ 001176 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]); 001177 } 001178 #endif 001179 } 001180 p->nOp += nOp; 001181 return pFirst; 001182 } 001183 001184 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 001185 /* 001186 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus(). 001187 */ 001188 void sqlite3VdbeScanStatus( 001189 Vdbe *p, /* VM to add scanstatus() to */ 001190 int addrExplain, /* Address of OP_Explain (or 0) */ 001191 int addrLoop, /* Address of loop counter */ 001192 int addrVisit, /* Address of rows visited counter */ 001193 LogEst nEst, /* Estimated number of output rows */ 001194 const char *zName /* Name of table or index being scanned */ 001195 ){ 001196 if( IS_STMT_SCANSTATUS(p->db) ){ 001197 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus); 001198 ScanStatus *aNew; 001199 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte); 001200 if( aNew ){ 001201 ScanStatus *pNew = &aNew[p->nScan++]; 001202 memset(pNew, 0, sizeof(ScanStatus)); 001203 pNew->addrExplain = addrExplain; 001204 pNew->addrLoop = addrLoop; 001205 pNew->addrVisit = addrVisit; 001206 pNew->nEst = nEst; 001207 pNew->zName = sqlite3DbStrDup(p->db, zName); 001208 p->aScan = aNew; 001209 } 001210 } 001211 } 001212 001213 /* 001214 ** Add the range of instructions from addrStart to addrEnd (inclusive) to 001215 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters 001216 ** associated with the OP_Explain instruction at addrExplain. The 001217 ** sum of the sqlite3Hwtime() values for each of these instructions 001218 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests. 001219 */ 001220 void sqlite3VdbeScanStatusRange( 001221 Vdbe *p, 001222 int addrExplain, 001223 int addrStart, 001224 int addrEnd 001225 ){ 001226 if( IS_STMT_SCANSTATUS(p->db) ){ 001227 ScanStatus *pScan = 0; 001228 int ii; 001229 for(ii=p->nScan-1; ii>=0; ii--){ 001230 pScan = &p->aScan[ii]; 001231 if( pScan->addrExplain==addrExplain ) break; 001232 pScan = 0; 001233 } 001234 if( pScan ){ 001235 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1; 001236 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){ 001237 if( pScan->aAddrRange[ii]==0 ){ 001238 pScan->aAddrRange[ii] = addrStart; 001239 pScan->aAddrRange[ii+1] = addrEnd; 001240 break; 001241 } 001242 } 001243 } 001244 } 001245 } 001246 001247 /* 001248 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW 001249 ** counters for the query element associated with the OP_Explain at 001250 ** addrExplain. 001251 */ 001252 void sqlite3VdbeScanStatusCounters( 001253 Vdbe *p, 001254 int addrExplain, 001255 int addrLoop, 001256 int addrVisit 001257 ){ 001258 if( IS_STMT_SCANSTATUS(p->db) ){ 001259 ScanStatus *pScan = 0; 001260 int ii; 001261 for(ii=p->nScan-1; ii>=0; ii--){ 001262 pScan = &p->aScan[ii]; 001263 if( pScan->addrExplain==addrExplain ) break; 001264 pScan = 0; 001265 } 001266 if( pScan ){ 001267 if( addrLoop>0 ) pScan->addrLoop = addrLoop; 001268 if( addrVisit>0 ) pScan->addrVisit = addrVisit; 001269 } 001270 } 001271 } 001272 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */ 001273 001274 001275 /* 001276 ** Change the value of the opcode, or P1, P2, P3, or P5 operands 001277 ** for a specific instruction. 001278 */ 001279 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){ 001280 assert( addr>=0 ); 001281 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode; 001282 } 001283 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ 001284 assert( addr>=0 ); 001285 sqlite3VdbeGetOp(p,addr)->p1 = val; 001286 } 001287 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ 001288 assert( addr>=0 || p->db->mallocFailed ); 001289 sqlite3VdbeGetOp(p,addr)->p2 = val; 001290 } 001291 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ 001292 assert( addr>=0 ); 001293 sqlite3VdbeGetOp(p,addr)->p3 = val; 001294 } 001295 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){ 001296 assert( p->nOp>0 || p->db->mallocFailed ); 001297 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5; 001298 } 001299 001300 /* 001301 ** If the previous opcode is an OP_Column that delivers results 001302 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that 001303 ** opcode. 001304 */ 001305 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){ 001306 VdbeOp *pOp = sqlite3VdbeGetLastOp(p); 001307 if( pOp->p3==iDest && pOp->opcode==OP_Column ){ 001308 pOp->p5 |= OPFLAG_TYPEOFARG; 001309 } 001310 } 001311 001312 /* 001313 ** Change the P2 operand of instruction addr so that it points to 001314 ** the address of the next instruction to be coded. 001315 */ 001316 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ 001317 sqlite3VdbeChangeP2(p, addr, p->nOp); 001318 } 001319 001320 /* 001321 ** Change the P2 operand of the jump instruction at addr so that 001322 ** the jump lands on the next opcode. Or if the jump instruction was 001323 ** the previous opcode (and is thus a no-op) then simply back up 001324 ** the next instruction counter by one slot so that the jump is 001325 ** overwritten by the next inserted opcode. 001326 ** 001327 ** This routine is an optimization of sqlite3VdbeJumpHere() that 001328 ** strives to omit useless byte-code like this: 001329 ** 001330 ** 7 Once 0 8 0 001331 ** 8 ... 001332 */ 001333 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){ 001334 if( addr==p->nOp-1 ){ 001335 assert( p->aOp[addr].opcode==OP_Once 001336 || p->aOp[addr].opcode==OP_If 001337 || p->aOp[addr].opcode==OP_FkIfZero ); 001338 assert( p->aOp[addr].p4type==0 ); 001339 #ifdef SQLITE_VDBE_COVERAGE 001340 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */ 001341 #endif 001342 p->nOp--; 001343 }else{ 001344 sqlite3VdbeChangeP2(p, addr, p->nOp); 001345 } 001346 } 001347 001348 001349 /* 001350 ** If the input FuncDef structure is ephemeral, then free it. If 001351 ** the FuncDef is not ephemeral, then do nothing. 001352 */ 001353 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ 001354 assert( db!=0 ); 001355 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){ 001356 sqlite3DbNNFreeNN(db, pDef); 001357 } 001358 } 001359 001360 /* 001361 ** Delete a P4 value if necessary. 001362 */ 001363 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){ 001364 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 001365 sqlite3DbNNFreeNN(db, p); 001366 } 001367 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){ 001368 assert( db!=0 ); 001369 freeEphemeralFunction(db, p->pFunc); 001370 sqlite3DbNNFreeNN(db, p); 001371 } 001372 static void freeP4(sqlite3 *db, int p4type, void *p4){ 001373 assert( db ); 001374 switch( p4type ){ 001375 case P4_FUNCCTX: { 001376 freeP4FuncCtx(db, (sqlite3_context*)p4); 001377 break; 001378 } 001379 case P4_REAL: 001380 case P4_INT64: 001381 case P4_DYNAMIC: 001382 case P4_INTARRAY: { 001383 if( p4 ) sqlite3DbNNFreeNN(db, p4); 001384 break; 001385 } 001386 case P4_KEYINFO: { 001387 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4); 001388 break; 001389 } 001390 #ifdef SQLITE_ENABLE_CURSOR_HINTS 001391 case P4_EXPR: { 001392 sqlite3ExprDelete(db, (Expr*)p4); 001393 break; 001394 } 001395 #endif 001396 case P4_FUNCDEF: { 001397 freeEphemeralFunction(db, (FuncDef*)p4); 001398 break; 001399 } 001400 case P4_MEM: { 001401 if( db->pnBytesFreed==0 ){ 001402 sqlite3ValueFree((sqlite3_value*)p4); 001403 }else{ 001404 freeP4Mem(db, (Mem*)p4); 001405 } 001406 break; 001407 } 001408 case P4_VTAB : { 001409 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); 001410 break; 001411 } 001412 case P4_TABLEREF: { 001413 if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4); 001414 break; 001415 } 001416 } 001417 } 001418 001419 /* 001420 ** Free the space allocated for aOp and any p4 values allocated for the 001421 ** opcodes contained within. If aOp is not NULL it is assumed to contain 001422 ** nOp entries. 001423 */ 001424 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ 001425 assert( nOp>=0 ); 001426 assert( db!=0 ); 001427 if( aOp ){ 001428 Op *pOp = &aOp[nOp-1]; 001429 while(1){ /* Exit via break */ 001430 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p); 001431 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001432 sqlite3DbFree(db, pOp->zComment); 001433 #endif 001434 if( pOp==aOp ) break; 001435 pOp--; 001436 } 001437 sqlite3DbNNFreeNN(db, aOp); 001438 } 001439 } 001440 001441 /* 001442 ** Link the SubProgram object passed as the second argument into the linked 001443 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program 001444 ** objects when the VM is no longer required. 001445 */ 001446 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ 001447 p->pNext = pVdbe->pProgram; 001448 pVdbe->pProgram = p; 001449 } 001450 001451 /* 001452 ** Return true if the given Vdbe has any SubPrograms. 001453 */ 001454 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){ 001455 return pVdbe->pProgram!=0; 001456 } 001457 001458 /* 001459 ** Change the opcode at addr into OP_Noop 001460 */ 001461 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){ 001462 VdbeOp *pOp; 001463 if( p->db->mallocFailed ) return 0; 001464 assert( addr>=0 && addr<p->nOp ); 001465 pOp = &p->aOp[addr]; 001466 freeP4(p->db, pOp->p4type, pOp->p4.p); 001467 pOp->p4type = P4_NOTUSED; 001468 pOp->p4.z = 0; 001469 pOp->opcode = OP_Noop; 001470 return 1; 001471 } 001472 001473 /* 001474 ** If the last opcode is "op" and it is not a jump destination, 001475 ** then remove it. Return true if and only if an opcode was removed. 001476 */ 001477 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){ 001478 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){ 001479 return sqlite3VdbeChangeToNoop(p, p->nOp-1); 001480 }else{ 001481 return 0; 001482 } 001483 } 001484 001485 #ifdef SQLITE_DEBUG 001486 /* 001487 ** Generate an OP_ReleaseReg opcode to indicate that a range of 001488 ** registers, except any identified by mask, are no longer in use. 001489 */ 001490 void sqlite3VdbeReleaseRegisters( 001491 Parse *pParse, /* Parsing context */ 001492 int iFirst, /* Index of first register to be released */ 001493 int N, /* Number of registers to release */ 001494 u32 mask, /* Mask of registers to NOT release */ 001495 int bUndefine /* If true, mark registers as undefined */ 001496 ){ 001497 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return; 001498 assert( pParse->pVdbe ); 001499 assert( iFirst>=1 ); 001500 assert( iFirst+N-1<=pParse->nMem ); 001501 if( N<=31 && mask!=0 ){ 001502 while( N>0 && (mask&1)!=0 ){ 001503 mask >>= 1; 001504 iFirst++; 001505 N--; 001506 } 001507 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){ 001508 mask &= ~MASKBIT32(N-1); 001509 N--; 001510 } 001511 } 001512 if( N>0 ){ 001513 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask); 001514 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1); 001515 } 001516 } 001517 #endif /* SQLITE_DEBUG */ 001518 001519 /* 001520 ** Change the value of the P4 operand for a specific instruction. 001521 ** This routine is useful when a large program is loaded from a 001522 ** static array using sqlite3VdbeAddOpList but we want to make a 001523 ** few minor changes to the program. 001524 ** 001525 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of 001526 ** the string is made into memory obtained from sqlite3_malloc(). 001527 ** A value of n==0 means copy bytes of zP4 up to and including the 001528 ** first null byte. If n>0 then copy n+1 bytes of zP4. 001529 ** 001530 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points 001531 ** to a string or structure that is guaranteed to exist for the lifetime of 001532 ** the Vdbe. In these cases we can just copy the pointer. 001533 ** 001534 ** If addr<0 then change P4 on the most recently inserted instruction. 001535 */ 001536 static void SQLITE_NOINLINE vdbeChangeP4Full( 001537 Vdbe *p, 001538 Op *pOp, 001539 const char *zP4, 001540 int n 001541 ){ 001542 if( pOp->p4type ){ 001543 assert( pOp->p4type > P4_FREE_IF_LE ); 001544 pOp->p4type = 0; 001545 pOp->p4.p = 0; 001546 } 001547 if( n<0 ){ 001548 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n); 001549 }else{ 001550 if( n==0 ) n = sqlite3Strlen30(zP4); 001551 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); 001552 pOp->p4type = P4_DYNAMIC; 001553 } 001554 } 001555 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ 001556 Op *pOp; 001557 sqlite3 *db; 001558 assert( p!=0 ); 001559 db = p->db; 001560 assert( p->eVdbeState==VDBE_INIT_STATE ); 001561 assert( p->aOp!=0 || db->mallocFailed ); 001562 if( db->mallocFailed ){ 001563 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4); 001564 return; 001565 } 001566 assert( p->nOp>0 ); 001567 assert( addr<p->nOp ); 001568 if( addr<0 ){ 001569 addr = p->nOp - 1; 001570 } 001571 pOp = &p->aOp[addr]; 001572 if( n>=0 || pOp->p4type ){ 001573 vdbeChangeP4Full(p, pOp, zP4, n); 001574 return; 001575 } 001576 if( n==P4_INT32 ){ 001577 /* Note: this cast is safe, because the origin data point was an int 001578 ** that was cast to a (const char *). */ 001579 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); 001580 pOp->p4type = P4_INT32; 001581 }else if( zP4!=0 ){ 001582 assert( n<0 ); 001583 pOp->p4.p = (void*)zP4; 001584 pOp->p4type = (signed char)n; 001585 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4); 001586 } 001587 } 001588 001589 /* 001590 ** Change the P4 operand of the most recently coded instruction 001591 ** to the value defined by the arguments. This is a high-speed 001592 ** version of sqlite3VdbeChangeP4(). 001593 ** 001594 ** The P4 operand must not have been previously defined. And the new 001595 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of 001596 ** those cases. 001597 */ 001598 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){ 001599 VdbeOp *pOp; 001600 assert( n!=P4_INT32 && n!=P4_VTAB ); 001601 assert( n<=0 ); 001602 if( p->db->mallocFailed ){ 001603 freeP4(p->db, n, pP4); 001604 }else{ 001605 assert( pP4!=0 || n==P4_DYNAMIC ); 001606 assert( p->nOp>0 ); 001607 pOp = &p->aOp[p->nOp-1]; 001608 assert( pOp->p4type==P4_NOTUSED ); 001609 pOp->p4type = n; 001610 pOp->p4.p = pP4; 001611 } 001612 } 001613 001614 /* 001615 ** Set the P4 on the most recently added opcode to the KeyInfo for the 001616 ** index given. 001617 */ 001618 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){ 001619 Vdbe *v = pParse->pVdbe; 001620 KeyInfo *pKeyInfo; 001621 assert( v!=0 ); 001622 assert( pIdx!=0 ); 001623 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx); 001624 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO); 001625 } 001626 001627 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 001628 /* 001629 ** Change the comment on the most recently coded instruction. Or 001630 ** insert a No-op and add the comment to that new instruction. This 001631 ** makes the code easier to read during debugging. None of this happens 001632 ** in a production build. 001633 */ 001634 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){ 001635 assert( p->nOp>0 || p->aOp==0 ); 001636 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 ); 001637 if( p->nOp ){ 001638 assert( p->aOp ); 001639 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment); 001640 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap); 001641 } 001642 } 001643 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ 001644 va_list ap; 001645 if( p ){ 001646 va_start(ap, zFormat); 001647 vdbeVComment(p, zFormat, ap); 001648 va_end(ap); 001649 } 001650 } 001651 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ 001652 va_list ap; 001653 if( p ){ 001654 sqlite3VdbeAddOp0(p, OP_Noop); 001655 va_start(ap, zFormat); 001656 vdbeVComment(p, zFormat, ap); 001657 va_end(ap); 001658 } 001659 } 001660 #endif /* NDEBUG */ 001661 001662 #ifdef SQLITE_VDBE_COVERAGE 001663 /* 001664 ** Set the value if the iSrcLine field for the previously coded instruction. 001665 */ 001666 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){ 001667 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine; 001668 } 001669 #endif /* SQLITE_VDBE_COVERAGE */ 001670 001671 /* 001672 ** Return the opcode for a given address. The address must be non-negative. 001673 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode. 001674 ** 001675 ** If a memory allocation error has occurred prior to the calling of this 001676 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode 001677 ** is readable but not writable, though it is cast to a writable value. 001678 ** The return of a dummy opcode allows the call to continue functioning 001679 ** after an OOM fault without having to check to see if the return from 001680 ** this routine is a valid pointer. But because the dummy.opcode is 0, 001681 ** dummy will never be written to. This is verified by code inspection and 001682 ** by running with Valgrind. 001683 */ 001684 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ 001685 /* C89 specifies that the constant "dummy" will be initialized to all 001686 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ 001687 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ 001688 assert( p->eVdbeState==VDBE_INIT_STATE ); 001689 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); 001690 if( p->db->mallocFailed ){ 001691 return (VdbeOp*)&dummy; 001692 }else{ 001693 return &p->aOp[addr]; 001694 } 001695 } 001696 001697 /* Return the most recently added opcode 001698 */ 001699 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){ 001700 return sqlite3VdbeGetOp(p, p->nOp - 1); 001701 } 001702 001703 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) 001704 /* 001705 ** Return an integer value for one of the parameters to the opcode pOp 001706 ** determined by character c. 001707 */ 001708 static int translateP(char c, const Op *pOp){ 001709 if( c=='1' ) return pOp->p1; 001710 if( c=='2' ) return pOp->p2; 001711 if( c=='3' ) return pOp->p3; 001712 if( c=='4' ) return pOp->p4.i; 001713 return pOp->p5; 001714 } 001715 001716 /* 001717 ** Compute a string for the "comment" field of a VDBE opcode listing. 001718 ** 001719 ** The Synopsis: field in comments in the vdbe.c source file gets converted 001720 ** to an extra string that is appended to the sqlite3OpcodeName(). In the 001721 ** absence of other comments, this synopsis becomes the comment on the opcode. 001722 ** Some translation occurs: 001723 ** 001724 ** "PX" -> "r[X]" 001725 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1 001726 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0 001727 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x 001728 */ 001729 char *sqlite3VdbeDisplayComment( 001730 sqlite3 *db, /* Optional - Oom error reporting only */ 001731 const Op *pOp, /* The opcode to be commented */ 001732 const char *zP4 /* Previously obtained value for P4 */ 001733 ){ 001734 const char *zOpName; 001735 const char *zSynopsis; 001736 int nOpName; 001737 int ii; 001738 char zAlt[50]; 001739 StrAccum x; 001740 001741 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 001742 zOpName = sqlite3OpcodeName(pOp->opcode); 001743 nOpName = sqlite3Strlen30(zOpName); 001744 if( zOpName[nOpName+1] ){ 001745 int seenCom = 0; 001746 char c; 001747 zSynopsis = zOpName + nOpName + 1; 001748 if( strncmp(zSynopsis,"IF ",3)==0 ){ 001749 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3); 001750 zSynopsis = zAlt; 001751 } 001752 for(ii=0; (c = zSynopsis[ii])!=0; ii++){ 001753 if( c=='P' ){ 001754 c = zSynopsis[++ii]; 001755 if( c=='4' ){ 001756 sqlite3_str_appendall(&x, zP4); 001757 }else if( c=='X' ){ 001758 if( pOp->zComment && pOp->zComment[0] ){ 001759 sqlite3_str_appendall(&x, pOp->zComment); 001760 seenCom = 1; 001761 break; 001762 } 001763 }else{ 001764 int v1 = translateP(c, pOp); 001765 int v2; 001766 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){ 001767 ii += 3; 001768 v2 = translateP(zSynopsis[ii], pOp); 001769 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){ 001770 ii += 2; 001771 v2++; 001772 } 001773 if( v2<2 ){ 001774 sqlite3_str_appendf(&x, "%d", v1); 001775 }else{ 001776 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1); 001777 } 001778 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){ 001779 sqlite3_context *pCtx = pOp->p4.pCtx; 001780 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){ 001781 sqlite3_str_appendf(&x, "%d", v1); 001782 }else if( pCtx->argc>1 ){ 001783 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1); 001784 }else if( x.accError==0 ){ 001785 assert( x.nChar>2 ); 001786 x.nChar -= 2; 001787 ii++; 001788 } 001789 ii += 3; 001790 }else{ 001791 sqlite3_str_appendf(&x, "%d", v1); 001792 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){ 001793 ii += 4; 001794 } 001795 } 001796 } 001797 }else{ 001798 sqlite3_str_appendchar(&x, 1, c); 001799 } 001800 } 001801 if( !seenCom && pOp->zComment ){ 001802 sqlite3_str_appendf(&x, "; %s", pOp->zComment); 001803 } 001804 }else if( pOp->zComment ){ 001805 sqlite3_str_appendall(&x, pOp->zComment); 001806 } 001807 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){ 001808 sqlite3OomFault(db); 001809 } 001810 return sqlite3StrAccumFinish(&x); 001811 } 001812 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */ 001813 001814 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) 001815 /* 001816 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text 001817 ** that can be displayed in the P4 column of EXPLAIN output. 001818 */ 001819 static void displayP4Expr(StrAccum *p, Expr *pExpr){ 001820 const char *zOp = 0; 001821 switch( pExpr->op ){ 001822 case TK_STRING: 001823 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 001824 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken); 001825 break; 001826 case TK_INTEGER: 001827 sqlite3_str_appendf(p, "%d", pExpr->u.iValue); 001828 break; 001829 case TK_NULL: 001830 sqlite3_str_appendf(p, "NULL"); 001831 break; 001832 case TK_REGISTER: { 001833 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable); 001834 break; 001835 } 001836 case TK_COLUMN: { 001837 if( pExpr->iColumn<0 ){ 001838 sqlite3_str_appendf(p, "rowid"); 001839 }else{ 001840 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn); 001841 } 001842 break; 001843 } 001844 case TK_LT: zOp = "LT"; break; 001845 case TK_LE: zOp = "LE"; break; 001846 case TK_GT: zOp = "GT"; break; 001847 case TK_GE: zOp = "GE"; break; 001848 case TK_NE: zOp = "NE"; break; 001849 case TK_EQ: zOp = "EQ"; break; 001850 case TK_IS: zOp = "IS"; break; 001851 case TK_ISNOT: zOp = "ISNOT"; break; 001852 case TK_AND: zOp = "AND"; break; 001853 case TK_OR: zOp = "OR"; break; 001854 case TK_PLUS: zOp = "ADD"; break; 001855 case TK_STAR: zOp = "MUL"; break; 001856 case TK_MINUS: zOp = "SUB"; break; 001857 case TK_REM: zOp = "REM"; break; 001858 case TK_BITAND: zOp = "BITAND"; break; 001859 case TK_BITOR: zOp = "BITOR"; break; 001860 case TK_SLASH: zOp = "DIV"; break; 001861 case TK_LSHIFT: zOp = "LSHIFT"; break; 001862 case TK_RSHIFT: zOp = "RSHIFT"; break; 001863 case TK_CONCAT: zOp = "CONCAT"; break; 001864 case TK_UMINUS: zOp = "MINUS"; break; 001865 case TK_UPLUS: zOp = "PLUS"; break; 001866 case TK_BITNOT: zOp = "BITNOT"; break; 001867 case TK_NOT: zOp = "NOT"; break; 001868 case TK_ISNULL: zOp = "ISNULL"; break; 001869 case TK_NOTNULL: zOp = "NOTNULL"; break; 001870 001871 default: 001872 sqlite3_str_appendf(p, "%s", "expr"); 001873 break; 001874 } 001875 001876 if( zOp ){ 001877 sqlite3_str_appendf(p, "%s(", zOp); 001878 displayP4Expr(p, pExpr->pLeft); 001879 if( pExpr->pRight ){ 001880 sqlite3_str_append(p, ",", 1); 001881 displayP4Expr(p, pExpr->pRight); 001882 } 001883 sqlite3_str_append(p, ")", 1); 001884 } 001885 } 001886 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */ 001887 001888 001889 #if VDBE_DISPLAY_P4 001890 /* 001891 ** Compute a string that describes the P4 parameter for an opcode. 001892 ** Use zTemp for any required temporary buffer space. 001893 */ 001894 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){ 001895 char *zP4 = 0; 001896 StrAccum x; 001897 001898 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH); 001899 switch( pOp->p4type ){ 001900 case P4_KEYINFO: { 001901 int j; 001902 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; 001903 assert( pKeyInfo->aSortFlags!=0 ); 001904 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField); 001905 for(j=0; j<pKeyInfo->nKeyField; j++){ 001906 CollSeq *pColl = pKeyInfo->aColl[j]; 001907 const char *zColl = pColl ? pColl->zName : ""; 001908 if( strcmp(zColl, "BINARY")==0 ) zColl = "B"; 001909 sqlite3_str_appendf(&x, ",%s%s%s", 001910 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "", 001911 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "", 001912 zColl); 001913 } 001914 sqlite3_str_append(&x, ")", 1); 001915 break; 001916 } 001917 #ifdef SQLITE_ENABLE_CURSOR_HINTS 001918 case P4_EXPR: { 001919 displayP4Expr(&x, pOp->p4.pExpr); 001920 break; 001921 } 001922 #endif 001923 case P4_COLLSEQ: { 001924 static const char *const encnames[] = {"?", "8", "16LE", "16BE"}; 001925 CollSeq *pColl = pOp->p4.pColl; 001926 assert( pColl->enc<4 ); 001927 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName, 001928 encnames[pColl->enc]); 001929 break; 001930 } 001931 case P4_FUNCDEF: { 001932 FuncDef *pDef = pOp->p4.pFunc; 001933 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001934 break; 001935 } 001936 case P4_FUNCCTX: { 001937 FuncDef *pDef = pOp->p4.pCtx->pFunc; 001938 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg); 001939 break; 001940 } 001941 case P4_INT64: { 001942 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64); 001943 break; 001944 } 001945 case P4_INT32: { 001946 sqlite3_str_appendf(&x, "%d", pOp->p4.i); 001947 break; 001948 } 001949 case P4_REAL: { 001950 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal); 001951 break; 001952 } 001953 case P4_MEM: { 001954 Mem *pMem = pOp->p4.pMem; 001955 if( pMem->flags & MEM_Str ){ 001956 zP4 = pMem->z; 001957 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){ 001958 sqlite3_str_appendf(&x, "%lld", pMem->u.i); 001959 }else if( pMem->flags & MEM_Real ){ 001960 sqlite3_str_appendf(&x, "%.16g", pMem->u.r); 001961 }else if( pMem->flags & MEM_Null ){ 001962 zP4 = "NULL"; 001963 }else{ 001964 assert( pMem->flags & MEM_Blob ); 001965 zP4 = "(blob)"; 001966 } 001967 break; 001968 } 001969 #ifndef SQLITE_OMIT_VIRTUALTABLE 001970 case P4_VTAB: { 001971 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; 001972 sqlite3_str_appendf(&x, "vtab:%p", pVtab); 001973 break; 001974 } 001975 #endif 001976 case P4_INTARRAY: { 001977 u32 i; 001978 u32 *ai = pOp->p4.ai; 001979 u32 n = ai[0]; /* The first element of an INTARRAY is always the 001980 ** count of the number of elements to follow */ 001981 for(i=1; i<=n; i++){ 001982 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]); 001983 } 001984 sqlite3_str_append(&x, "]", 1); 001985 break; 001986 } 001987 case P4_SUBPROGRAM: { 001988 zP4 = "program"; 001989 break; 001990 } 001991 case P4_TABLE: { 001992 zP4 = pOp->p4.pTab->zName; 001993 break; 001994 } 001995 default: { 001996 zP4 = pOp->p4.z; 001997 } 001998 } 001999 if( zP4 ) sqlite3_str_appendall(&x, zP4); 002000 if( (x.accError & SQLITE_NOMEM)!=0 ){ 002001 sqlite3OomFault(db); 002002 } 002003 return sqlite3StrAccumFinish(&x); 002004 } 002005 #endif /* VDBE_DISPLAY_P4 */ 002006 002007 /* 002008 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. 002009 ** 002010 ** The prepared statements need to know in advance the complete set of 002011 ** attached databases that will be use. A mask of these databases 002012 ** is maintained in p->btreeMask. The p->lockMask value is the subset of 002013 ** p->btreeMask of databases that will require a lock. 002014 */ 002015 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ 002016 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); 002017 assert( i<(int)sizeof(p->btreeMask)*8 ); 002018 DbMaskSet(p->btreeMask, i); 002019 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ 002020 DbMaskSet(p->lockMask, i); 002021 } 002022 } 002023 002024 #if !defined(SQLITE_OMIT_SHARED_CACHE) 002025 /* 002026 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, 002027 ** this routine obtains the mutex associated with each BtShared structure 002028 ** that may be accessed by the VM passed as an argument. In doing so it also 002029 ** sets the BtShared.db member of each of the BtShared structures, ensuring 002030 ** that the correct busy-handler callback is invoked if required. 002031 ** 002032 ** If SQLite is not threadsafe but does support shared-cache mode, then 002033 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables 002034 ** of all of BtShared structures accessible via the database handle 002035 ** associated with the VM. 002036 ** 002037 ** If SQLite is not threadsafe and does not support shared-cache mode, this 002038 ** function is a no-op. 002039 ** 002040 ** The p->btreeMask field is a bitmask of all btrees that the prepared 002041 ** statement p will ever use. Let N be the number of bits in p->btreeMask 002042 ** corresponding to btrees that use shared cache. Then the runtime of 002043 ** this routine is N*N. But as N is rarely more than 1, this should not 002044 ** be a problem. 002045 */ 002046 void sqlite3VdbeEnter(Vdbe *p){ 002047 int i; 002048 sqlite3 *db; 002049 Db *aDb; 002050 int nDb; 002051 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 002052 db = p->db; 002053 aDb = db->aDb; 002054 nDb = db->nDb; 002055 for(i=0; i<nDb; i++){ 002056 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 002057 sqlite3BtreeEnter(aDb[i].pBt); 002058 } 002059 } 002060 } 002061 #endif 002062 002063 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 002064 /* 002065 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). 002066 */ 002067 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){ 002068 int i; 002069 sqlite3 *db; 002070 Db *aDb; 002071 int nDb; 002072 db = p->db; 002073 aDb = db->aDb; 002074 nDb = db->nDb; 002075 for(i=0; i<nDb; i++){ 002076 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){ 002077 sqlite3BtreeLeave(aDb[i].pBt); 002078 } 002079 } 002080 } 002081 void sqlite3VdbeLeave(Vdbe *p){ 002082 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */ 002083 vdbeLeave(p); 002084 } 002085 #endif 002086 002087 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) 002088 /* 002089 ** Print a single opcode. This routine is used for debugging only. 002090 */ 002091 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){ 002092 char *zP4; 002093 char *zCom; 002094 sqlite3 dummyDb; 002095 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n"; 002096 if( pOut==0 ) pOut = stdout; 002097 sqlite3BeginBenignMalloc(); 002098 dummyDb.mallocFailed = 1; 002099 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp); 002100 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 002101 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4); 002102 #else 002103 zCom = 0; 002104 #endif 002105 /* NB: The sqlite3OpcodeName() function is implemented by code created 002106 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the 002107 ** information from the vdbe.c source text */ 002108 fprintf(pOut, zFormat1, pc, 002109 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, 002110 zP4 ? zP4 : "", pOp->p5, 002111 zCom ? zCom : "" 002112 ); 002113 fflush(pOut); 002114 sqlite3_free(zP4); 002115 sqlite3_free(zCom); 002116 sqlite3EndBenignMalloc(); 002117 } 002118 #endif 002119 002120 /* 002121 ** Initialize an array of N Mem element. 002122 ** 002123 ** This is a high-runner, so only those fields that really do need to 002124 ** be initialized are set. The Mem structure is organized so that 002125 ** the fields that get initialized are nearby and hopefully on the same 002126 ** cache line. 002127 ** 002128 ** Mem.flags = flags 002129 ** Mem.db = db 002130 ** Mem.szMalloc = 0 002131 ** 002132 ** All other fields of Mem can safely remain uninitialized for now. They 002133 ** will be initialized before use. 002134 */ 002135 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){ 002136 if( N>0 ){ 002137 do{ 002138 p->flags = flags; 002139 p->db = db; 002140 p->szMalloc = 0; 002141 #ifdef SQLITE_DEBUG 002142 p->pScopyFrom = 0; 002143 #endif 002144 p++; 002145 }while( (--N)>0 ); 002146 } 002147 } 002148 002149 /* 002150 ** Release auxiliary memory held in an array of N Mem elements. 002151 ** 002152 ** After this routine returns, all Mem elements in the array will still 002153 ** be valid. Those Mem elements that were not holding auxiliary resources 002154 ** will be unchanged. Mem elements which had something freed will be 002155 ** set to MEM_Undefined. 002156 */ 002157 static void releaseMemArray(Mem *p, int N){ 002158 if( p && N ){ 002159 Mem *pEnd = &p[N]; 002160 sqlite3 *db = p->db; 002161 if( db->pnBytesFreed ){ 002162 do{ 002163 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc); 002164 }while( (++p)<pEnd ); 002165 return; 002166 } 002167 do{ 002168 assert( (&p[1])==pEnd || p[0].db==p[1].db ); 002169 assert( sqlite3VdbeCheckMemInvariants(p) ); 002170 002171 /* This block is really an inlined version of sqlite3VdbeMemRelease() 002172 ** that takes advantage of the fact that the memory cell value is 002173 ** being set to NULL after releasing any dynamic resources. 002174 ** 002175 ** The justification for duplicating code is that according to 002176 ** callgrind, this causes a certain test case to hit the CPU 4.7 002177 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if 002178 ** sqlite3MemRelease() were called from here. With -O2, this jumps 002179 ** to 6.6 percent. The test case is inserting 1000 rows into a table 002180 ** with no indexes using a single prepared INSERT statement, bind() 002181 ** and reset(). Inserts are grouped into a transaction. 002182 */ 002183 testcase( p->flags & MEM_Agg ); 002184 testcase( p->flags & MEM_Dyn ); 002185 if( p->flags&(MEM_Agg|MEM_Dyn) ){ 002186 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel ); 002187 sqlite3VdbeMemRelease(p); 002188 p->flags = MEM_Undefined; 002189 }else if( p->szMalloc ){ 002190 sqlite3DbNNFreeNN(db, p->zMalloc); 002191 p->szMalloc = 0; 002192 p->flags = MEM_Undefined; 002193 } 002194 #ifdef SQLITE_DEBUG 002195 else{ 002196 p->flags = MEM_Undefined; 002197 } 002198 #endif 002199 }while( (++p)<pEnd ); 002200 } 002201 } 002202 002203 #ifdef SQLITE_DEBUG 002204 /* 002205 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is 002206 ** and false if something is wrong. 002207 ** 002208 ** This routine is intended for use inside of assert() statements only. 002209 */ 002210 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){ 002211 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0; 002212 return 1; 002213 } 002214 #endif 002215 002216 002217 /* 002218 ** This is a destructor on a Mem object (which is really an sqlite3_value) 002219 ** that deletes the Frame object that is attached to it as a blob. 002220 ** 002221 ** This routine does not delete the Frame right away. It merely adds the 002222 ** frame to a list of frames to be deleted when the Vdbe halts. 002223 */ 002224 void sqlite3VdbeFrameMemDel(void *pArg){ 002225 VdbeFrame *pFrame = (VdbeFrame*)pArg; 002226 assert( sqlite3VdbeFrameIsValid(pFrame) ); 002227 pFrame->pParent = pFrame->v->pDelFrame; 002228 pFrame->v->pDelFrame = pFrame; 002229 } 002230 002231 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN) 002232 /* 002233 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN 002234 ** QUERY PLAN output. 002235 ** 002236 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no 002237 ** more opcodes to be displayed. 002238 */ 002239 int sqlite3VdbeNextOpcode( 002240 Vdbe *p, /* The statement being explained */ 002241 Mem *pSub, /* Storage for keeping track of subprogram nesting */ 002242 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */ 002243 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */ 002244 int *piAddr, /* OUT: Write index into (*paOp)[] here */ 002245 Op **paOp /* OUT: Write the opcode array here */ 002246 ){ 002247 int nRow; /* Stop when row count reaches this */ 002248 int nSub = 0; /* Number of sub-vdbes seen so far */ 002249 SubProgram **apSub = 0; /* Array of sub-vdbes */ 002250 int i; /* Next instruction address */ 002251 int rc = SQLITE_OK; /* Result code */ 002252 Op *aOp = 0; /* Opcode array */ 002253 int iPc; /* Rowid. Copy of value in *piPc */ 002254 002255 /* When the number of output rows reaches nRow, that means the 002256 ** listing has finished and sqlite3_step() should return SQLITE_DONE. 002257 ** nRow is the sum of the number of rows in the main program, plus 002258 ** the sum of the number of rows in all trigger subprograms encountered 002259 ** so far. The nRow value will increase as new trigger subprograms are 002260 ** encountered, but p->pc will eventually catch up to nRow. 002261 */ 002262 nRow = p->nOp; 002263 if( pSub!=0 ){ 002264 if( pSub->flags&MEM_Blob ){ 002265 /* pSub is initiallly NULL. It is initialized to a BLOB by 002266 ** the P4_SUBPROGRAM processing logic below */ 002267 nSub = pSub->n/sizeof(Vdbe*); 002268 apSub = (SubProgram **)pSub->z; 002269 } 002270 for(i=0; i<nSub; i++){ 002271 nRow += apSub[i]->nOp; 002272 } 002273 } 002274 iPc = *piPc; 002275 while(1){ /* Loop exits via break */ 002276 i = iPc++; 002277 if( i>=nRow ){ 002278 p->rc = SQLITE_OK; 002279 rc = SQLITE_DONE; 002280 break; 002281 } 002282 if( i<p->nOp ){ 002283 /* The rowid is small enough that we are still in the 002284 ** main program. */ 002285 aOp = p->aOp; 002286 }else{ 002287 /* We are currently listing subprograms. Figure out which one and 002288 ** pick up the appropriate opcode. */ 002289 int j; 002290 i -= p->nOp; 002291 assert( apSub!=0 ); 002292 assert( nSub>0 ); 002293 for(j=0; i>=apSub[j]->nOp; j++){ 002294 i -= apSub[j]->nOp; 002295 assert( i<apSub[j]->nOp || j+1<nSub ); 002296 } 002297 aOp = apSub[j]->aOp; 002298 } 002299 002300 /* When an OP_Program opcode is encounter (the only opcode that has 002301 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms 002302 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram 002303 ** has not already been seen. 002304 */ 002305 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){ 002306 int nByte = (nSub+1)*sizeof(SubProgram*); 002307 int j; 002308 for(j=0; j<nSub; j++){ 002309 if( apSub[j]==aOp[i].p4.pProgram ) break; 002310 } 002311 if( j==nSub ){ 002312 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0); 002313 if( p->rc!=SQLITE_OK ){ 002314 rc = SQLITE_ERROR; 002315 break; 002316 } 002317 apSub = (SubProgram **)pSub->z; 002318 apSub[nSub++] = aOp[i].p4.pProgram; 002319 MemSetTypeFlag(pSub, MEM_Blob); 002320 pSub->n = nSub*sizeof(SubProgram*); 002321 nRow += aOp[i].p4.pProgram->nOp; 002322 } 002323 } 002324 if( eMode==0 ) break; 002325 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 002326 if( eMode==2 ){ 002327 Op *pOp = aOp + i; 002328 if( pOp->opcode==OP_OpenRead ) break; 002329 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break; 002330 if( pOp->opcode==OP_ReopenIdx ) break; 002331 }else 002332 #endif 002333 { 002334 assert( eMode==1 ); 002335 if( aOp[i].opcode==OP_Explain ) break; 002336 if( aOp[i].opcode==OP_Init && iPc>1 ) break; 002337 } 002338 } 002339 *piPc = iPc; 002340 *piAddr = i; 002341 *paOp = aOp; 002342 return rc; 002343 } 002344 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */ 002345 002346 002347 /* 002348 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are 002349 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). 002350 */ 002351 void sqlite3VdbeFrameDelete(VdbeFrame *p){ 002352 int i; 002353 Mem *aMem = VdbeFrameMem(p); 002354 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; 002355 assert( sqlite3VdbeFrameIsValid(p) ); 002356 for(i=0; i<p->nChildCsr; i++){ 002357 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]); 002358 } 002359 releaseMemArray(aMem, p->nChildMem); 002360 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0); 002361 sqlite3DbFree(p->v->db, p); 002362 } 002363 002364 #ifndef SQLITE_OMIT_EXPLAIN 002365 /* 002366 ** Give a listing of the program in the virtual machine. 002367 ** 002368 ** The interface is the same as sqlite3VdbeExec(). But instead of 002369 ** running the code, it invokes the callback once for each instruction. 002370 ** This feature is used to implement "EXPLAIN". 002371 ** 002372 ** When p->explain==1, each instruction is listed. When 002373 ** p->explain==2, only OP_Explain instructions are listed and these 002374 ** are shown in a different format. p->explain==2 is used to implement 002375 ** EXPLAIN QUERY PLAN. 002376 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers 002377 ** are also shown, so that the boundaries between the main program and 002378 ** each trigger are clear. 002379 ** 002380 ** When p->explain==1, first the main program is listed, then each of 002381 ** the trigger subprograms are listed one by one. 002382 */ 002383 int sqlite3VdbeList( 002384 Vdbe *p /* The VDBE */ 002385 ){ 002386 Mem *pSub = 0; /* Memory cell hold array of subprogs */ 002387 sqlite3 *db = p->db; /* The database connection */ 002388 int i; /* Loop counter */ 002389 int rc = SQLITE_OK; /* Return code */ 002390 Mem *pMem = &p->aMem[1]; /* First Mem of result set */ 002391 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0); 002392 Op *aOp; /* Array of opcodes */ 002393 Op *pOp; /* Current opcode */ 002394 002395 assert( p->explain ); 002396 assert( p->eVdbeState==VDBE_RUN_STATE ); 002397 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); 002398 002399 /* Even though this opcode does not use dynamic strings for 002400 ** the result, result columns may become dynamic if the user calls 002401 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. 002402 */ 002403 releaseMemArray(pMem, 8); 002404 002405 if( p->rc==SQLITE_NOMEM ){ 002406 /* This happens if a malloc() inside a call to sqlite3_column_text() or 002407 ** sqlite3_column_text16() failed. */ 002408 sqlite3OomFault(db); 002409 return SQLITE_ERROR; 002410 } 002411 002412 if( bListSubprogs ){ 002413 /* The first 8 memory cells are used for the result set. So we will 002414 ** commandeer the 9th cell to use as storage for an array of pointers 002415 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 002416 ** cells. */ 002417 assert( p->nMem>9 ); 002418 pSub = &p->aMem[9]; 002419 }else{ 002420 pSub = 0; 002421 } 002422 002423 /* Figure out which opcode is next to display */ 002424 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp); 002425 002426 if( rc==SQLITE_OK ){ 002427 pOp = aOp + i; 002428 if( AtomicLoad(&db->u1.isInterrupted) ){ 002429 p->rc = SQLITE_INTERRUPT; 002430 rc = SQLITE_ERROR; 002431 sqlite3VdbeError(p, sqlite3ErrStr(p->rc)); 002432 }else{ 002433 char *zP4 = sqlite3VdbeDisplayP4(db, pOp); 002434 if( p->explain==2 ){ 002435 sqlite3VdbeMemSetInt64(pMem, pOp->p1); 002436 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2); 002437 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3); 002438 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free); 002439 assert( p->nResColumn==4 ); 002440 }else{ 002441 sqlite3VdbeMemSetInt64(pMem+0, i); 002442 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode), 002443 -1, SQLITE_UTF8, SQLITE_STATIC); 002444 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1); 002445 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2); 002446 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3); 002447 /* pMem+5 for p4 is done last */ 002448 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5); 002449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS 002450 { 002451 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4); 002452 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free); 002453 } 002454 #else 002455 sqlite3VdbeMemSetNull(pMem+7); 002456 #endif 002457 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free); 002458 assert( p->nResColumn==8 ); 002459 } 002460 p->pResultRow = pMem; 002461 if( db->mallocFailed ){ 002462 p->rc = SQLITE_NOMEM; 002463 rc = SQLITE_ERROR; 002464 }else{ 002465 p->rc = SQLITE_OK; 002466 rc = SQLITE_ROW; 002467 } 002468 } 002469 } 002470 return rc; 002471 } 002472 #endif /* SQLITE_OMIT_EXPLAIN */ 002473 002474 #ifdef SQLITE_DEBUG 002475 /* 002476 ** Print the SQL that was used to generate a VDBE program. 002477 */ 002478 void sqlite3VdbePrintSql(Vdbe *p){ 002479 const char *z = 0; 002480 if( p->zSql ){ 002481 z = p->zSql; 002482 }else if( p->nOp>=1 ){ 002483 const VdbeOp *pOp = &p->aOp[0]; 002484 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 002485 z = pOp->p4.z; 002486 while( sqlite3Isspace(*z) ) z++; 002487 } 002488 } 002489 if( z ) printf("SQL: [%s]\n", z); 002490 } 002491 #endif 002492 002493 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 002494 /* 002495 ** Print an IOTRACE message showing SQL content. 002496 */ 002497 void sqlite3VdbeIOTraceSql(Vdbe *p){ 002498 int nOp = p->nOp; 002499 VdbeOp *pOp; 002500 if( sqlite3IoTrace==0 ) return; 002501 if( nOp<1 ) return; 002502 pOp = &p->aOp[0]; 002503 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){ 002504 int i, j; 002505 char z[1000]; 002506 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); 002507 for(i=0; sqlite3Isspace(z[i]); i++){} 002508 for(j=0; z[i]; i++){ 002509 if( sqlite3Isspace(z[i]) ){ 002510 if( z[i-1]!=' ' ){ 002511 z[j++] = ' '; 002512 } 002513 }else{ 002514 z[j++] = z[i]; 002515 } 002516 } 002517 z[j] = 0; 002518 sqlite3IoTrace("SQL %s\n", z); 002519 } 002520 } 002521 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ 002522 002523 /* An instance of this object describes bulk memory available for use 002524 ** by subcomponents of a prepared statement. Space is allocated out 002525 ** of a ReusableSpace object by the allocSpace() routine below. 002526 */ 002527 struct ReusableSpace { 002528 u8 *pSpace; /* Available memory */ 002529 sqlite3_int64 nFree; /* Bytes of available memory */ 002530 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */ 002531 }; 002532 002533 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf 002534 ** from the ReusableSpace object. Return a pointer to the allocated 002535 ** memory on success. If insufficient memory is available in the 002536 ** ReusableSpace object, increase the ReusableSpace.nNeeded 002537 ** value by the amount needed and return NULL. 002538 ** 002539 ** If pBuf is not initially NULL, that means that the memory has already 002540 ** been allocated by a prior call to this routine, so just return a copy 002541 ** of pBuf and leave ReusableSpace unchanged. 002542 ** 002543 ** This allocator is employed to repurpose unused slots at the end of the 002544 ** opcode array of prepared state for other memory needs of the prepared 002545 ** statement. 002546 */ 002547 static void *allocSpace( 002548 struct ReusableSpace *p, /* Bulk memory available for allocation */ 002549 void *pBuf, /* Pointer to a prior allocation */ 002550 sqlite3_int64 nByte /* Bytes of memory needed. */ 002551 ){ 002552 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) ); 002553 if( pBuf==0 ){ 002554 nByte = ROUND8P(nByte); 002555 if( nByte <= p->nFree ){ 002556 p->nFree -= nByte; 002557 pBuf = &p->pSpace[p->nFree]; 002558 }else{ 002559 p->nNeeded += nByte; 002560 } 002561 } 002562 assert( EIGHT_BYTE_ALIGNMENT(pBuf) ); 002563 return pBuf; 002564 } 002565 002566 /* 002567 ** Rewind the VDBE back to the beginning in preparation for 002568 ** running it. 002569 */ 002570 void sqlite3VdbeRewind(Vdbe *p){ 002571 #if defined(SQLITE_DEBUG) 002572 int i; 002573 #endif 002574 assert( p!=0 ); 002575 assert( p->eVdbeState==VDBE_INIT_STATE 002576 || p->eVdbeState==VDBE_READY_STATE 002577 || p->eVdbeState==VDBE_HALT_STATE ); 002578 002579 /* There should be at least one opcode. 002580 */ 002581 assert( p->nOp>0 ); 002582 002583 p->eVdbeState = VDBE_READY_STATE; 002584 002585 #ifdef SQLITE_DEBUG 002586 for(i=0; i<p->nMem; i++){ 002587 assert( p->aMem[i].db==p->db ); 002588 } 002589 #endif 002590 p->pc = -1; 002591 p->rc = SQLITE_OK; 002592 p->errorAction = OE_Abort; 002593 p->nChange = 0; 002594 p->cacheCtr = 1; 002595 p->minWriteFileFormat = 255; 002596 p->iStatement = 0; 002597 p->nFkConstraint = 0; 002598 #ifdef VDBE_PROFILE 002599 for(i=0; i<p->nOp; i++){ 002600 p->aOp[i].nExec = 0; 002601 p->aOp[i].nCycle = 0; 002602 } 002603 #endif 002604 } 002605 002606 /* 002607 ** Prepare a virtual machine for execution for the first time after 002608 ** creating the virtual machine. This involves things such 002609 ** as allocating registers and initializing the program counter. 002610 ** After the VDBE has be prepped, it can be executed by one or more 002611 ** calls to sqlite3VdbeExec(). 002612 ** 002613 ** This function may be called exactly once on each virtual machine. 002614 ** After this routine is called the VM has been "packaged" and is ready 002615 ** to run. After this routine is called, further calls to 002616 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects 002617 ** the Vdbe from the Parse object that helped generate it so that the 002618 ** the Vdbe becomes an independent entity and the Parse object can be 002619 ** destroyed. 002620 ** 002621 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back 002622 ** to its initial state after it has been run. 002623 */ 002624 void sqlite3VdbeMakeReady( 002625 Vdbe *p, /* The VDBE */ 002626 Parse *pParse /* Parsing context */ 002627 ){ 002628 sqlite3 *db; /* The database connection */ 002629 int nVar; /* Number of parameters */ 002630 int nMem; /* Number of VM memory registers */ 002631 int nCursor; /* Number of cursors required */ 002632 int nArg; /* Number of arguments in subprograms */ 002633 int n; /* Loop counter */ 002634 struct ReusableSpace x; /* Reusable bulk memory */ 002635 002636 assert( p!=0 ); 002637 assert( p->nOp>0 ); 002638 assert( pParse!=0 ); 002639 assert( p->eVdbeState==VDBE_INIT_STATE ); 002640 assert( pParse==p->pParse ); 002641 p->pVList = pParse->pVList; 002642 pParse->pVList = 0; 002643 db = p->db; 002644 assert( db->mallocFailed==0 ); 002645 nVar = pParse->nVar; 002646 nMem = pParse->nMem; 002647 nCursor = pParse->nTab; 002648 nArg = pParse->nMaxArg; 002649 002650 /* Each cursor uses a memory cell. The first cursor (cursor 0) can 002651 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate 002652 ** space at the end of aMem[] for cursors 1 and greater. 002653 ** See also: allocateCursor(). 002654 */ 002655 nMem += nCursor; 002656 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */ 002657 002658 /* Figure out how much reusable memory is available at the end of the 002659 ** opcode array. This extra memory will be reallocated for other elements 002660 ** of the prepared statement. 002661 */ 002662 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */ 002663 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */ 002664 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) ); 002665 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */ 002666 assert( x.nFree>=0 ); 002667 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) ); 002668 002669 resolveP2Values(p, &nArg); 002670 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort); 002671 if( pParse->explain ){ 002672 if( nMem<10 ) nMem = 10; 002673 p->explain = pParse->explain; 002674 p->nResColumn = 12 - 4*p->explain; 002675 } 002676 p->expired = 0; 002677 002678 /* Memory for registers, parameters, cursor, etc, is allocated in one or two 002679 ** passes. On the first pass, we try to reuse unused memory at the 002680 ** end of the opcode array. If we are unable to satisfy all memory 002681 ** requirements by reusing the opcode array tail, then the second 002682 ** pass will fill in the remainder using a fresh memory allocation. 002683 ** 002684 ** This two-pass approach that reuses as much memory as possible from 002685 ** the leftover memory at the end of the opcode array. This can significantly 002686 ** reduce the amount of memory held by a prepared statement. 002687 */ 002688 x.nNeeded = 0; 002689 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem)); 002690 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem)); 002691 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*)); 002692 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*)); 002693 if( x.nNeeded ){ 002694 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded); 002695 x.nFree = x.nNeeded; 002696 if( !db->mallocFailed ){ 002697 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem)); 002698 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem)); 002699 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*)); 002700 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*)); 002701 } 002702 } 002703 002704 if( db->mallocFailed ){ 002705 p->nVar = 0; 002706 p->nCursor = 0; 002707 p->nMem = 0; 002708 }else{ 002709 p->nCursor = nCursor; 002710 p->nVar = (ynVar)nVar; 002711 initMemArray(p->aVar, nVar, db, MEM_Null); 002712 p->nMem = nMem; 002713 initMemArray(p->aMem, nMem, db, MEM_Undefined); 002714 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*)); 002715 } 002716 sqlite3VdbeRewind(p); 002717 } 002718 002719 /* 002720 ** Close a VDBE cursor and release all the resources that cursor 002721 ** happens to hold. 002722 */ 002723 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ 002724 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx); 002725 } 002726 static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){ 002727 VdbeTxtBlbCache *pCache = pCx->pCache; 002728 assert( pCx->colCache ); 002729 pCx->colCache = 0; 002730 pCx->pCache = 0; 002731 if( pCache->pCValue ){ 002732 sqlite3RCStrUnref(pCache->pCValue); 002733 pCache->pCValue = 0; 002734 } 002735 sqlite3DbFree(p->db, pCache); 002736 sqlite3VdbeFreeCursorNN(p, pCx); 002737 } 002738 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){ 002739 if( pCx->colCache ){ 002740 freeCursorWithCache(p, pCx); 002741 return; 002742 } 002743 switch( pCx->eCurType ){ 002744 case CURTYPE_SORTER: { 002745 sqlite3VdbeSorterClose(p->db, pCx); 002746 break; 002747 } 002748 case CURTYPE_BTREE: { 002749 assert( pCx->uc.pCursor!=0 ); 002750 sqlite3BtreeCloseCursor(pCx->uc.pCursor); 002751 break; 002752 } 002753 #ifndef SQLITE_OMIT_VIRTUALTABLE 002754 case CURTYPE_VTAB: { 002755 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur; 002756 const sqlite3_module *pModule = pVCur->pVtab->pModule; 002757 assert( pVCur->pVtab->nRef>0 ); 002758 pVCur->pVtab->nRef--; 002759 pModule->xClose(pVCur); 002760 break; 002761 } 002762 #endif 002763 } 002764 } 002765 002766 /* 002767 ** Close all cursors in the current frame. 002768 */ 002769 static void closeCursorsInFrame(Vdbe *p){ 002770 int i; 002771 for(i=0; i<p->nCursor; i++){ 002772 VdbeCursor *pC = p->apCsr[i]; 002773 if( pC ){ 002774 sqlite3VdbeFreeCursorNN(p, pC); 002775 p->apCsr[i] = 0; 002776 } 002777 } 002778 } 002779 002780 /* 002781 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This 002782 ** is used, for example, when a trigger sub-program is halted to restore 002783 ** control to the main program. 002784 */ 002785 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ 002786 Vdbe *v = pFrame->v; 002787 closeCursorsInFrame(v); 002788 v->aOp = pFrame->aOp; 002789 v->nOp = pFrame->nOp; 002790 v->aMem = pFrame->aMem; 002791 v->nMem = pFrame->nMem; 002792 v->apCsr = pFrame->apCsr; 002793 v->nCursor = pFrame->nCursor; 002794 v->db->lastRowid = pFrame->lastRowid; 002795 v->nChange = pFrame->nChange; 002796 v->db->nChange = pFrame->nDbChange; 002797 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0); 002798 v->pAuxData = pFrame->pAuxData; 002799 pFrame->pAuxData = 0; 002800 return pFrame->pc; 002801 } 002802 002803 /* 002804 ** Close all cursors. 002805 ** 002806 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 002807 ** cell array. This is necessary as the memory cell array may contain 002808 ** pointers to VdbeFrame objects, which may in turn contain pointers to 002809 ** open cursors. 002810 */ 002811 static void closeAllCursors(Vdbe *p){ 002812 if( p->pFrame ){ 002813 VdbeFrame *pFrame; 002814 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 002815 sqlite3VdbeFrameRestore(pFrame); 002816 p->pFrame = 0; 002817 p->nFrame = 0; 002818 } 002819 assert( p->nFrame==0 ); 002820 closeCursorsInFrame(p); 002821 releaseMemArray(p->aMem, p->nMem); 002822 while( p->pDelFrame ){ 002823 VdbeFrame *pDel = p->pDelFrame; 002824 p->pDelFrame = pDel->pParent; 002825 sqlite3VdbeFrameDelete(pDel); 002826 } 002827 002828 /* Delete any auxdata allocations made by the VM */ 002829 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0); 002830 assert( p->pAuxData==0 ); 002831 } 002832 002833 /* 002834 ** Set the number of result columns that will be returned by this SQL 002835 ** statement. This is now set at compile time, rather than during 002836 ** execution of the vdbe program so that sqlite3_column_count() can 002837 ** be called on an SQL statement before sqlite3_step(). 002838 */ 002839 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ 002840 int n; 002841 sqlite3 *db = p->db; 002842 002843 if( p->nResAlloc ){ 002844 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); 002845 sqlite3DbFree(db, p->aColName); 002846 } 002847 n = nResColumn*COLNAME_N; 002848 p->nResColumn = p->nResAlloc = (u16)nResColumn; 002849 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n ); 002850 if( p->aColName==0 ) return; 002851 initMemArray(p->aColName, n, db, MEM_Null); 002852 } 002853 002854 /* 002855 ** Set the name of the idx'th column to be returned by the SQL statement. 002856 ** zName must be a pointer to a nul terminated string. 002857 ** 002858 ** This call must be made after a call to sqlite3VdbeSetNumCols(). 002859 ** 002860 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC 002861 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed 002862 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. 002863 */ 002864 int sqlite3VdbeSetColName( 002865 Vdbe *p, /* Vdbe being configured */ 002866 int idx, /* Index of column zName applies to */ 002867 int var, /* One of the COLNAME_* constants */ 002868 const char *zName, /* Pointer to buffer containing name */ 002869 void (*xDel)(void*) /* Memory management strategy for zName */ 002870 ){ 002871 int rc; 002872 Mem *pColName; 002873 assert( idx<p->nResAlloc ); 002874 assert( var<COLNAME_N ); 002875 if( p->db->mallocFailed ){ 002876 assert( !zName || xDel!=SQLITE_DYNAMIC ); 002877 return SQLITE_NOMEM_BKPT; 002878 } 002879 assert( p->aColName!=0 ); 002880 pColName = &(p->aColName[idx+var*p->nResAlloc]); 002881 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); 002882 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); 002883 return rc; 002884 } 002885 002886 /* 002887 ** A read or write transaction may or may not be active on database handle 002888 ** db. If a transaction is active, commit it. If there is a 002889 ** write-transaction spanning more than one database file, this routine 002890 ** takes care of the super-journal trickery. 002891 */ 002892 static int vdbeCommit(sqlite3 *db, Vdbe *p){ 002893 int i; 002894 int nTrans = 0; /* Number of databases with an active write-transaction 002895 ** that are candidates for a two-phase commit using a 002896 ** super-journal */ 002897 int rc = SQLITE_OK; 002898 int needXcommit = 0; 002899 002900 #ifdef SQLITE_OMIT_VIRTUALTABLE 002901 /* With this option, sqlite3VtabSync() is defined to be simply 002902 ** SQLITE_OK so p is not used. 002903 */ 002904 UNUSED_PARAMETER(p); 002905 #endif 002906 002907 /* Before doing anything else, call the xSync() callback for any 002908 ** virtual module tables written in this transaction. This has to 002909 ** be done before determining whether a super-journal file is 002910 ** required, as an xSync() callback may add an attached database 002911 ** to the transaction. 002912 */ 002913 rc = sqlite3VtabSync(db, p); 002914 002915 /* This loop determines (a) if the commit hook should be invoked and 002916 ** (b) how many database files have open write transactions, not 002917 ** including the temp database. (b) is important because if more than 002918 ** one database file has an open write transaction, a super-journal 002919 ** file is required for an atomic commit. 002920 */ 002921 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002922 Btree *pBt = db->aDb[i].pBt; 002923 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 002924 /* Whether or not a database might need a super-journal depends upon 002925 ** its journal mode (among other things). This matrix determines which 002926 ** journal modes use a super-journal and which do not */ 002927 static const u8 aMJNeeded[] = { 002928 /* DELETE */ 1, 002929 /* PERSIST */ 1, 002930 /* OFF */ 0, 002931 /* TRUNCATE */ 1, 002932 /* MEMORY */ 0, 002933 /* WAL */ 0 002934 }; 002935 Pager *pPager; /* Pager associated with pBt */ 002936 needXcommit = 1; 002937 sqlite3BtreeEnter(pBt); 002938 pPager = sqlite3BtreePager(pBt); 002939 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF 002940 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)] 002941 && sqlite3PagerIsMemdb(pPager)==0 002942 ){ 002943 assert( i!=1 ); 002944 nTrans++; 002945 } 002946 rc = sqlite3PagerExclusiveLock(pPager); 002947 sqlite3BtreeLeave(pBt); 002948 } 002949 } 002950 if( rc!=SQLITE_OK ){ 002951 return rc; 002952 } 002953 002954 /* If there are any write-transactions at all, invoke the commit hook */ 002955 if( needXcommit && db->xCommitCallback ){ 002956 rc = db->xCommitCallback(db->pCommitArg); 002957 if( rc ){ 002958 return SQLITE_CONSTRAINT_COMMITHOOK; 002959 } 002960 } 002961 002962 /* The simple case - no more than one database file (not counting the 002963 ** TEMP database) has a transaction active. There is no need for the 002964 ** super-journal. 002965 ** 002966 ** If the return value of sqlite3BtreeGetFilename() is a zero length 002967 ** string, it means the main database is :memory: or a temp file. In 002968 ** that case we do not support atomic multi-file commits, so use the 002969 ** simple case then too. 002970 */ 002971 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) 002972 || nTrans<=1 002973 ){ 002974 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002975 Btree *pBt = db->aDb[i].pBt; 002976 if( pBt ){ 002977 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); 002978 } 002979 } 002980 002981 /* Do the commit only if all databases successfully complete phase 1. 002982 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an 002983 ** IO error while deleting or truncating a journal file. It is unlikely, 002984 ** but could happen. In this case abandon processing and return the error. 002985 */ 002986 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 002987 Btree *pBt = db->aDb[i].pBt; 002988 if( pBt ){ 002989 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); 002990 } 002991 } 002992 if( rc==SQLITE_OK ){ 002993 sqlite3VtabCommit(db); 002994 } 002995 } 002996 002997 /* The complex case - There is a multi-file write-transaction active. 002998 ** This requires a super-journal file to ensure the transaction is 002999 ** committed atomically. 003000 */ 003001 #ifndef SQLITE_OMIT_DISKIO 003002 else{ 003003 sqlite3_vfs *pVfs = db->pVfs; 003004 char *zSuper = 0; /* File-name for the super-journal */ 003005 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); 003006 sqlite3_file *pSuperJrnl = 0; 003007 i64 offset = 0; 003008 int res; 003009 int retryCount = 0; 003010 int nMainFile; 003011 003012 /* Select a super-journal file name */ 003013 nMainFile = sqlite3Strlen30(zMainFile); 003014 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0); 003015 if( zSuper==0 ) return SQLITE_NOMEM_BKPT; 003016 zSuper += 4; 003017 do { 003018 u32 iRandom; 003019 if( retryCount ){ 003020 if( retryCount>100 ){ 003021 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper); 003022 sqlite3OsDelete(pVfs, zSuper, 0); 003023 break; 003024 }else if( retryCount==1 ){ 003025 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper); 003026 } 003027 } 003028 retryCount++; 003029 sqlite3_randomness(sizeof(iRandom), &iRandom); 003030 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X", 003031 (iRandom>>8)&0xffffff, iRandom&0xff); 003032 /* The antipenultimate character of the super-journal name must 003033 ** be "9" to avoid name collisions when using 8+3 filenames. */ 003034 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' ); 003035 sqlite3FileSuffix3(zMainFile, zSuper); 003036 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 003037 }while( rc==SQLITE_OK && res ); 003038 if( rc==SQLITE_OK ){ 003039 /* Open the super-journal. */ 003040 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl, 003041 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 003042 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0 003043 ); 003044 } 003045 if( rc!=SQLITE_OK ){ 003046 sqlite3DbFree(db, zSuper-4); 003047 return rc; 003048 } 003049 003050 /* Write the name of each database file in the transaction into the new 003051 ** super-journal file. If an error occurs at this point close 003052 ** and delete the super-journal file. All the individual journal files 003053 ** still have 'null' as the super-journal pointer, so they will roll 003054 ** back independently if a failure occurs. 003055 */ 003056 for(i=0; i<db->nDb; i++){ 003057 Btree *pBt = db->aDb[i].pBt; 003058 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 003059 char const *zFile = sqlite3BtreeGetJournalname(pBt); 003060 if( zFile==0 ){ 003061 continue; /* Ignore TEMP and :memory: databases */ 003062 } 003063 assert( zFile[0]!=0 ); 003064 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset); 003065 offset += sqlite3Strlen30(zFile)+1; 003066 if( rc!=SQLITE_OK ){ 003067 sqlite3OsCloseFree(pSuperJrnl); 003068 sqlite3OsDelete(pVfs, zSuper, 0); 003069 sqlite3DbFree(db, zSuper-4); 003070 return rc; 003071 } 003072 } 003073 } 003074 003075 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device 003076 ** flag is set this is not required. 003077 */ 003078 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL) 003079 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL)) 003080 ){ 003081 sqlite3OsCloseFree(pSuperJrnl); 003082 sqlite3OsDelete(pVfs, zSuper, 0); 003083 sqlite3DbFree(db, zSuper-4); 003084 return rc; 003085 } 003086 003087 /* Sync all the db files involved in the transaction. The same call 003088 ** sets the super-journal pointer in each individual journal. If 003089 ** an error occurs here, do not delete the super-journal file. 003090 ** 003091 ** If the error occurs during the first call to 003092 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the 003093 ** super-journal file will be orphaned. But we cannot delete it, 003094 ** in case the super-journal file name was written into the journal 003095 ** file before the failure occurred. 003096 */ 003097 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 003098 Btree *pBt = db->aDb[i].pBt; 003099 if( pBt ){ 003100 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper); 003101 } 003102 } 003103 sqlite3OsCloseFree(pSuperJrnl); 003104 assert( rc!=SQLITE_BUSY ); 003105 if( rc!=SQLITE_OK ){ 003106 sqlite3DbFree(db, zSuper-4); 003107 return rc; 003108 } 003109 003110 /* Delete the super-journal file. This commits the transaction. After 003111 ** doing this the directory is synced again before any individual 003112 ** transaction files are deleted. 003113 */ 003114 rc = sqlite3OsDelete(pVfs, zSuper, 1); 003115 sqlite3DbFree(db, zSuper-4); 003116 zSuper = 0; 003117 if( rc ){ 003118 return rc; 003119 } 003120 003121 /* All files and directories have already been synced, so the following 003122 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and 003123 ** deleting or truncating journals. If something goes wrong while 003124 ** this is happening we don't really care. The integrity of the 003125 ** transaction is already guaranteed, but some stray 'cold' journals 003126 ** may be lying around. Returning an error code won't help matters. 003127 */ 003128 disable_simulated_io_errors(); 003129 sqlite3BeginBenignMalloc(); 003130 for(i=0; i<db->nDb; i++){ 003131 Btree *pBt = db->aDb[i].pBt; 003132 if( pBt ){ 003133 sqlite3BtreeCommitPhaseTwo(pBt, 1); 003134 } 003135 } 003136 sqlite3EndBenignMalloc(); 003137 enable_simulated_io_errors(); 003138 003139 sqlite3VtabCommit(db); 003140 } 003141 #endif 003142 003143 return rc; 003144 } 003145 003146 /* 003147 ** This routine checks that the sqlite3.nVdbeActive count variable 003148 ** matches the number of vdbe's in the list sqlite3.pVdbe that are 003149 ** currently active. An assertion fails if the two counts do not match. 003150 ** This is an internal self-check only - it is not an essential processing 003151 ** step. 003152 ** 003153 ** This is a no-op if NDEBUG is defined. 003154 */ 003155 #ifndef NDEBUG 003156 static void checkActiveVdbeCnt(sqlite3 *db){ 003157 Vdbe *p; 003158 int cnt = 0; 003159 int nWrite = 0; 003160 int nRead = 0; 003161 p = db->pVdbe; 003162 while( p ){ 003163 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){ 003164 cnt++; 003165 if( p->readOnly==0 ) nWrite++; 003166 if( p->bIsReader ) nRead++; 003167 } 003168 p = p->pVNext; 003169 } 003170 assert( cnt==db->nVdbeActive ); 003171 assert( nWrite==db->nVdbeWrite ); 003172 assert( nRead==db->nVdbeRead ); 003173 } 003174 #else 003175 #define checkActiveVdbeCnt(x) 003176 #endif 003177 003178 /* 003179 ** If the Vdbe passed as the first argument opened a statement-transaction, 003180 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or 003181 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement 003182 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the 003183 ** statement transaction is committed. 003184 ** 003185 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. 003186 ** Otherwise SQLITE_OK. 003187 */ 003188 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){ 003189 sqlite3 *const db = p->db; 003190 int rc = SQLITE_OK; 003191 int i; 003192 const int iSavepoint = p->iStatement-1; 003193 003194 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); 003195 assert( db->nStatement>0 ); 003196 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); 003197 003198 for(i=0; i<db->nDb; i++){ 003199 int rc2 = SQLITE_OK; 003200 Btree *pBt = db->aDb[i].pBt; 003201 if( pBt ){ 003202 if( eOp==SAVEPOINT_ROLLBACK ){ 003203 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); 003204 } 003205 if( rc2==SQLITE_OK ){ 003206 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); 003207 } 003208 if( rc==SQLITE_OK ){ 003209 rc = rc2; 003210 } 003211 } 003212 } 003213 db->nStatement--; 003214 p->iStatement = 0; 003215 003216 if( rc==SQLITE_OK ){ 003217 if( eOp==SAVEPOINT_ROLLBACK ){ 003218 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint); 003219 } 003220 if( rc==SQLITE_OK ){ 003221 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint); 003222 } 003223 } 003224 003225 /* If the statement transaction is being rolled back, also restore the 003226 ** database handles deferred constraint counter to the value it had when 003227 ** the statement transaction was opened. */ 003228 if( eOp==SAVEPOINT_ROLLBACK ){ 003229 db->nDeferredCons = p->nStmtDefCons; 003230 db->nDeferredImmCons = p->nStmtDefImmCons; 003231 } 003232 return rc; 003233 } 003234 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ 003235 if( p->db->nStatement && p->iStatement ){ 003236 return vdbeCloseStatement(p, eOp); 003237 } 003238 return SQLITE_OK; 003239 } 003240 003241 003242 /* 003243 ** This function is called when a transaction opened by the database 003244 ** handle associated with the VM passed as an argument is about to be 003245 ** committed. If there are outstanding deferred foreign key constraint 003246 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. 003247 ** 003248 ** If there are outstanding FK violations and this function returns 003249 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY 003250 ** and write an error message to it. Then return SQLITE_ERROR. 003251 */ 003252 #ifndef SQLITE_OMIT_FOREIGN_KEY 003253 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ 003254 sqlite3 *db = p->db; 003255 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0) 003256 || (!deferred && p->nFkConstraint>0) 003257 ){ 003258 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; 003259 p->errorAction = OE_Abort; 003260 sqlite3VdbeError(p, "FOREIGN KEY constraint failed"); 003261 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR; 003262 return SQLITE_CONSTRAINT_FOREIGNKEY; 003263 } 003264 return SQLITE_OK; 003265 } 003266 #endif 003267 003268 /* 003269 ** This routine is called the when a VDBE tries to halt. If the VDBE 003270 ** has made changes and is in autocommit mode, then commit those 003271 ** changes. If a rollback is needed, then do the rollback. 003272 ** 003273 ** This routine is the only way to move the sqlite3eOpenState of a VM from 003274 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to 003275 ** call this on a VM that is in the SQLITE_STATE_HALT state. 003276 ** 003277 ** Return an error code. If the commit could not complete because of 003278 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it 003279 ** means the close did not happen and needs to be repeated. 003280 */ 003281 int sqlite3VdbeHalt(Vdbe *p){ 003282 int rc; /* Used to store transient return codes */ 003283 sqlite3 *db = p->db; 003284 003285 /* This function contains the logic that determines if a statement or 003286 ** transaction will be committed or rolled back as a result of the 003287 ** execution of this virtual machine. 003288 ** 003289 ** If any of the following errors occur: 003290 ** 003291 ** SQLITE_NOMEM 003292 ** SQLITE_IOERR 003293 ** SQLITE_FULL 003294 ** SQLITE_INTERRUPT 003295 ** 003296 ** Then the internal cache might have been left in an inconsistent 003297 ** state. We need to rollback the statement transaction, if there is 003298 ** one, or the complete transaction if there is no statement transaction. 003299 */ 003300 003301 assert( p->eVdbeState==VDBE_RUN_STATE ); 003302 if( db->mallocFailed ){ 003303 p->rc = SQLITE_NOMEM_BKPT; 003304 } 003305 closeAllCursors(p); 003306 checkActiveVdbeCnt(db); 003307 003308 /* No commit or rollback needed if the program never started or if the 003309 ** SQL statement does not read or write a database file. */ 003310 if( p->bIsReader ){ 003311 int mrc; /* Primary error code from p->rc */ 003312 int eStatementOp = 0; 003313 int isSpecialError; /* Set to true if a 'special' error */ 003314 003315 /* Lock all btrees used by the statement */ 003316 sqlite3VdbeEnter(p); 003317 003318 /* Check for one of the special errors */ 003319 if( p->rc ){ 003320 mrc = p->rc & 0xff; 003321 isSpecialError = mrc==SQLITE_NOMEM 003322 || mrc==SQLITE_IOERR 003323 || mrc==SQLITE_INTERRUPT 003324 || mrc==SQLITE_FULL; 003325 }else{ 003326 mrc = isSpecialError = 0; 003327 } 003328 if( isSpecialError ){ 003329 /* If the query was read-only and the error code is SQLITE_INTERRUPT, 003330 ** no rollback is necessary. Otherwise, at least a savepoint 003331 ** transaction must be rolled back to restore the database to a 003332 ** consistent state. 003333 ** 003334 ** Even if the statement is read-only, it is important to perform 003335 ** a statement or transaction rollback operation. If the error 003336 ** occurred while writing to the journal, sub-journal or database 003337 ** file as part of an effort to free up cache space (see function 003338 ** pagerStress() in pager.c), the rollback is required to restore 003339 ** the pager to a consistent state. 003340 */ 003341 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ 003342 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ 003343 eStatementOp = SAVEPOINT_ROLLBACK; 003344 }else{ 003345 /* We are forced to roll back the active transaction. Before doing 003346 ** so, abort any other statements this handle currently has active. 003347 */ 003348 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003349 sqlite3CloseSavepoints(db); 003350 db->autoCommit = 1; 003351 p->nChange = 0; 003352 } 003353 } 003354 } 003355 003356 /* Check for immediate foreign key violations. */ 003357 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 003358 (void)sqlite3VdbeCheckFk(p, 0); 003359 } 003360 003361 /* If the auto-commit flag is set and this is the only active writer 003362 ** VM, then we do either a commit or rollback of the current transaction. 003363 ** 003364 ** Note: This block also runs if one of the special errors handled 003365 ** above has occurred. 003366 */ 003367 if( !sqlite3VtabInSync(db) 003368 && db->autoCommit 003369 && db->nVdbeWrite==(p->readOnly==0) 003370 ){ 003371 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ 003372 rc = sqlite3VdbeCheckFk(p, 1); 003373 if( rc!=SQLITE_OK ){ 003374 if( NEVER(p->readOnly) ){ 003375 sqlite3VdbeLeave(p); 003376 return SQLITE_ERROR; 003377 } 003378 rc = SQLITE_CONSTRAINT_FOREIGNKEY; 003379 }else if( db->flags & SQLITE_CorruptRdOnly ){ 003380 rc = SQLITE_CORRUPT; 003381 db->flags &= ~SQLITE_CorruptRdOnly; 003382 }else{ 003383 /* The auto-commit flag is true, the vdbe program was successful 003384 ** or hit an 'OR FAIL' constraint and there are no deferred foreign 003385 ** key constraints to hold up the transaction. This means a commit 003386 ** is required. */ 003387 rc = vdbeCommit(db, p); 003388 } 003389 if( rc==SQLITE_BUSY && p->readOnly ){ 003390 sqlite3VdbeLeave(p); 003391 return SQLITE_BUSY; 003392 }else if( rc!=SQLITE_OK ){ 003393 sqlite3SystemError(db, rc); 003394 p->rc = rc; 003395 sqlite3RollbackAll(db, SQLITE_OK); 003396 p->nChange = 0; 003397 }else{ 003398 db->nDeferredCons = 0; 003399 db->nDeferredImmCons = 0; 003400 db->flags &= ~(u64)SQLITE_DeferFKs; 003401 sqlite3CommitInternalChanges(db); 003402 } 003403 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){ 003404 p->nChange = 0; 003405 }else{ 003406 sqlite3RollbackAll(db, SQLITE_OK); 003407 p->nChange = 0; 003408 } 003409 db->nStatement = 0; 003410 }else if( eStatementOp==0 ){ 003411 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ 003412 eStatementOp = SAVEPOINT_RELEASE; 003413 }else if( p->errorAction==OE_Abort ){ 003414 eStatementOp = SAVEPOINT_ROLLBACK; 003415 }else{ 003416 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003417 sqlite3CloseSavepoints(db); 003418 db->autoCommit = 1; 003419 p->nChange = 0; 003420 } 003421 } 003422 003423 /* If eStatementOp is non-zero, then a statement transaction needs to 003424 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to 003425 ** do so. If this operation returns an error, and the current statement 003426 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the 003427 ** current statement error code. 003428 */ 003429 if( eStatementOp ){ 003430 rc = sqlite3VdbeCloseStatement(p, eStatementOp); 003431 if( rc ){ 003432 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){ 003433 p->rc = rc; 003434 sqlite3DbFree(db, p->zErrMsg); 003435 p->zErrMsg = 0; 003436 } 003437 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003438 sqlite3CloseSavepoints(db); 003439 db->autoCommit = 1; 003440 p->nChange = 0; 003441 } 003442 } 003443 003444 /* If this was an INSERT, UPDATE or DELETE and no statement transaction 003445 ** has been rolled back, update the database connection change-counter. 003446 */ 003447 if( p->changeCntOn ){ 003448 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ 003449 sqlite3VdbeSetChanges(db, p->nChange); 003450 }else{ 003451 sqlite3VdbeSetChanges(db, 0); 003452 } 003453 p->nChange = 0; 003454 } 003455 003456 /* Release the locks */ 003457 sqlite3VdbeLeave(p); 003458 } 003459 003460 /* We have successfully halted and closed the VM. Record this fact. */ 003461 db->nVdbeActive--; 003462 if( !p->readOnly ) db->nVdbeWrite--; 003463 if( p->bIsReader ) db->nVdbeRead--; 003464 assert( db->nVdbeActive>=db->nVdbeRead ); 003465 assert( db->nVdbeRead>=db->nVdbeWrite ); 003466 assert( db->nVdbeWrite>=0 ); 003467 p->eVdbeState = VDBE_HALT_STATE; 003468 checkActiveVdbeCnt(db); 003469 if( db->mallocFailed ){ 003470 p->rc = SQLITE_NOMEM_BKPT; 003471 } 003472 003473 /* If the auto-commit flag is set to true, then any locks that were held 003474 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() 003475 ** to invoke any required unlock-notify callbacks. 003476 */ 003477 if( db->autoCommit ){ 003478 sqlite3ConnectionUnlocked(db); 003479 } 003480 003481 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 ); 003482 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); 003483 } 003484 003485 003486 /* 003487 ** Each VDBE holds the result of the most recent sqlite3_step() call 003488 ** in p->rc. This routine sets that result back to SQLITE_OK. 003489 */ 003490 void sqlite3VdbeResetStepResult(Vdbe *p){ 003491 p->rc = SQLITE_OK; 003492 } 003493 003494 /* 003495 ** Copy the error code and error message belonging to the VDBE passed 003496 ** as the first argument to its database handle (so that they will be 003497 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()). 003498 ** 003499 ** This function does not clear the VDBE error code or message, just 003500 ** copies them to the database handle. 003501 */ 003502 int sqlite3VdbeTransferError(Vdbe *p){ 003503 sqlite3 *db = p->db; 003504 int rc = p->rc; 003505 if( p->zErrMsg ){ 003506 db->bBenignMalloc++; 003507 sqlite3BeginBenignMalloc(); 003508 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db); 003509 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); 003510 sqlite3EndBenignMalloc(); 003511 db->bBenignMalloc--; 003512 }else if( db->pErr ){ 003513 sqlite3ValueSetNull(db->pErr); 003514 } 003515 db->errCode = rc; 003516 db->errByteOffset = -1; 003517 return rc; 003518 } 003519 003520 #ifdef SQLITE_ENABLE_SQLLOG 003521 /* 003522 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run, 003523 ** invoke it. 003524 */ 003525 static void vdbeInvokeSqllog(Vdbe *v){ 003526 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){ 003527 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql); 003528 assert( v->db->init.busy==0 ); 003529 if( zExpanded ){ 003530 sqlite3GlobalConfig.xSqllog( 003531 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1 003532 ); 003533 sqlite3DbFree(v->db, zExpanded); 003534 } 003535 } 003536 } 003537 #else 003538 # define vdbeInvokeSqllog(x) 003539 #endif 003540 003541 /* 003542 ** Clean up a VDBE after execution but do not delete the VDBE just yet. 003543 ** Write any error messages into *pzErrMsg. Return the result code. 003544 ** 003545 ** After this routine is run, the VDBE should be ready to be executed 003546 ** again. 003547 ** 003548 ** To look at it another way, this routine resets the state of the 003549 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to 003550 ** VDBE_READY_STATE. 003551 */ 003552 int sqlite3VdbeReset(Vdbe *p){ 003553 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) 003554 int i; 003555 #endif 003556 003557 sqlite3 *db; 003558 db = p->db; 003559 003560 /* If the VM did not run to completion or if it encountered an 003561 ** error, then it might not have been halted properly. So halt 003562 ** it now. 003563 */ 003564 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 003565 003566 /* If the VDBE has been run even partially, then transfer the error code 003567 ** and error message from the VDBE into the main database structure. But 003568 ** if the VDBE has just been set to run but has not actually executed any 003569 ** instructions yet, leave the main database error information unchanged. 003570 */ 003571 if( p->pc>=0 ){ 003572 vdbeInvokeSqllog(p); 003573 if( db->pErr || p->zErrMsg ){ 003574 sqlite3VdbeTransferError(p); 003575 }else{ 003576 db->errCode = p->rc; 003577 } 003578 } 003579 003580 /* Reset register contents and reclaim error message memory. 003581 */ 003582 #ifdef SQLITE_DEBUG 003583 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and 003584 ** Vdbe.aMem[] arrays have already been cleaned up. */ 003585 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 ); 003586 if( p->aMem ){ 003587 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined ); 003588 } 003589 #endif 003590 if( p->zErrMsg ){ 003591 sqlite3DbFree(db, p->zErrMsg); 003592 p->zErrMsg = 0; 003593 } 003594 p->pResultRow = 0; 003595 #ifdef SQLITE_DEBUG 003596 p->nWrite = 0; 003597 #endif 003598 003599 /* Save profiling information from this VDBE run. 003600 */ 003601 #ifdef VDBE_PROFILE 003602 { 003603 FILE *out = fopen("vdbe_profile.out", "a"); 003604 if( out ){ 003605 fprintf(out, "---- "); 003606 for(i=0; i<p->nOp; i++){ 003607 fprintf(out, "%02x", p->aOp[i].opcode); 003608 } 003609 fprintf(out, "\n"); 003610 if( p->zSql ){ 003611 char c, pc = 0; 003612 fprintf(out, "-- "); 003613 for(i=0; (c = p->zSql[i])!=0; i++){ 003614 if( pc=='\n' ) fprintf(out, "-- "); 003615 putc(c, out); 003616 pc = c; 003617 } 003618 if( pc!='\n' ) fprintf(out, "\n"); 003619 } 003620 for(i=0; i<p->nOp; i++){ 003621 char zHdr[100]; 003622 i64 cnt = p->aOp[i].nExec; 003623 i64 cycles = p->aOp[i].nCycle; 003624 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ", 003625 cnt, 003626 cycles, 003627 cnt>0 ? cycles/cnt : 0 003628 ); 003629 fprintf(out, "%s", zHdr); 003630 sqlite3VdbePrintOp(out, i, &p->aOp[i]); 003631 } 003632 fclose(out); 003633 } 003634 } 003635 #endif 003636 return p->rc & db->errMask; 003637 } 003638 003639 /* 003640 ** Clean up and delete a VDBE after execution. Return an integer which is 003641 ** the result code. Write any error message text into *pzErrMsg. 003642 */ 003643 int sqlite3VdbeFinalize(Vdbe *p){ 003644 int rc = SQLITE_OK; 003645 assert( VDBE_RUN_STATE>VDBE_READY_STATE ); 003646 assert( VDBE_HALT_STATE>VDBE_READY_STATE ); 003647 assert( VDBE_INIT_STATE<VDBE_READY_STATE ); 003648 if( p->eVdbeState>=VDBE_READY_STATE ){ 003649 rc = sqlite3VdbeReset(p); 003650 assert( (rc & p->db->errMask)==rc ); 003651 } 003652 sqlite3VdbeDelete(p); 003653 return rc; 003654 } 003655 003656 /* 003657 ** If parameter iOp is less than zero, then invoke the destructor for 003658 ** all auxiliary data pointers currently cached by the VM passed as 003659 ** the first argument. 003660 ** 003661 ** Or, if iOp is greater than or equal to zero, then the destructor is 003662 ** only invoked for those auxiliary data pointers created by the user 003663 ** function invoked by the OP_Function opcode at instruction iOp of 003664 ** VM pVdbe, and only then if: 003665 ** 003666 ** * the associated function parameter is the 32nd or later (counting 003667 ** from left to right), or 003668 ** 003669 ** * the corresponding bit in argument mask is clear (where the first 003670 ** function parameter corresponds to bit 0 etc.). 003671 */ 003672 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){ 003673 while( *pp ){ 003674 AuxData *pAux = *pp; 003675 if( (iOp<0) 003676 || (pAux->iAuxOp==iOp 003677 && pAux->iAuxArg>=0 003678 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg)))) 003679 ){ 003680 testcase( pAux->iAuxArg==31 ); 003681 if( pAux->xDeleteAux ){ 003682 pAux->xDeleteAux(pAux->pAux); 003683 } 003684 *pp = pAux->pNextAux; 003685 sqlite3DbFree(db, pAux); 003686 }else{ 003687 pp= &pAux->pNextAux; 003688 } 003689 } 003690 } 003691 003692 /* 003693 ** Free all memory associated with the Vdbe passed as the second argument, 003694 ** except for object itself, which is preserved. 003695 ** 003696 ** The difference between this function and sqlite3VdbeDelete() is that 003697 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with 003698 ** the database connection and frees the object itself. 003699 */ 003700 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){ 003701 SubProgram *pSub, *pNext; 003702 assert( db!=0 ); 003703 assert( p->db==0 || p->db==db ); 003704 if( p->aColName ){ 003705 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N); 003706 sqlite3DbNNFreeNN(db, p->aColName); 003707 } 003708 for(pSub=p->pProgram; pSub; pSub=pNext){ 003709 pNext = pSub->pNext; 003710 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); 003711 sqlite3DbFree(db, pSub); 003712 } 003713 if( p->eVdbeState!=VDBE_INIT_STATE ){ 003714 releaseMemArray(p->aVar, p->nVar); 003715 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList); 003716 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree); 003717 } 003718 vdbeFreeOpArray(db, p->aOp, p->nOp); 003719 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql); 003720 #ifdef SQLITE_ENABLE_NORMALIZE 003721 sqlite3DbFree(db, p->zNormSql); 003722 { 003723 DblquoteStr *pThis, *pNxt; 003724 for(pThis=p->pDblStr; pThis; pThis=pNxt){ 003725 pNxt = pThis->pNextStr; 003726 sqlite3DbFree(db, pThis); 003727 } 003728 } 003729 #endif 003730 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 003731 { 003732 int i; 003733 for(i=0; i<p->nScan; i++){ 003734 sqlite3DbFree(db, p->aScan[i].zName); 003735 } 003736 sqlite3DbFree(db, p->aScan); 003737 } 003738 #endif 003739 } 003740 003741 /* 003742 ** Delete an entire VDBE. 003743 */ 003744 void sqlite3VdbeDelete(Vdbe *p){ 003745 sqlite3 *db; 003746 003747 assert( p!=0 ); 003748 db = p->db; 003749 assert( db!=0 ); 003750 assert( sqlite3_mutex_held(db->mutex) ); 003751 sqlite3VdbeClearObject(db, p); 003752 if( db->pnBytesFreed==0 ){ 003753 assert( p->ppVPrev!=0 ); 003754 *p->ppVPrev = p->pVNext; 003755 if( p->pVNext ){ 003756 p->pVNext->ppVPrev = p->ppVPrev; 003757 } 003758 } 003759 sqlite3DbNNFreeNN(db, p); 003760 } 003761 003762 /* 003763 ** The cursor "p" has a pending seek operation that has not yet been 003764 ** carried out. Seek the cursor now. If an error occurs, return 003765 ** the appropriate error code. 003766 */ 003767 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){ 003768 int res, rc; 003769 #ifdef SQLITE_TEST 003770 extern int sqlite3_search_count; 003771 #endif 003772 assert( p->deferredMoveto ); 003773 assert( p->isTable ); 003774 assert( p->eCurType==CURTYPE_BTREE ); 003775 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res); 003776 if( rc ) return rc; 003777 if( res!=0 ) return SQLITE_CORRUPT_BKPT; 003778 #ifdef SQLITE_TEST 003779 sqlite3_search_count++; 003780 #endif 003781 p->deferredMoveto = 0; 003782 p->cacheStatus = CACHE_STALE; 003783 return SQLITE_OK; 003784 } 003785 003786 /* 003787 ** Something has moved cursor "p" out of place. Maybe the row it was 003788 ** pointed to was deleted out from under it. Or maybe the btree was 003789 ** rebalanced. Whatever the cause, try to restore "p" to the place it 003790 ** is supposed to be pointing. If the row was deleted out from under the 003791 ** cursor, set the cursor to point to a NULL row. 003792 */ 003793 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){ 003794 int isDifferentRow, rc; 003795 assert( p->eCurType==CURTYPE_BTREE ); 003796 assert( p->uc.pCursor!=0 ); 003797 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ); 003798 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow); 003799 p->cacheStatus = CACHE_STALE; 003800 if( isDifferentRow ) p->nullRow = 1; 003801 return rc; 003802 } 003803 003804 /* 003805 ** Check to ensure that the cursor is valid. Restore the cursor 003806 ** if need be. Return any I/O error from the restore operation. 003807 */ 003808 int sqlite3VdbeCursorRestore(VdbeCursor *p){ 003809 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) ); 003810 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){ 003811 return sqlite3VdbeHandleMovedCursor(p); 003812 } 003813 return SQLITE_OK; 003814 } 003815 003816 /* 003817 ** The following functions: 003818 ** 003819 ** sqlite3VdbeSerialType() 003820 ** sqlite3VdbeSerialTypeLen() 003821 ** sqlite3VdbeSerialLen() 003822 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02 003823 ** sqlite3VdbeSerialGet() 003824 ** 003825 ** encapsulate the code that serializes values for storage in SQLite 003826 ** data and index records. Each serialized value consists of a 003827 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned 003828 ** integer, stored as a varint. 003829 ** 003830 ** In an SQLite index record, the serial type is stored directly before 003831 ** the blob of data that it corresponds to. In a table record, all serial 003832 ** types are stored at the start of the record, and the blobs of data at 003833 ** the end. Hence these functions allow the caller to handle the 003834 ** serial-type and data blob separately. 003835 ** 003836 ** The following table describes the various storage classes for data: 003837 ** 003838 ** serial type bytes of data type 003839 ** -------------- --------------- --------------- 003840 ** 0 0 NULL 003841 ** 1 1 signed integer 003842 ** 2 2 signed integer 003843 ** 3 3 signed integer 003844 ** 4 4 signed integer 003845 ** 5 6 signed integer 003846 ** 6 8 signed integer 003847 ** 7 8 IEEE float 003848 ** 8 0 Integer constant 0 003849 ** 9 0 Integer constant 1 003850 ** 10,11 reserved for expansion 003851 ** N>=12 and even (N-12)/2 BLOB 003852 ** N>=13 and odd (N-13)/2 text 003853 ** 003854 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions 003855 ** of SQLite will not understand those serial types. 003856 */ 003857 003858 #if 0 /* Inlined into the OP_MakeRecord opcode */ 003859 /* 003860 ** Return the serial-type for the value stored in pMem. 003861 ** 003862 ** This routine might convert a large MEM_IntReal value into MEM_Real. 003863 ** 003864 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord 003865 ** opcode in the byte-code engine. But by moving this routine in-line, we 003866 ** can omit some redundant tests and make that opcode a lot faster. So 003867 ** this routine is now only used by the STAT3 logic and STAT3 support has 003868 ** ended. The code is kept here for historical reference only. 003869 */ 003870 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){ 003871 int flags = pMem->flags; 003872 u32 n; 003873 003874 assert( pLen!=0 ); 003875 if( flags&MEM_Null ){ 003876 *pLen = 0; 003877 return 0; 003878 } 003879 if( flags&(MEM_Int|MEM_IntReal) ){ 003880 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003881 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) 003882 i64 i = pMem->u.i; 003883 u64 u; 003884 testcase( flags & MEM_Int ); 003885 testcase( flags & MEM_IntReal ); 003886 if( i<0 ){ 003887 u = ~i; 003888 }else{ 003889 u = i; 003890 } 003891 if( u<=127 ){ 003892 if( (i&1)==i && file_format>=4 ){ 003893 *pLen = 0; 003894 return 8+(u32)u; 003895 }else{ 003896 *pLen = 1; 003897 return 1; 003898 } 003899 } 003900 if( u<=32767 ){ *pLen = 2; return 2; } 003901 if( u<=8388607 ){ *pLen = 3; return 3; } 003902 if( u<=2147483647 ){ *pLen = 4; return 4; } 003903 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; } 003904 *pLen = 8; 003905 if( flags&MEM_IntReal ){ 003906 /* If the value is IntReal and is going to take up 8 bytes to store 003907 ** as an integer, then we might as well make it an 8-byte floating 003908 ** point value */ 003909 pMem->u.r = (double)pMem->u.i; 003910 pMem->flags &= ~MEM_IntReal; 003911 pMem->flags |= MEM_Real; 003912 return 7; 003913 } 003914 return 6; 003915 } 003916 if( flags&MEM_Real ){ 003917 *pLen = 8; 003918 return 7; 003919 } 003920 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); 003921 assert( pMem->n>=0 ); 003922 n = (u32)pMem->n; 003923 if( flags & MEM_Zero ){ 003924 n += pMem->u.nZero; 003925 } 003926 *pLen = n; 003927 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); 003928 } 003929 #endif /* inlined into OP_MakeRecord */ 003930 003931 /* 003932 ** The sizes for serial types less than 128 003933 */ 003934 const u8 sqlite3SmallTypeSizes[128] = { 003935 /* 0 1 2 3 4 5 6 7 8 9 */ 003936 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 003937 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 003938 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 003939 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 003940 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 003941 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 003942 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 003943 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 003944 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 003945 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 003946 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48, 003947 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53, 003948 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57 003949 }; 003950 003951 /* 003952 ** Return the length of the data corresponding to the supplied serial-type. 003953 */ 003954 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ 003955 if( serial_type>=128 ){ 003956 return (serial_type-12)/2; 003957 }else{ 003958 assert( serial_type<12 003959 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 ); 003960 return sqlite3SmallTypeSizes[serial_type]; 003961 } 003962 } 003963 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){ 003964 assert( serial_type<128 ); 003965 return sqlite3SmallTypeSizes[serial_type]; 003966 } 003967 003968 /* 003969 ** If we are on an architecture with mixed-endian floating 003970 ** points (ex: ARM7) then swap the lower 4 bytes with the 003971 ** upper 4 bytes. Return the result. 003972 ** 003973 ** For most architectures, this is a no-op. 003974 ** 003975 ** (later): It is reported to me that the mixed-endian problem 003976 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems 003977 ** that early versions of GCC stored the two words of a 64-bit 003978 ** float in the wrong order. And that error has been propagated 003979 ** ever since. The blame is not necessarily with GCC, though. 003980 ** GCC might have just copying the problem from a prior compiler. 003981 ** I am also told that newer versions of GCC that follow a different 003982 ** ABI get the byte order right. 003983 ** 003984 ** Developers using SQLite on an ARM7 should compile and run their 003985 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG 003986 ** enabled, some asserts below will ensure that the byte order of 003987 ** floating point values is correct. 003988 ** 003989 ** (2007-08-30) Frank van Vugt has studied this problem closely 003990 ** and has send his findings to the SQLite developers. Frank 003991 ** writes that some Linux kernels offer floating point hardware 003992 ** emulation that uses only 32-bit mantissas instead of a full 003993 ** 48-bits as required by the IEEE standard. (This is the 003994 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point 003995 ** byte swapping becomes very complicated. To avoid problems, 003996 ** the necessary byte swapping is carried out using a 64-bit integer 003997 ** rather than a 64-bit float. Frank assures us that the code here 003998 ** works for him. We, the developers, have no way to independently 003999 ** verify this, but Frank seems to know what he is talking about 004000 ** so we trust him. 004001 */ 004002 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT 004003 u64 sqlite3FloatSwap(u64 in){ 004004 union { 004005 u64 r; 004006 u32 i[2]; 004007 } u; 004008 u32 t; 004009 004010 u.r = in; 004011 t = u.i[0]; 004012 u.i[0] = u.i[1]; 004013 u.i[1] = t; 004014 return u.r; 004015 } 004016 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */ 004017 004018 004019 /* Input "x" is a sequence of unsigned characters that represent a 004020 ** big-endian integer. Return the equivalent native integer 004021 */ 004022 #define ONE_BYTE_INT(x) ((i8)(x)[0]) 004023 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1]) 004024 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2]) 004025 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 004026 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3]) 004027 004028 /* 004029 ** Deserialize the data blob pointed to by buf as serial type serial_type 004030 ** and store the result in pMem. 004031 ** 004032 ** This function is implemented as two separate routines for performance. 004033 ** The few cases that require local variables are broken out into a separate 004034 ** routine so that in most cases the overhead of moving the stack pointer 004035 ** is avoided. 004036 */ 004037 static void serialGet( 004038 const unsigned char *buf, /* Buffer to deserialize from */ 004039 u32 serial_type, /* Serial type to deserialize */ 004040 Mem *pMem /* Memory cell to write value into */ 004041 ){ 004042 u64 x = FOUR_BYTE_UINT(buf); 004043 u32 y = FOUR_BYTE_UINT(buf+4); 004044 x = (x<<32) + y; 004045 if( serial_type==6 ){ 004046 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit 004047 ** twos-complement integer. */ 004048 pMem->u.i = *(i64*)&x; 004049 pMem->flags = MEM_Int; 004050 testcase( pMem->u.i<0 ); 004051 }else{ 004052 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit 004053 ** floating point number. */ 004054 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) 004055 /* Verify that integers and floating point values use the same 004056 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is 004057 ** defined that 64-bit floating point values really are mixed 004058 ** endian. 004059 */ 004060 static const u64 t1 = ((u64)0x3ff00000)<<32; 004061 static const double r1 = 1.0; 004062 u64 t2 = t1; 004063 swapMixedEndianFloat(t2); 004064 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); 004065 #endif 004066 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 004067 swapMixedEndianFloat(x); 004068 memcpy(&pMem->u.r, &x, sizeof(x)); 004069 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real; 004070 } 004071 } 004072 static int serialGet7( 004073 const unsigned char *buf, /* Buffer to deserialize from */ 004074 Mem *pMem /* Memory cell to write value into */ 004075 ){ 004076 u64 x = FOUR_BYTE_UINT(buf); 004077 u32 y = FOUR_BYTE_UINT(buf+4); 004078 x = (x<<32) + y; 004079 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 ); 004080 swapMixedEndianFloat(x); 004081 memcpy(&pMem->u.r, &x, sizeof(x)); 004082 if( IsNaN(x) ){ 004083 pMem->flags = MEM_Null; 004084 return 1; 004085 } 004086 pMem->flags = MEM_Real; 004087 return 0; 004088 } 004089 void sqlite3VdbeSerialGet( 004090 const unsigned char *buf, /* Buffer to deserialize from */ 004091 u32 serial_type, /* Serial type to deserialize */ 004092 Mem *pMem /* Memory cell to write value into */ 004093 ){ 004094 switch( serial_type ){ 004095 case 10: { /* Internal use only: NULL with virtual table 004096 ** UPDATE no-change flag set */ 004097 pMem->flags = MEM_Null|MEM_Zero; 004098 pMem->n = 0; 004099 pMem->u.nZero = 0; 004100 return; 004101 } 004102 case 11: /* Reserved for future use */ 004103 case 0: { /* Null */ 004104 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */ 004105 pMem->flags = MEM_Null; 004106 return; 004107 } 004108 case 1: { 004109 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement 004110 ** integer. */ 004111 pMem->u.i = ONE_BYTE_INT(buf); 004112 pMem->flags = MEM_Int; 004113 testcase( pMem->u.i<0 ); 004114 return; 004115 } 004116 case 2: { /* 2-byte signed integer */ 004117 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit 004118 ** twos-complement integer. */ 004119 pMem->u.i = TWO_BYTE_INT(buf); 004120 pMem->flags = MEM_Int; 004121 testcase( pMem->u.i<0 ); 004122 return; 004123 } 004124 case 3: { /* 3-byte signed integer */ 004125 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit 004126 ** twos-complement integer. */ 004127 pMem->u.i = THREE_BYTE_INT(buf); 004128 pMem->flags = MEM_Int; 004129 testcase( pMem->u.i<0 ); 004130 return; 004131 } 004132 case 4: { /* 4-byte signed integer */ 004133 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit 004134 ** twos-complement integer. */ 004135 pMem->u.i = FOUR_BYTE_INT(buf); 004136 #ifdef __HP_cc 004137 /* Work around a sign-extension bug in the HP compiler for HP/UX */ 004138 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL; 004139 #endif 004140 pMem->flags = MEM_Int; 004141 testcase( pMem->u.i<0 ); 004142 return; 004143 } 004144 case 5: { /* 6-byte signed integer */ 004145 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit 004146 ** twos-complement integer. */ 004147 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); 004148 pMem->flags = MEM_Int; 004149 testcase( pMem->u.i<0 ); 004150 return; 004151 } 004152 case 6: /* 8-byte signed integer */ 004153 case 7: { /* IEEE floating point */ 004154 /* These use local variables, so do them in a separate routine 004155 ** to avoid having to move the frame pointer in the common case */ 004156 serialGet(buf,serial_type,pMem); 004157 return; 004158 } 004159 case 8: /* Integer 0 */ 004160 case 9: { /* Integer 1 */ 004161 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */ 004162 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */ 004163 pMem->u.i = serial_type-8; 004164 pMem->flags = MEM_Int; 004165 return; 004166 } 004167 default: { 004168 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in 004169 ** length. 004170 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and 004171 ** (N-13)/2 bytes in length. */ 004172 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem }; 004173 pMem->z = (char *)buf; 004174 pMem->n = (serial_type-12)/2; 004175 pMem->flags = aFlag[serial_type&1]; 004176 return; 004177 } 004178 } 004179 return; 004180 } 004181 /* 004182 ** This routine is used to allocate sufficient space for an UnpackedRecord 004183 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if 004184 ** the first argument is a pointer to KeyInfo structure pKeyInfo. 004185 ** 004186 ** The space is either allocated using sqlite3DbMallocRaw() or from within 004187 ** the unaligned buffer passed via the second and third arguments (presumably 004188 ** stack space). If the former, then *ppFree is set to a pointer that should 004189 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the 004190 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL 004191 ** before returning. 004192 ** 004193 ** If an OOM error occurs, NULL is returned. 004194 */ 004195 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord( 004196 KeyInfo *pKeyInfo /* Description of the record */ 004197 ){ 004198 UnpackedRecord *p; /* Unpacked record to return */ 004199 int nByte; /* Number of bytes required for *p */ 004200 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1); 004201 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte); 004202 if( !p ) return 0; 004203 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))]; 004204 assert( pKeyInfo->aSortFlags!=0 ); 004205 p->pKeyInfo = pKeyInfo; 004206 p->nField = pKeyInfo->nKeyField + 1; 004207 return p; 004208 } 004209 004210 /* 004211 ** Given the nKey-byte encoding of a record in pKey[], populate the 004212 ** UnpackedRecord structure indicated by the fourth argument with the 004213 ** contents of the decoded record. 004214 */ 004215 void sqlite3VdbeRecordUnpack( 004216 KeyInfo *pKeyInfo, /* Information about the record format */ 004217 int nKey, /* Size of the binary record */ 004218 const void *pKey, /* The binary record */ 004219 UnpackedRecord *p /* Populate this structure before returning. */ 004220 ){ 004221 const unsigned char *aKey = (const unsigned char *)pKey; 004222 u32 d; 004223 u32 idx; /* Offset in aKey[] to read from */ 004224 u16 u; /* Unsigned loop counter */ 004225 u32 szHdr; 004226 Mem *pMem = p->aMem; 004227 004228 p->default_rc = 0; 004229 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); 004230 idx = getVarint32(aKey, szHdr); 004231 d = szHdr; 004232 u = 0; 004233 while( idx<szHdr && d<=(u32)nKey ){ 004234 u32 serial_type; 004235 004236 idx += getVarint32(&aKey[idx], serial_type); 004237 pMem->enc = pKeyInfo->enc; 004238 pMem->db = pKeyInfo->db; 004239 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */ 004240 pMem->szMalloc = 0; 004241 pMem->z = 0; 004242 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); 004243 d += sqlite3VdbeSerialTypeLen(serial_type); 004244 pMem++; 004245 if( (++u)>=p->nField ) break; 004246 } 004247 if( d>(u32)nKey && u ){ 004248 assert( CORRUPT_DB ); 004249 /* In a corrupt record entry, the last pMem might have been set up using 004250 ** uninitialized memory. Overwrite its value with NULL, to prevent 004251 ** warnings from MSAN. */ 004252 sqlite3VdbeMemSetNull(pMem-1); 004253 } 004254 assert( u<=pKeyInfo->nKeyField + 1 ); 004255 p->nField = u; 004256 } 004257 004258 #ifdef SQLITE_DEBUG 004259 /* 004260 ** This function compares two index or table record keys in the same way 004261 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(), 004262 ** this function deserializes and compares values using the 004263 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used 004264 ** in assert() statements to ensure that the optimized code in 004265 ** sqlite3VdbeRecordCompare() returns results with these two primitives. 004266 ** 004267 ** Return true if the result of comparison is equivalent to desiredResult. 004268 ** Return false if there is a disagreement. 004269 */ 004270 static int vdbeRecordCompareDebug( 004271 int nKey1, const void *pKey1, /* Left key */ 004272 const UnpackedRecord *pPKey2, /* Right key */ 004273 int desiredResult /* Correct answer */ 004274 ){ 004275 u32 d1; /* Offset into aKey[] of next data element */ 004276 u32 idx1; /* Offset into aKey[] of next header element */ 004277 u32 szHdr1; /* Number of bytes in header */ 004278 int i = 0; 004279 int rc = 0; 004280 const unsigned char *aKey1 = (const unsigned char *)pKey1; 004281 KeyInfo *pKeyInfo; 004282 Mem mem1; 004283 004284 pKeyInfo = pPKey2->pKeyInfo; 004285 if( pKeyInfo->db==0 ) return 1; 004286 mem1.enc = pKeyInfo->enc; 004287 mem1.db = pKeyInfo->db; 004288 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ 004289 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 004290 004291 /* Compilers may complain that mem1.u.i is potentially uninitialized. 004292 ** We could initialize it, as shown here, to silence those complaints. 004293 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing 004294 ** the unnecessary initialization has a measurable negative performance 004295 ** impact, since this routine is a very high runner. And so, we choose 004296 ** to ignore the compiler warnings and leave this variable uninitialized. 004297 */ 004298 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ 004299 004300 idx1 = getVarint32(aKey1, szHdr1); 004301 if( szHdr1>98307 ) return SQLITE_CORRUPT; 004302 d1 = szHdr1; 004303 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB ); 004304 assert( pKeyInfo->aSortFlags!=0 ); 004305 assert( pKeyInfo->nKeyField>0 ); 004306 assert( idx1<=szHdr1 || CORRUPT_DB ); 004307 do{ 004308 u32 serial_type1; 004309 004310 /* Read the serial types for the next element in each key. */ 004311 idx1 += getVarint32( aKey1+idx1, serial_type1 ); 004312 004313 /* Verify that there is enough key space remaining to avoid 004314 ** a buffer overread. The "d1+serial_type1+2" subexpression will 004315 ** always be greater than or equal to the amount of required key space. 004316 ** Use that approximation to avoid the more expensive call to 004317 ** sqlite3VdbeSerialTypeLen() in the common case. 004318 */ 004319 if( d1+(u64)serial_type1+2>(u64)nKey1 004320 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1 004321 ){ 004322 if( serial_type1>=1 004323 && serial_type1<=7 004324 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8 004325 && CORRUPT_DB 004326 ){ 004327 return 1; /* corrupt record not detected by 004328 ** sqlite3VdbeRecordCompareWithSkip(). Return true 004329 ** to avoid firing the assert() */ 004330 } 004331 break; 004332 } 004333 004334 /* Extract the values to be compared. 004335 */ 004336 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); 004337 d1 += sqlite3VdbeSerialTypeLen(serial_type1); 004338 004339 /* Do the comparison 004340 */ 004341 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], 004342 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0); 004343 if( rc!=0 ){ 004344 assert( mem1.szMalloc==0 ); /* See comment below */ 004345 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 004346 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null)) 004347 ){ 004348 rc = -rc; 004349 } 004350 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){ 004351 rc = -rc; /* Invert the result for DESC sort order. */ 004352 } 004353 goto debugCompareEnd; 004354 } 004355 i++; 004356 }while( idx1<szHdr1 && i<pPKey2->nField ); 004357 004358 /* No memory allocation is ever used on mem1. Prove this using 004359 ** the following assert(). If the assert() fails, it indicates a 004360 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). 004361 */ 004362 assert( mem1.szMalloc==0 ); 004363 004364 /* rc==0 here means that one of the keys ran out of fields and 004365 ** all the fields up to that point were equal. Return the default_rc 004366 ** value. */ 004367 rc = pPKey2->default_rc; 004368 004369 debugCompareEnd: 004370 if( desiredResult==0 && rc==0 ) return 1; 004371 if( desiredResult<0 && rc<0 ) return 1; 004372 if( desiredResult>0 && rc>0 ) return 1; 004373 if( CORRUPT_DB ) return 1; 004374 if( pKeyInfo->db->mallocFailed ) return 1; 004375 return 0; 004376 } 004377 #endif 004378 004379 #ifdef SQLITE_DEBUG 004380 /* 004381 ** Count the number of fields (a.k.a. columns) in the record given by 004382 ** pKey,nKey. The verify that this count is less than or equal to the 004383 ** limit given by pKeyInfo->nAllField. 004384 ** 004385 ** If this constraint is not satisfied, it means that the high-speed 004386 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will 004387 ** not work correctly. If this assert() ever fires, it probably means 004388 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed 004389 ** incorrectly. 004390 */ 004391 static void vdbeAssertFieldCountWithinLimits( 004392 int nKey, const void *pKey, /* The record to verify */ 004393 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */ 004394 ){ 004395 int nField = 0; 004396 u32 szHdr; 004397 u32 idx; 004398 u32 notUsed; 004399 const unsigned char *aKey = (const unsigned char*)pKey; 004400 004401 if( CORRUPT_DB ) return; 004402 idx = getVarint32(aKey, szHdr); 004403 assert( nKey>=0 ); 004404 assert( szHdr<=(u32)nKey ); 004405 while( idx<szHdr ){ 004406 idx += getVarint32(aKey+idx, notUsed); 004407 nField++; 004408 } 004409 assert( nField <= pKeyInfo->nAllField ); 004410 } 004411 #else 004412 # define vdbeAssertFieldCountWithinLimits(A,B,C) 004413 #endif 004414 004415 /* 004416 ** Both *pMem1 and *pMem2 contain string values. Compare the two values 004417 ** using the collation sequence pColl. As usual, return a negative , zero 004418 ** or positive value if *pMem1 is less than, equal to or greater than 004419 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);". 004420 */ 004421 static int vdbeCompareMemString( 004422 const Mem *pMem1, 004423 const Mem *pMem2, 004424 const CollSeq *pColl, 004425 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */ 004426 ){ 004427 if( pMem1->enc==pColl->enc ){ 004428 /* The strings are already in the correct encoding. Call the 004429 ** comparison function directly */ 004430 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); 004431 }else{ 004432 int rc; 004433 const void *v1, *v2; 004434 Mem c1; 004435 Mem c2; 004436 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null); 004437 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null); 004438 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); 004439 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); 004440 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); 004441 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); 004442 if( (v1==0 || v2==0) ){ 004443 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT; 004444 rc = 0; 004445 }else{ 004446 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2); 004447 } 004448 sqlite3VdbeMemReleaseMalloc(&c1); 004449 sqlite3VdbeMemReleaseMalloc(&c2); 004450 return rc; 004451 } 004452 } 004453 004454 /* 004455 ** The input pBlob is guaranteed to be a Blob that is not marked 004456 ** with MEM_Zero. Return true if it could be a zero-blob. 004457 */ 004458 static int isAllZero(const char *z, int n){ 004459 int i; 004460 for(i=0; i<n; i++){ 004461 if( z[i] ) return 0; 004462 } 004463 return 1; 004464 } 004465 004466 /* 004467 ** Compare two blobs. Return negative, zero, or positive if the first 004468 ** is less than, equal to, or greater than the second, respectively. 004469 ** If one blob is a prefix of the other, then the shorter is the lessor. 004470 */ 004471 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){ 004472 int c; 004473 int n1 = pB1->n; 004474 int n2 = pB2->n; 004475 004476 /* It is possible to have a Blob value that has some non-zero content 004477 ** followed by zero content. But that only comes up for Blobs formed 004478 ** by the OP_MakeRecord opcode, and such Blobs never get passed into 004479 ** sqlite3MemCompare(). */ 004480 assert( (pB1->flags & MEM_Zero)==0 || n1==0 ); 004481 assert( (pB2->flags & MEM_Zero)==0 || n2==0 ); 004482 004483 if( (pB1->flags|pB2->flags) & MEM_Zero ){ 004484 if( pB1->flags & pB2->flags & MEM_Zero ){ 004485 return pB1->u.nZero - pB2->u.nZero; 004486 }else if( pB1->flags & MEM_Zero ){ 004487 if( !isAllZero(pB2->z, pB2->n) ) return -1; 004488 return pB1->u.nZero - n2; 004489 }else{ 004490 if( !isAllZero(pB1->z, pB1->n) ) return +1; 004491 return n1 - pB2->u.nZero; 004492 } 004493 } 004494 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1); 004495 if( c ) return c; 004496 return n1 - n2; 004497 } 004498 004499 /* The following two functions are used only within testcase() to prove 004500 ** test coverage. These functions do no exist for production builds. 004501 ** We must use separate SQLITE_NOINLINE functions here, since otherwise 004502 ** optimizer code movement causes gcov to become very confused. 004503 */ 004504 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) 004505 static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; } 004506 static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; } 004507 #endif 004508 004509 /* 004510 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point 004511 ** number. Return negative, zero, or positive if the first (i64) is less than, 004512 ** equal to, or greater than the second (double). 004513 */ 004514 int sqlite3IntFloatCompare(i64 i, double r){ 004515 if( sqlite3IsNaN(r) ){ 004516 /* SQLite considers NaN to be a NULL. And all integer values are greater 004517 ** than NULL */ 004518 return 1; 004519 } 004520 if( sqlite3Config.bUseLongDouble ){ 004521 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i; 004522 testcase( x<r ); 004523 testcase( x>r ); 004524 testcase( x==r ); 004525 return (x<r) ? -1 : (x>r); 004526 }else{ 004527 i64 y; 004528 if( r<-9223372036854775808.0 ) return +1; 004529 if( r>=9223372036854775808.0 ) return -1; 004530 y = (i64)r; 004531 if( i<y ) return -1; 004532 if( i>y ) return +1; 004533 testcase( doubleLt(((double)i),r) ); 004534 testcase( doubleLt(r,((double)i)) ); 004535 testcase( doubleEq(r,((double)i)) ); 004536 return (((double)i)<r) ? -1 : (((double)i)>r); 004537 } 004538 } 004539 004540 /* 004541 ** Compare the values contained by the two memory cells, returning 004542 ** negative, zero or positive if pMem1 is less than, equal to, or greater 004543 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers 004544 ** and reals) sorted numerically, followed by text ordered by the collating 004545 ** sequence pColl and finally blob's ordered by memcmp(). 004546 ** 004547 ** Two NULL values are considered equal by this function. 004548 */ 004549 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ 004550 int f1, f2; 004551 int combined_flags; 004552 004553 f1 = pMem1->flags; 004554 f2 = pMem2->flags; 004555 combined_flags = f1|f2; 004556 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) ); 004557 004558 /* If one value is NULL, it is less than the other. If both values 004559 ** are NULL, return 0. 004560 */ 004561 if( combined_flags&MEM_Null ){ 004562 return (f2&MEM_Null) - (f1&MEM_Null); 004563 } 004564 004565 /* At least one of the two values is a number 004566 */ 004567 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){ 004568 testcase( combined_flags & MEM_Int ); 004569 testcase( combined_flags & MEM_Real ); 004570 testcase( combined_flags & MEM_IntReal ); 004571 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){ 004572 testcase( f1 & f2 & MEM_Int ); 004573 testcase( f1 & f2 & MEM_IntReal ); 004574 if( pMem1->u.i < pMem2->u.i ) return -1; 004575 if( pMem1->u.i > pMem2->u.i ) return +1; 004576 return 0; 004577 } 004578 if( (f1 & f2 & MEM_Real)!=0 ){ 004579 if( pMem1->u.r < pMem2->u.r ) return -1; 004580 if( pMem1->u.r > pMem2->u.r ) return +1; 004581 return 0; 004582 } 004583 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){ 004584 testcase( f1 & MEM_Int ); 004585 testcase( f1 & MEM_IntReal ); 004586 if( (f2&MEM_Real)!=0 ){ 004587 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r); 004588 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 004589 if( pMem1->u.i < pMem2->u.i ) return -1; 004590 if( pMem1->u.i > pMem2->u.i ) return +1; 004591 return 0; 004592 }else{ 004593 return -1; 004594 } 004595 } 004596 if( (f1&MEM_Real)!=0 ){ 004597 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){ 004598 testcase( f2 & MEM_Int ); 004599 testcase( f2 & MEM_IntReal ); 004600 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r); 004601 }else{ 004602 return -1; 004603 } 004604 } 004605 return +1; 004606 } 004607 004608 /* If one value is a string and the other is a blob, the string is less. 004609 ** If both are strings, compare using the collating functions. 004610 */ 004611 if( combined_flags&MEM_Str ){ 004612 if( (f1 & MEM_Str)==0 ){ 004613 return 1; 004614 } 004615 if( (f2 & MEM_Str)==0 ){ 004616 return -1; 004617 } 004618 004619 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed ); 004620 assert( pMem1->enc==SQLITE_UTF8 || 004621 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); 004622 004623 /* The collation sequence must be defined at this point, even if 004624 ** the user deletes the collation sequence after the vdbe program is 004625 ** compiled (this was not always the case). 004626 */ 004627 assert( !pColl || pColl->xCmp ); 004628 004629 if( pColl ){ 004630 return vdbeCompareMemString(pMem1, pMem2, pColl, 0); 004631 } 004632 /* If a NULL pointer was passed as the collate function, fall through 004633 ** to the blob case and use memcmp(). */ 004634 } 004635 004636 /* Both values must be blobs. Compare using memcmp(). */ 004637 return sqlite3BlobCompare(pMem1, pMem2); 004638 } 004639 004640 004641 /* 004642 ** The first argument passed to this function is a serial-type that 004643 ** corresponds to an integer - all values between 1 and 9 inclusive 004644 ** except 7. The second points to a buffer containing an integer value 004645 ** serialized according to serial_type. This function deserializes 004646 ** and returns the value. 004647 */ 004648 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ 004649 u32 y; 004650 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); 004651 switch( serial_type ){ 004652 case 0: 004653 case 1: 004654 testcase( aKey[0]&0x80 ); 004655 return ONE_BYTE_INT(aKey); 004656 case 2: 004657 testcase( aKey[0]&0x80 ); 004658 return TWO_BYTE_INT(aKey); 004659 case 3: 004660 testcase( aKey[0]&0x80 ); 004661 return THREE_BYTE_INT(aKey); 004662 case 4: { 004663 testcase( aKey[0]&0x80 ); 004664 y = FOUR_BYTE_UINT(aKey); 004665 return (i64)*(int*)&y; 004666 } 004667 case 5: { 004668 testcase( aKey[0]&0x80 ); 004669 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 004670 } 004671 case 6: { 004672 u64 x = FOUR_BYTE_UINT(aKey); 004673 testcase( aKey[0]&0x80 ); 004674 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 004675 return (i64)*(i64*)&x; 004676 } 004677 } 004678 004679 return (serial_type - 8); 004680 } 004681 004682 /* 004683 ** This function compares the two table rows or index records 004684 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero 004685 ** or positive integer if key1 is less than, equal to or 004686 ** greater than key2. The {nKey1, pKey1} key must be a blob 004687 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2 004688 ** key must be a parsed key such as obtained from 004689 ** sqlite3VdbeParseRecord. 004690 ** 004691 ** If argument bSkip is non-zero, it is assumed that the caller has already 004692 ** determined that the first fields of the keys are equal. 004693 ** 004694 ** Key1 and Key2 do not have to contain the same number of fields. If all 004695 ** fields that appear in both keys are equal, then pPKey2->default_rc is 004696 ** returned. 004697 ** 004698 ** If database corruption is discovered, set pPKey2->errCode to 004699 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered, 004700 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the 004701 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db). 004702 */ 004703 int sqlite3VdbeRecordCompareWithSkip( 004704 int nKey1, const void *pKey1, /* Left key */ 004705 UnpackedRecord *pPKey2, /* Right key */ 004706 int bSkip /* If true, skip the first field */ 004707 ){ 004708 u32 d1; /* Offset into aKey[] of next data element */ 004709 int i; /* Index of next field to compare */ 004710 u32 szHdr1; /* Size of record header in bytes */ 004711 u32 idx1; /* Offset of first type in header */ 004712 int rc = 0; /* Return value */ 004713 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */ 004714 KeyInfo *pKeyInfo; 004715 const unsigned char *aKey1 = (const unsigned char *)pKey1; 004716 Mem mem1; 004717 004718 /* If bSkip is true, then the caller has already determined that the first 004719 ** two elements in the keys are equal. Fix the various stack variables so 004720 ** that this routine begins comparing at the second field. */ 004721 if( bSkip ){ 004722 u32 s1 = aKey1[1]; 004723 if( s1<0x80 ){ 004724 idx1 = 2; 004725 }else{ 004726 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1); 004727 } 004728 szHdr1 = aKey1[0]; 004729 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1); 004730 i = 1; 004731 pRhs++; 004732 }else{ 004733 if( (szHdr1 = aKey1[0])<0x80 ){ 004734 idx1 = 1; 004735 }else{ 004736 idx1 = sqlite3GetVarint32(aKey1, &szHdr1); 004737 } 004738 d1 = szHdr1; 004739 i = 0; 004740 } 004741 if( d1>(unsigned)nKey1 ){ 004742 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004743 return 0; /* Corruption */ 004744 } 004745 004746 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */ 004747 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField 004748 || CORRUPT_DB ); 004749 assert( pPKey2->pKeyInfo->aSortFlags!=0 ); 004750 assert( pPKey2->pKeyInfo->nKeyField>0 ); 004751 assert( idx1<=szHdr1 || CORRUPT_DB ); 004752 while( 1 /*exit-by-break*/ ){ 004753 u32 serial_type; 004754 004755 /* RHS is an integer */ 004756 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){ 004757 testcase( pRhs->flags & MEM_Int ); 004758 testcase( pRhs->flags & MEM_IntReal ); 004759 serial_type = aKey1[idx1]; 004760 testcase( serial_type==12 ); 004761 if( serial_type>=10 ){ 004762 rc = serial_type==10 ? -1 : +1; 004763 }else if( serial_type==0 ){ 004764 rc = -1; 004765 }else if( serial_type==7 ){ 004766 serialGet7(&aKey1[d1], &mem1); 004767 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r); 004768 }else{ 004769 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]); 004770 i64 rhs = pRhs->u.i; 004771 if( lhs<rhs ){ 004772 rc = -1; 004773 }else if( lhs>rhs ){ 004774 rc = +1; 004775 } 004776 } 004777 } 004778 004779 /* RHS is real */ 004780 else if( pRhs->flags & MEM_Real ){ 004781 serial_type = aKey1[idx1]; 004782 if( serial_type>=10 ){ 004783 /* Serial types 12 or greater are strings and blobs (greater than 004784 ** numbers). Types 10 and 11 are currently "reserved for future 004785 ** use", so it doesn't really matter what the results of comparing 004786 ** them to numeric values are. */ 004787 rc = serial_type==10 ? -1 : +1; 004788 }else if( serial_type==0 ){ 004789 rc = -1; 004790 }else{ 004791 if( serial_type==7 ){ 004792 if( serialGet7(&aKey1[d1], &mem1) ){ 004793 rc = -1; /* mem1 is a NaN */ 004794 }else if( mem1.u.r<pRhs->u.r ){ 004795 rc = -1; 004796 }else if( mem1.u.r>pRhs->u.r ){ 004797 rc = +1; 004798 }else{ 004799 assert( rc==0 ); 004800 } 004801 }else{ 004802 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); 004803 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r); 004804 } 004805 } 004806 } 004807 004808 /* RHS is a string */ 004809 else if( pRhs->flags & MEM_Str ){ 004810 getVarint32NR(&aKey1[idx1], serial_type); 004811 testcase( serial_type==12 ); 004812 if( serial_type<12 ){ 004813 rc = -1; 004814 }else if( !(serial_type & 0x01) ){ 004815 rc = +1; 004816 }else{ 004817 mem1.n = (serial_type - 12) / 2; 004818 testcase( (d1+mem1.n)==(unsigned)nKey1 ); 004819 testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); 004820 if( (d1+mem1.n) > (unsigned)nKey1 004821 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i 004822 ){ 004823 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004824 return 0; /* Corruption */ 004825 }else if( pKeyInfo->aColl[i] ){ 004826 mem1.enc = pKeyInfo->enc; 004827 mem1.db = pKeyInfo->db; 004828 mem1.flags = MEM_Str; 004829 mem1.z = (char*)&aKey1[d1]; 004830 rc = vdbeCompareMemString( 004831 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode 004832 ); 004833 }else{ 004834 int nCmp = MIN(mem1.n, pRhs->n); 004835 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004836 if( rc==0 ) rc = mem1.n - pRhs->n; 004837 } 004838 } 004839 } 004840 004841 /* RHS is a blob */ 004842 else if( pRhs->flags & MEM_Blob ){ 004843 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 ); 004844 getVarint32NR(&aKey1[idx1], serial_type); 004845 testcase( serial_type==12 ); 004846 if( serial_type<12 || (serial_type & 0x01) ){ 004847 rc = -1; 004848 }else{ 004849 int nStr = (serial_type - 12) / 2; 004850 testcase( (d1+nStr)==(unsigned)nKey1 ); 004851 testcase( (d1+nStr+1)==(unsigned)nKey1 ); 004852 if( (d1+nStr) > (unsigned)nKey1 ){ 004853 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004854 return 0; /* Corruption */ 004855 }else if( pRhs->flags & MEM_Zero ){ 004856 if( !isAllZero((const char*)&aKey1[d1],nStr) ){ 004857 rc = 1; 004858 }else{ 004859 rc = nStr - pRhs->u.nZero; 004860 } 004861 }else{ 004862 int nCmp = MIN(nStr, pRhs->n); 004863 rc = memcmp(&aKey1[d1], pRhs->z, nCmp); 004864 if( rc==0 ) rc = nStr - pRhs->n; 004865 } 004866 } 004867 } 004868 004869 /* RHS is null */ 004870 else{ 004871 serial_type = aKey1[idx1]; 004872 if( serial_type==0 004873 || serial_type==10 004874 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0) 004875 ){ 004876 assert( rc==0 ); 004877 }else{ 004878 rc = 1; 004879 } 004880 } 004881 004882 if( rc!=0 ){ 004883 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i]; 004884 if( sortFlags ){ 004885 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0 004886 || ((sortFlags & KEYINFO_ORDER_DESC) 004887 !=(serial_type==0 || (pRhs->flags&MEM_Null))) 004888 ){ 004889 rc = -rc; 004890 } 004891 } 004892 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) ); 004893 assert( mem1.szMalloc==0 ); /* See comment below */ 004894 return rc; 004895 } 004896 004897 i++; 004898 if( i==pPKey2->nField ) break; 004899 pRhs++; 004900 d1 += sqlite3VdbeSerialTypeLen(serial_type); 004901 if( d1>(unsigned)nKey1 ) break; 004902 idx1 += sqlite3VarintLen(serial_type); 004903 if( idx1>=(unsigned)szHdr1 ){ 004904 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 004905 return 0; /* Corrupt index */ 004906 } 004907 } 004908 004909 /* No memory allocation is ever used on mem1. Prove this using 004910 ** the following assert(). If the assert() fails, it indicates a 004911 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */ 004912 assert( mem1.szMalloc==0 ); 004913 004914 /* rc==0 here means that one or both of the keys ran out of fields and 004915 ** all the fields up to that point were equal. Return the default_rc 004916 ** value. */ 004917 assert( CORRUPT_DB 004918 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 004919 || pPKey2->pKeyInfo->db->mallocFailed 004920 ); 004921 pPKey2->eqSeen = 1; 004922 return pPKey2->default_rc; 004923 } 004924 int sqlite3VdbeRecordCompare( 004925 int nKey1, const void *pKey1, /* Left key */ 004926 UnpackedRecord *pPKey2 /* Right key */ 004927 ){ 004928 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0); 004929 } 004930 004931 004932 /* 004933 ** This function is an optimized version of sqlite3VdbeRecordCompare() 004934 ** that (a) the first field of pPKey2 is an integer, and (b) the 004935 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single 004936 ** byte (i.e. is less than 128). 004937 ** 004938 ** To avoid concerns about buffer overreads, this routine is only used 004939 ** on schemas where the maximum valid header size is 63 bytes or less. 004940 */ 004941 static int vdbeRecordCompareInt( 004942 int nKey1, const void *pKey1, /* Left key */ 004943 UnpackedRecord *pPKey2 /* Right key */ 004944 ){ 004945 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F]; 004946 int serial_type = ((const u8*)pKey1)[1]; 004947 int res; 004948 u32 y; 004949 u64 x; 004950 i64 v; 004951 i64 lhs; 004952 004953 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 004954 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB ); 004955 switch( serial_type ){ 004956 case 1: { /* 1-byte signed integer */ 004957 lhs = ONE_BYTE_INT(aKey); 004958 testcase( lhs<0 ); 004959 break; 004960 } 004961 case 2: { /* 2-byte signed integer */ 004962 lhs = TWO_BYTE_INT(aKey); 004963 testcase( lhs<0 ); 004964 break; 004965 } 004966 case 3: { /* 3-byte signed integer */ 004967 lhs = THREE_BYTE_INT(aKey); 004968 testcase( lhs<0 ); 004969 break; 004970 } 004971 case 4: { /* 4-byte signed integer */ 004972 y = FOUR_BYTE_UINT(aKey); 004973 lhs = (i64)*(int*)&y; 004974 testcase( lhs<0 ); 004975 break; 004976 } 004977 case 5: { /* 6-byte signed integer */ 004978 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); 004979 testcase( lhs<0 ); 004980 break; 004981 } 004982 case 6: { /* 8-byte signed integer */ 004983 x = FOUR_BYTE_UINT(aKey); 004984 x = (x<<32) | FOUR_BYTE_UINT(aKey+4); 004985 lhs = *(i64*)&x; 004986 testcase( lhs<0 ); 004987 break; 004988 } 004989 case 8: 004990 lhs = 0; 004991 break; 004992 case 9: 004993 lhs = 1; 004994 break; 004995 004996 /* This case could be removed without changing the results of running 004997 ** this code. Including it causes gcc to generate a faster switch 004998 ** statement (since the range of switch targets now starts at zero and 004999 ** is contiguous) but does not cause any duplicate code to be generated 005000 ** (as gcc is clever enough to combine the two like cases). Other 005001 ** compilers might be similar. */ 005002 case 0: case 7: 005003 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 005004 005005 default: 005006 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2); 005007 } 005008 005009 assert( pPKey2->u.i == pPKey2->aMem[0].u.i ); 005010 v = pPKey2->u.i; 005011 if( v>lhs ){ 005012 res = pPKey2->r1; 005013 }else if( v<lhs ){ 005014 res = pPKey2->r2; 005015 }else if( pPKey2->nField>1 ){ 005016 /* The first fields of the two keys are equal. Compare the trailing 005017 ** fields. */ 005018 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 005019 }else{ 005020 /* The first fields of the two keys are equal and there are no trailing 005021 ** fields. Return pPKey2->default_rc in this case. */ 005022 res = pPKey2->default_rc; 005023 pPKey2->eqSeen = 1; 005024 } 005025 005026 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) ); 005027 return res; 005028 } 005029 005030 /* 005031 ** This function is an optimized version of sqlite3VdbeRecordCompare() 005032 ** that (a) the first field of pPKey2 is a string, that (b) the first field 005033 ** uses the collation sequence BINARY and (c) that the size-of-header varint 005034 ** at the start of (pKey1/nKey1) fits in a single byte. 005035 */ 005036 static int vdbeRecordCompareString( 005037 int nKey1, const void *pKey1, /* Left key */ 005038 UnpackedRecord *pPKey2 /* Right key */ 005039 ){ 005040 const u8 *aKey1 = (const u8*)pKey1; 005041 int serial_type; 005042 int res; 005043 005044 assert( pPKey2->aMem[0].flags & MEM_Str ); 005045 assert( pPKey2->aMem[0].n == pPKey2->n ); 005046 assert( pPKey2->aMem[0].z == pPKey2->u.z ); 005047 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo); 005048 serial_type = (signed char)(aKey1[1]); 005049 005050 vrcs_restart: 005051 if( serial_type<12 ){ 005052 if( serial_type<0 ){ 005053 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type); 005054 if( serial_type>=12 ) goto vrcs_restart; 005055 assert( CORRUPT_DB ); 005056 } 005057 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */ 005058 }else if( !(serial_type & 0x01) ){ 005059 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */ 005060 }else{ 005061 int nCmp; 005062 int nStr; 005063 int szHdr = aKey1[0]; 005064 005065 nStr = (serial_type-12) / 2; 005066 if( (szHdr + nStr) > nKey1 ){ 005067 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT; 005068 return 0; /* Corruption */ 005069 } 005070 nCmp = MIN( pPKey2->n, nStr ); 005071 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp); 005072 005073 if( res>0 ){ 005074 res = pPKey2->r2; 005075 }else if( res<0 ){ 005076 res = pPKey2->r1; 005077 }else{ 005078 res = nStr - pPKey2->n; 005079 if( res==0 ){ 005080 if( pPKey2->nField>1 ){ 005081 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1); 005082 }else{ 005083 res = pPKey2->default_rc; 005084 pPKey2->eqSeen = 1; 005085 } 005086 }else if( res>0 ){ 005087 res = pPKey2->r2; 005088 }else{ 005089 res = pPKey2->r1; 005090 } 005091 } 005092 } 005093 005094 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) 005095 || CORRUPT_DB 005096 || pPKey2->pKeyInfo->db->mallocFailed 005097 ); 005098 return res; 005099 } 005100 005101 /* 005102 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function 005103 ** suitable for comparing serialized records to the unpacked record passed 005104 ** as the only argument. 005105 */ 005106 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){ 005107 /* varintRecordCompareInt() and varintRecordCompareString() both assume 005108 ** that the size-of-header varint that occurs at the start of each record 005109 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt() 005110 ** also assumes that it is safe to overread a buffer by at least the 005111 ** maximum possible legal header size plus 8 bytes. Because there is 005112 ** guaranteed to be at least 74 (but not 136) bytes of padding following each 005113 ** buffer passed to varintRecordCompareInt() this makes it convenient to 005114 ** limit the size of the header to 64 bytes in cases where the first field 005115 ** is an integer. 005116 ** 005117 ** The easiest way to enforce this limit is to consider only records with 005118 ** 13 fields or less. If the first field is an integer, the maximum legal 005119 ** header size is (12*5 + 1 + 1) bytes. */ 005120 if( p->pKeyInfo->nAllField<=13 ){ 005121 int flags = p->aMem[0].flags; 005122 if( p->pKeyInfo->aSortFlags[0] ){ 005123 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){ 005124 return sqlite3VdbeRecordCompare; 005125 } 005126 p->r1 = 1; 005127 p->r2 = -1; 005128 }else{ 005129 p->r1 = -1; 005130 p->r2 = 1; 005131 } 005132 if( (flags & MEM_Int) ){ 005133 p->u.i = p->aMem[0].u.i; 005134 return vdbeRecordCompareInt; 005135 } 005136 testcase( flags & MEM_Real ); 005137 testcase( flags & MEM_Null ); 005138 testcase( flags & MEM_Blob ); 005139 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0 005140 && p->pKeyInfo->aColl[0]==0 005141 ){ 005142 assert( flags & MEM_Str ); 005143 p->u.z = p->aMem[0].z; 005144 p->n = p->aMem[0].n; 005145 return vdbeRecordCompareString; 005146 } 005147 } 005148 005149 return sqlite3VdbeRecordCompare; 005150 } 005151 005152 /* 005153 ** pCur points at an index entry created using the OP_MakeRecord opcode. 005154 ** Read the rowid (the last field in the record) and store it in *rowid. 005155 ** Return SQLITE_OK if everything works, or an error code otherwise. 005156 ** 005157 ** pCur might be pointing to text obtained from a corrupt database file. 005158 ** So the content cannot be trusted. Do appropriate checks on the content. 005159 */ 005160 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ 005161 i64 nCellKey = 0; 005162 int rc; 005163 u32 szHdr; /* Size of the header */ 005164 u32 typeRowid; /* Serial type of the rowid */ 005165 u32 lenRowid; /* Size of the rowid */ 005166 Mem m, v; 005167 005168 /* Get the size of the index entry. Only indices entries of less 005169 ** than 2GiB are support - anything large must be database corruption. 005170 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so 005171 ** this code can safely assume that nCellKey is 32-bits 005172 */ 005173 assert( sqlite3BtreeCursorIsValid(pCur) ); 005174 nCellKey = sqlite3BtreePayloadSize(pCur); 005175 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); 005176 005177 /* Read in the complete content of the index entry */ 005178 sqlite3VdbeMemInit(&m, db, 0); 005179 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 005180 if( rc ){ 005181 return rc; 005182 } 005183 005184 /* The index entry must begin with a header size */ 005185 getVarint32NR((u8*)m.z, szHdr); 005186 testcase( szHdr==3 ); 005187 testcase( szHdr==(u32)m.n ); 005188 testcase( szHdr>0x7fffffff ); 005189 assert( m.n>=0 ); 005190 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ 005191 goto idx_rowid_corruption; 005192 } 005193 005194 /* The last field of the index should be an integer - the ROWID. 005195 ** Verify that the last entry really is an integer. */ 005196 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid); 005197 testcase( typeRowid==1 ); 005198 testcase( typeRowid==2 ); 005199 testcase( typeRowid==3 ); 005200 testcase( typeRowid==4 ); 005201 testcase( typeRowid==5 ); 005202 testcase( typeRowid==6 ); 005203 testcase( typeRowid==8 ); 005204 testcase( typeRowid==9 ); 005205 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ 005206 goto idx_rowid_corruption; 005207 } 005208 lenRowid = sqlite3SmallTypeSizes[typeRowid]; 005209 testcase( (u32)m.n==szHdr+lenRowid ); 005210 if( unlikely((u32)m.n<szHdr+lenRowid) ){ 005211 goto idx_rowid_corruption; 005212 } 005213 005214 /* Fetch the integer off the end of the index record */ 005215 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); 005216 *rowid = v.u.i; 005217 sqlite3VdbeMemReleaseMalloc(&m); 005218 return SQLITE_OK; 005219 005220 /* Jump here if database corruption is detected after m has been 005221 ** allocated. Free the m object and return SQLITE_CORRUPT. */ 005222 idx_rowid_corruption: 005223 testcase( m.szMalloc!=0 ); 005224 sqlite3VdbeMemReleaseMalloc(&m); 005225 return SQLITE_CORRUPT_BKPT; 005226 } 005227 005228 /* 005229 ** Compare the key of the index entry that cursor pC is pointing to against 005230 ** the key string in pUnpacked. Write into *pRes a number 005231 ** that is negative, zero, or positive if pC is less than, equal to, 005232 ** or greater than pUnpacked. Return SQLITE_OK on success. 005233 ** 005234 ** pUnpacked is either created without a rowid or is truncated so that it 005235 ** omits the rowid at the end. The rowid at the end of the index entry 005236 ** is ignored as well. Hence, this routine only compares the prefixes 005237 ** of the keys prior to the final rowid, not the entire key. 005238 */ 005239 int sqlite3VdbeIdxKeyCompare( 005240 sqlite3 *db, /* Database connection */ 005241 VdbeCursor *pC, /* The cursor to compare against */ 005242 UnpackedRecord *pUnpacked, /* Unpacked version of key */ 005243 int *res /* Write the comparison result here */ 005244 ){ 005245 i64 nCellKey = 0; 005246 int rc; 005247 BtCursor *pCur; 005248 Mem m; 005249 005250 assert( pC->eCurType==CURTYPE_BTREE ); 005251 pCur = pC->uc.pCursor; 005252 assert( sqlite3BtreeCursorIsValid(pCur) ); 005253 nCellKey = sqlite3BtreePayloadSize(pCur); 005254 /* nCellKey will always be between 0 and 0xffffffff because of the way 005255 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 005256 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 005257 *res = 0; 005258 return SQLITE_CORRUPT_BKPT; 005259 } 005260 sqlite3VdbeMemInit(&m, db, 0); 005261 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 005262 if( rc ){ 005263 return rc; 005264 } 005265 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0); 005266 sqlite3VdbeMemReleaseMalloc(&m); 005267 return SQLITE_OK; 005268 } 005269 005270 /* 005271 ** This routine sets the value to be returned by subsequent calls to 005272 ** sqlite3_changes() on the database handle 'db'. 005273 */ 005274 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){ 005275 assert( sqlite3_mutex_held(db->mutex) ); 005276 db->nChange = nChange; 005277 db->nTotalChange += nChange; 005278 } 005279 005280 /* 005281 ** Set a flag in the vdbe to update the change counter when it is finalised 005282 ** or reset. 005283 */ 005284 void sqlite3VdbeCountChanges(Vdbe *v){ 005285 v->changeCntOn = 1; 005286 } 005287 005288 /* 005289 ** Mark every prepared statement associated with a database connection 005290 ** as expired. 005291 ** 005292 ** An expired statement means that recompilation of the statement is 005293 ** recommend. Statements expire when things happen that make their 005294 ** programs obsolete. Removing user-defined functions or collating 005295 ** sequences, or changing an authorization function are the types of 005296 ** things that make prepared statements obsolete. 005297 ** 005298 ** If iCode is 1, then expiration is advisory. The statement should 005299 ** be reprepared before being restarted, but if it is already running 005300 ** it is allowed to run to completion. 005301 ** 005302 ** Internally, this function just sets the Vdbe.expired flag on all 005303 ** prepared statements. The flag is set to 1 for an immediate expiration 005304 ** and set to 2 for an advisory expiration. 005305 */ 005306 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){ 005307 Vdbe *p; 005308 for(p = db->pVdbe; p; p=p->pVNext){ 005309 p->expired = iCode+1; 005310 } 005311 } 005312 005313 /* 005314 ** Return the database associated with the Vdbe. 005315 */ 005316 sqlite3 *sqlite3VdbeDb(Vdbe *v){ 005317 return v->db; 005318 } 005319 005320 /* 005321 ** Return the SQLITE_PREPARE flags for a Vdbe. 005322 */ 005323 u8 sqlite3VdbePrepareFlags(Vdbe *v){ 005324 return v->prepFlags; 005325 } 005326 005327 /* 005328 ** Return a pointer to an sqlite3_value structure containing the value bound 005329 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return 005330 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* 005331 ** constants) to the value before returning it. 005332 ** 005333 ** The returned value must be freed by the caller using sqlite3ValueFree(). 005334 */ 005335 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){ 005336 assert( iVar>0 ); 005337 if( v ){ 005338 Mem *pMem = &v->aVar[iVar-1]; 005339 assert( (v->db->flags & SQLITE_EnableQPSG)==0 005340 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); 005341 if( 0==(pMem->flags & MEM_Null) ){ 005342 sqlite3_value *pRet = sqlite3ValueNew(v->db); 005343 if( pRet ){ 005344 sqlite3VdbeMemCopy((Mem *)pRet, pMem); 005345 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); 005346 } 005347 return pRet; 005348 } 005349 } 005350 return 0; 005351 } 005352 005353 /* 005354 ** Configure SQL variable iVar so that binding a new value to it signals 005355 ** to sqlite3_reoptimize() that re-preparing the statement may result 005356 ** in a better query plan. 005357 */ 005358 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ 005359 assert( iVar>0 ); 005360 assert( (v->db->flags & SQLITE_EnableQPSG)==0 005361 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 ); 005362 if( iVar>=32 ){ 005363 v->expmask |= 0x80000000; 005364 }else{ 005365 v->expmask |= ((u32)1 << (iVar-1)); 005366 } 005367 } 005368 005369 /* 005370 ** Cause a function to throw an error if it was call from OP_PureFunc 005371 ** rather than OP_Function. 005372 ** 005373 ** OP_PureFunc means that the function must be deterministic, and should 005374 ** throw an error if it is given inputs that would make it non-deterministic. 005375 ** This routine is invoked by date/time functions that use non-deterministic 005376 ** features such as 'now'. 005377 */ 005378 int sqlite3NotPureFunc(sqlite3_context *pCtx){ 005379 const VdbeOp *pOp; 005380 #ifdef SQLITE_ENABLE_STAT4 005381 if( pCtx->pVdbe==0 ) return 1; 005382 #endif 005383 pOp = pCtx->pVdbe->aOp + pCtx->iOp; 005384 if( pOp->opcode==OP_PureFunc ){ 005385 const char *zContext; 005386 char *zMsg; 005387 if( pOp->p5 & NC_IsCheck ){ 005388 zContext = "a CHECK constraint"; 005389 }else if( pOp->p5 & NC_GenCol ){ 005390 zContext = "a generated column"; 005391 }else{ 005392 zContext = "an index"; 005393 } 005394 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s", 005395 pCtx->pFunc->zName, zContext); 005396 sqlite3_result_error(pCtx, zMsg, -1); 005397 sqlite3_free(zMsg); 005398 return 0; 005399 } 005400 return 1; 005401 } 005402 005403 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG) 005404 /* 005405 ** This Walker callback is used to help verify that calls to 005406 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have 005407 ** byte-code register values correctly initialized. 005408 */ 005409 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){ 005410 if( pExpr->op==TK_REGISTER ){ 005411 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 ); 005412 } 005413 return WRC_Continue; 005414 } 005415 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */ 005416 005417 #ifndef SQLITE_OMIT_VIRTUALTABLE 005418 /* 005419 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored 005420 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored 005421 ** in memory obtained from sqlite3DbMalloc). 005422 */ 005423 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){ 005424 if( pVtab->zErrMsg ){ 005425 sqlite3 *db = p->db; 005426 sqlite3DbFree(db, p->zErrMsg); 005427 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg); 005428 sqlite3_free(pVtab->zErrMsg); 005429 pVtab->zErrMsg = 0; 005430 } 005431 } 005432 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 005433 005434 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005435 005436 /* 005437 ** If the second argument is not NULL, release any allocations associated 005438 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord 005439 ** structure itself, using sqlite3DbFree(). 005440 ** 005441 ** This function is used to free UnpackedRecord structures allocated by 005442 ** the vdbeUnpackRecord() function found in vdbeapi.c. 005443 */ 005444 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){ 005445 assert( db!=0 ); 005446 if( p ){ 005447 int i; 005448 for(i=0; i<nField; i++){ 005449 Mem *pMem = &p->aMem[i]; 005450 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem); 005451 } 005452 sqlite3DbNNFreeNN(db, p); 005453 } 005454 } 005455 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 005456 005457 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005458 /* 005459 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call, 005460 ** then cursor passed as the second argument should point to the row about 005461 ** to be update or deleted. If the application calls sqlite3_preupdate_old(), 005462 ** the required value will be read from the row the cursor points to. 005463 */ 005464 void sqlite3VdbePreUpdateHook( 005465 Vdbe *v, /* Vdbe pre-update hook is invoked by */ 005466 VdbeCursor *pCsr, /* Cursor to grab old.* values from */ 005467 int op, /* SQLITE_INSERT, UPDATE or DELETE */ 005468 const char *zDb, /* Database name */ 005469 Table *pTab, /* Modified table */ 005470 i64 iKey1, /* Initial key value */ 005471 int iReg, /* Register for new.* record */ 005472 int iBlobWrite 005473 ){ 005474 sqlite3 *db = v->db; 005475 i64 iKey2; 005476 PreUpdate preupdate; 005477 const char *zTbl = pTab->zName; 005478 static const u8 fakeSortOrder = 0; 005479 #ifdef SQLITE_DEBUG 005480 int nRealCol; 005481 if( pTab->tabFlags & TF_WithoutRowid ){ 005482 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn; 005483 }else if( pTab->tabFlags & TF_HasVirtual ){ 005484 nRealCol = pTab->nNVCol; 005485 }else{ 005486 nRealCol = pTab->nCol; 005487 } 005488 #endif 005489 005490 assert( db->pPreUpdate==0 ); 005491 memset(&preupdate, 0, sizeof(PreUpdate)); 005492 if( HasRowid(pTab)==0 ){ 005493 iKey1 = iKey2 = 0; 005494 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab); 005495 }else{ 005496 if( op==SQLITE_UPDATE ){ 005497 iKey2 = v->aMem[iReg].u.i; 005498 }else{ 005499 iKey2 = iKey1; 005500 } 005501 } 005502 005503 assert( pCsr!=0 ); 005504 assert( pCsr->eCurType==CURTYPE_BTREE ); 005505 assert( pCsr->nField==nRealCol 005506 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1) 005507 ); 005508 005509 preupdate.v = v; 005510 preupdate.pCsr = pCsr; 005511 preupdate.op = op; 005512 preupdate.iNewReg = iReg; 005513 preupdate.keyinfo.db = db; 005514 preupdate.keyinfo.enc = ENC(db); 005515 preupdate.keyinfo.nKeyField = pTab->nCol; 005516 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder; 005517 preupdate.iKey1 = iKey1; 005518 preupdate.iKey2 = iKey2; 005519 preupdate.pTab = pTab; 005520 preupdate.iBlobWrite = iBlobWrite; 005521 005522 db->pPreUpdate = &preupdate; 005523 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2); 005524 db->pPreUpdate = 0; 005525 sqlite3DbFree(db, preupdate.aRecord); 005526 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked); 005527 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked); 005528 if( preupdate.aNew ){ 005529 int i; 005530 for(i=0; i<pCsr->nField; i++){ 005531 sqlite3VdbeMemRelease(&preupdate.aNew[i]); 005532 } 005533 sqlite3DbNNFreeNN(db, preupdate.aNew); 005534 } 005535 } 005536 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */