000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** The code in this file implements the function that runs the 000013 ** bytecode of a prepared statement. 000014 ** 000015 ** Various scripts scan this source file in order to generate HTML 000016 ** documentation, headers files, or other derived files. The formatting 000017 ** of the code in this file is, therefore, important. See other comments 000018 ** in this file for details. If in doubt, do not deviate from existing 000019 ** commenting and indentation practices when changing or adding code. 000020 */ 000021 #include "sqliteInt.h" 000022 #include "vdbeInt.h" 000023 000024 /* 000025 ** Invoke this macro on memory cells just prior to changing the 000026 ** value of the cell. This macro verifies that shallow copies are 000027 ** not misused. A shallow copy of a string or blob just copies a 000028 ** pointer to the string or blob, not the content. If the original 000029 ** is changed while the copy is still in use, the string or blob might 000030 ** be changed out from under the copy. This macro verifies that nothing 000031 ** like that ever happens. 000032 */ 000033 #ifdef SQLITE_DEBUG 000034 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) 000035 #else 000036 # define memAboutToChange(P,M) 000037 #endif 000038 000039 /* 000040 ** The following global variable is incremented every time a cursor 000041 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test 000042 ** procedures use this information to make sure that indices are 000043 ** working correctly. This variable has no function other than to 000044 ** help verify the correct operation of the library. 000045 */ 000046 #ifdef SQLITE_TEST 000047 int sqlite3_search_count = 0; 000048 #endif 000049 000050 /* 000051 ** When this global variable is positive, it gets decremented once before 000052 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted 000053 ** field of the sqlite3 structure is set in order to simulate an interrupt. 000054 ** 000055 ** This facility is used for testing purposes only. It does not function 000056 ** in an ordinary build. 000057 */ 000058 #ifdef SQLITE_TEST 000059 int sqlite3_interrupt_count = 0; 000060 #endif 000061 000062 /* 000063 ** The next global variable is incremented each type the OP_Sort opcode 000064 ** is executed. The test procedures use this information to make sure that 000065 ** sorting is occurring or not occurring at appropriate times. This variable 000066 ** has no function other than to help verify the correct operation of the 000067 ** library. 000068 */ 000069 #ifdef SQLITE_TEST 000070 int sqlite3_sort_count = 0; 000071 #endif 000072 000073 /* 000074 ** The next global variable records the size of the largest MEM_Blob 000075 ** or MEM_Str that has been used by a VDBE opcode. The test procedures 000076 ** use this information to make sure that the zero-blob functionality 000077 ** is working correctly. This variable has no function other than to 000078 ** help verify the correct operation of the library. 000079 */ 000080 #ifdef SQLITE_TEST 000081 int sqlite3_max_blobsize = 0; 000082 static void updateMaxBlobsize(Mem *p){ 000083 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){ 000084 sqlite3_max_blobsize = p->n; 000085 } 000086 } 000087 #endif 000088 000089 /* 000090 ** This macro evaluates to true if either the update hook or the preupdate 000091 ** hook are enabled for database connect DB. 000092 */ 000093 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 000094 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback) 000095 #else 000096 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback) 000097 #endif 000098 000099 /* 000100 ** The next global variable is incremented each time the OP_Found opcode 000101 ** is executed. This is used to test whether or not the foreign key 000102 ** operation implemented using OP_FkIsZero is working. This variable 000103 ** has no function other than to help verify the correct operation of the 000104 ** library. 000105 */ 000106 #ifdef SQLITE_TEST 000107 int sqlite3_found_count = 0; 000108 #endif 000109 000110 /* 000111 ** Test a register to see if it exceeds the current maximum blob size. 000112 ** If it does, record the new maximum blob size. 000113 */ 000114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE) 000115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P) 000116 #else 000117 # define UPDATE_MAX_BLOBSIZE(P) 000118 #endif 000119 000120 #ifdef SQLITE_DEBUG 000121 /* This routine provides a convenient place to set a breakpoint during 000122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after 000123 ** each opcode is printed. Variables "pc" (program counter) and pOp are 000124 ** available to add conditionals to the breakpoint. GDB example: 000125 ** 000126 ** break test_trace_breakpoint if pc=22 000127 ** 000128 ** Other useful labels for breakpoints include: 000129 ** test_addop_breakpoint(pc,pOp) 000130 ** sqlite3CorruptError(lineno) 000131 ** sqlite3MisuseError(lineno) 000132 ** sqlite3CantopenError(lineno) 000133 */ 000134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){ 000135 static u64 n = 0; 000136 (void)pc; 000137 (void)pOp; 000138 (void)v; 000139 n++; 000140 if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */ 000141 } 000142 #endif 000143 000144 /* 000145 ** Invoke the VDBE coverage callback, if that callback is defined. This 000146 ** feature is used for test suite validation only and does not appear an 000147 ** production builds. 000148 ** 000149 ** M is the type of branch. I is the direction taken for this instance of 000150 ** the branch. 000151 ** 000152 ** M: 2 - two-way branch (I=0: fall-thru 1: jump ) 000153 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL ) 000154 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3) 000155 ** 000156 ** In other words, if M is 2, then I is either 0 (for fall-through) or 000157 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an 000158 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2 000159 ** if the result of comparison is NULL. For M=3, I=2 the jump may or 000160 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5. 000161 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2 000162 ** depending on if the operands are less than, equal, or greater than. 000163 ** 000164 ** iSrcLine is the source code line (from the __LINE__ macro) that 000165 ** generated the VDBE instruction combined with flag bits. The source 000166 ** code line number is in the lower 24 bits of iSrcLine and the upper 000167 ** 8 bytes are flags. The lower three bits of the flags indicate 000168 ** values for I that should never occur. For example, if the branch is 000169 ** always taken, the flags should be 0x05 since the fall-through and 000170 ** alternate branch are never taken. If a branch is never taken then 000171 ** flags should be 0x06 since only the fall-through approach is allowed. 000172 ** 000173 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only 000174 ** interested in equal or not-equal. In other words, I==0 and I==2 000175 ** should be treated as equivalent 000176 ** 000177 ** Since only a line number is retained, not the filename, this macro 000178 ** only works for amalgamation builds. But that is ok, since these macros 000179 ** should be no-ops except for special builds used to measure test coverage. 000180 */ 000181 #if !defined(SQLITE_VDBE_COVERAGE) 000182 # define VdbeBranchTaken(I,M) 000183 #else 000184 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M) 000185 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){ 000186 u8 mNever; 000187 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */ 000188 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */ 000189 assert( I<M ); /* I can only be 2 if M is 3 or 4 */ 000190 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */ 000191 I = 1<<I; 000192 /* The upper 8 bits of iSrcLine are flags. The lower three bits of 000193 ** the flags indicate directions that the branch can never go. If 000194 ** a branch really does go in one of those directions, assert right 000195 ** away. */ 000196 mNever = iSrcLine >> 24; 000197 assert( (I & mNever)==0 ); 000198 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/ 000199 /* Invoke the branch coverage callback with three arguments: 000200 ** iSrcLine - the line number of the VdbeCoverage() macro, with 000201 ** flags removed. 000202 ** I - Mask of bits 0x07 indicating which cases are are 000203 ** fulfilled by this instance of the jump. 0x01 means 000204 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any 000205 ** impossible cases (ex: if the comparison is never NULL) 000206 ** are filled in automatically so that the coverage 000207 ** measurement logic does not flag those impossible cases 000208 ** as missed coverage. 000209 ** M - Type of jump. Same as M argument above 000210 */ 000211 I |= mNever; 000212 if( M==2 ) I |= 0x04; 000213 if( M==4 ){ 000214 I |= 0x08; 000215 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/ 000216 } 000217 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg, 000218 iSrcLine&0xffffff, I, M); 000219 } 000220 #endif 000221 000222 /* 000223 ** An ephemeral string value (signified by the MEM_Ephem flag) contains 000224 ** a pointer to a dynamically allocated string where some other entity 000225 ** is responsible for deallocating that string. Because the register 000226 ** does not control the string, it might be deleted without the register 000227 ** knowing it. 000228 ** 000229 ** This routine converts an ephemeral string into a dynamically allocated 000230 ** string that the register itself controls. In other words, it 000231 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc. 000232 */ 000233 #define Deephemeralize(P) \ 000234 if( ((P)->flags&MEM_Ephem)!=0 \ 000235 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;} 000236 000237 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */ 000238 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER) 000239 000240 /* 000241 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL 000242 ** if we run out of memory. 000243 */ 000244 static VdbeCursor *allocateCursor( 000245 Vdbe *p, /* The virtual machine */ 000246 int iCur, /* Index of the new VdbeCursor */ 000247 int nField, /* Number of fields in the table or index */ 000248 u8 eCurType /* Type of the new cursor */ 000249 ){ 000250 /* Find the memory cell that will be used to store the blob of memory 000251 ** required for this VdbeCursor structure. It is convenient to use a 000252 ** vdbe memory cell to manage the memory allocation required for a 000253 ** VdbeCursor structure for the following reasons: 000254 ** 000255 ** * Sometimes cursor numbers are used for a couple of different 000256 ** purposes in a vdbe program. The different uses might require 000257 ** different sized allocations. Memory cells provide growable 000258 ** allocations. 000259 ** 000260 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can 000261 ** be freed lazily via the sqlite3_release_memory() API. This 000262 ** minimizes the number of malloc calls made by the system. 000263 ** 000264 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from 000265 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1]. 000266 ** Cursor 2 is at Mem[p->nMem-2]. And so forth. 000267 */ 000268 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem; 000269 000270 int nByte; 000271 VdbeCursor *pCx = 0; 000272 nByte = 000273 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 000274 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0); 000275 000276 assert( iCur>=0 && iCur<p->nCursor ); 000277 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/ 000278 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]); 000279 p->apCsr[iCur] = 0; 000280 } 000281 000282 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure 000283 ** the pMem used to hold space for the cursor has enough storage available 000284 ** in pMem->zMalloc. But for the special case of the aMem[] entries used 000285 ** to hold cursors, it is faster to in-line the logic. */ 000286 assert( pMem->flags==MEM_Undefined ); 000287 assert( (pMem->flags & MEM_Dyn)==0 ); 000288 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc ); 000289 if( pMem->szMalloc<nByte ){ 000290 if( pMem->szMalloc>0 ){ 000291 sqlite3DbFreeNN(pMem->db, pMem->zMalloc); 000292 } 000293 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte); 000294 if( pMem->zMalloc==0 ){ 000295 pMem->szMalloc = 0; 000296 return 0; 000297 } 000298 pMem->szMalloc = nByte; 000299 } 000300 000301 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc; 000302 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor)); 000303 pCx->eCurType = eCurType; 000304 pCx->nField = nField; 000305 pCx->aOffset = &pCx->aType[nField]; 000306 if( eCurType==CURTYPE_BTREE ){ 000307 pCx->uc.pCursor = (BtCursor*) 000308 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField]; 000309 sqlite3BtreeCursorZero(pCx->uc.pCursor); 000310 } 000311 return pCx; 000312 } 000313 000314 /* 000315 ** The string in pRec is known to look like an integer and to have a 000316 ** floating point value of rValue. Return true and set *piValue to the 000317 ** integer value if the string is in range to be an integer. Otherwise, 000318 ** return false. 000319 */ 000320 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){ 000321 i64 iValue; 000322 iValue = sqlite3RealToI64(rValue); 000323 if( sqlite3RealSameAsInt(rValue,iValue) ){ 000324 *piValue = iValue; 000325 return 1; 000326 } 000327 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc); 000328 } 000329 000330 /* 000331 ** Try to convert a value into a numeric representation if we can 000332 ** do so without loss of information. In other words, if the string 000333 ** looks like a number, convert it into a number. If it does not 000334 ** look like a number, leave it alone. 000335 ** 000336 ** If the bTryForInt flag is true, then extra effort is made to give 000337 ** an integer representation. Strings that look like floating point 000338 ** values but which have no fractional component (example: '48.00') 000339 ** will have a MEM_Int representation when bTryForInt is true. 000340 ** 000341 ** If bTryForInt is false, then if the input string contains a decimal 000342 ** point or exponential notation, the result is only MEM_Real, even 000343 ** if there is an exact integer representation of the quantity. 000344 */ 000345 static void applyNumericAffinity(Mem *pRec, int bTryForInt){ 000346 double rValue; 000347 u8 enc = pRec->enc; 000348 int rc; 000349 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str ); 000350 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc); 000351 if( rc<=0 ) return; 000352 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){ 000353 pRec->flags |= MEM_Int; 000354 }else{ 000355 pRec->u.r = rValue; 000356 pRec->flags |= MEM_Real; 000357 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec); 000358 } 000359 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the 000360 ** string representation after computing a numeric equivalent, because the 000361 ** string representation might not be the canonical representation for the 000362 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */ 000363 pRec->flags &= ~MEM_Str; 000364 } 000365 000366 /* 000367 ** Processing is determine by the affinity parameter: 000368 ** 000369 ** SQLITE_AFF_INTEGER: 000370 ** SQLITE_AFF_REAL: 000371 ** SQLITE_AFF_NUMERIC: 000372 ** Try to convert pRec to an integer representation or a 000373 ** floating-point representation if an integer representation 000374 ** is not possible. Note that the integer representation is 000375 ** always preferred, even if the affinity is REAL, because 000376 ** an integer representation is more space efficient on disk. 000377 ** 000378 ** SQLITE_AFF_FLEXNUM: 000379 ** If the value is text, then try to convert it into a number of 000380 ** some kind (integer or real) but do not make any other changes. 000381 ** 000382 ** SQLITE_AFF_TEXT: 000383 ** Convert pRec to a text representation. 000384 ** 000385 ** SQLITE_AFF_BLOB: 000386 ** SQLITE_AFF_NONE: 000387 ** No-op. pRec is unchanged. 000388 */ 000389 static void applyAffinity( 000390 Mem *pRec, /* The value to apply affinity to */ 000391 char affinity, /* The affinity to be applied */ 000392 u8 enc /* Use this text encoding */ 000393 ){ 000394 if( affinity>=SQLITE_AFF_NUMERIC ){ 000395 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL 000396 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM ); 000397 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/ 000398 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){ 000399 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1); 000400 }else if( affinity<=SQLITE_AFF_REAL ){ 000401 sqlite3VdbeIntegerAffinity(pRec); 000402 } 000403 } 000404 }else if( affinity==SQLITE_AFF_TEXT ){ 000405 /* Only attempt the conversion to TEXT if there is an integer or real 000406 ** representation (blob and NULL do not get converted) but no string 000407 ** representation. It would be harmless to repeat the conversion if 000408 ** there is already a string rep, but it is pointless to waste those 000409 ** CPU cycles. */ 000410 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/ 000411 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){ 000412 testcase( pRec->flags & MEM_Int ); 000413 testcase( pRec->flags & MEM_Real ); 000414 testcase( pRec->flags & MEM_IntReal ); 000415 sqlite3VdbeMemStringify(pRec, enc, 1); 000416 } 000417 } 000418 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal); 000419 } 000420 } 000421 000422 /* 000423 ** Try to convert the type of a function argument or a result column 000424 ** into a numeric representation. Use either INTEGER or REAL whichever 000425 ** is appropriate. But only do the conversion if it is possible without 000426 ** loss of information and return the revised type of the argument. 000427 */ 000428 int sqlite3_value_numeric_type(sqlite3_value *pVal){ 000429 int eType = sqlite3_value_type(pVal); 000430 if( eType==SQLITE_TEXT ){ 000431 Mem *pMem = (Mem*)pVal; 000432 applyNumericAffinity(pMem, 0); 000433 eType = sqlite3_value_type(pVal); 000434 } 000435 return eType; 000436 } 000437 000438 /* 000439 ** Exported version of applyAffinity(). This one works on sqlite3_value*, 000440 ** not the internal Mem* type. 000441 */ 000442 void sqlite3ValueApplyAffinity( 000443 sqlite3_value *pVal, 000444 u8 affinity, 000445 u8 enc 000446 ){ 000447 applyAffinity((Mem *)pVal, affinity, enc); 000448 } 000449 000450 /* 000451 ** pMem currently only holds a string type (or maybe a BLOB that we can 000452 ** interpret as a string if we want to). Compute its corresponding 000453 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields 000454 ** accordingly. 000455 */ 000456 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){ 000457 int rc; 000458 sqlite3_int64 ix; 000459 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ); 000460 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ); 000461 if( ExpandBlob(pMem) ){ 000462 pMem->u.i = 0; 000463 return MEM_Int; 000464 } 000465 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); 000466 if( rc<=0 ){ 000467 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){ 000468 pMem->u.i = ix; 000469 return MEM_Int; 000470 }else{ 000471 return MEM_Real; 000472 } 000473 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){ 000474 pMem->u.i = ix; 000475 return MEM_Int; 000476 } 000477 return MEM_Real; 000478 } 000479 000480 /* 000481 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or 000482 ** none. 000483 ** 000484 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags. 000485 ** But it does set pMem->u.r and pMem->u.i appropriately. 000486 */ 000487 static u16 numericType(Mem *pMem){ 000488 assert( (pMem->flags & MEM_Null)==0 000489 || pMem->db==0 || pMem->db->mallocFailed ); 000490 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){ 000491 testcase( pMem->flags & MEM_Int ); 000492 testcase( pMem->flags & MEM_Real ); 000493 testcase( pMem->flags & MEM_IntReal ); 000494 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null); 000495 } 000496 assert( pMem->flags & (MEM_Str|MEM_Blob) ); 000497 testcase( pMem->flags & MEM_Str ); 000498 testcase( pMem->flags & MEM_Blob ); 000499 return computeNumericType(pMem); 000500 return 0; 000501 } 000502 000503 #ifdef SQLITE_DEBUG 000504 /* 000505 ** Write a nice string representation of the contents of cell pMem 000506 ** into buffer zBuf, length nBuf. 000507 */ 000508 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){ 000509 int f = pMem->flags; 000510 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"}; 000511 if( f&MEM_Blob ){ 000512 int i; 000513 char c; 000514 if( f & MEM_Dyn ){ 000515 c = 'z'; 000516 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000517 }else if( f & MEM_Static ){ 000518 c = 't'; 000519 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000520 }else if( f & MEM_Ephem ){ 000521 c = 'e'; 000522 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000523 }else{ 000524 c = 's'; 000525 } 000526 sqlite3_str_appendf(pStr, "%cx[", c); 000527 for(i=0; i<25 && i<pMem->n; i++){ 000528 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF)); 000529 } 000530 sqlite3_str_appendf(pStr, "|"); 000531 for(i=0; i<25 && i<pMem->n; i++){ 000532 char z = pMem->z[i]; 000533 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z); 000534 } 000535 sqlite3_str_appendf(pStr,"]"); 000536 if( f & MEM_Zero ){ 000537 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero); 000538 } 000539 }else if( f & MEM_Str ){ 000540 int j; 000541 u8 c; 000542 if( f & MEM_Dyn ){ 000543 c = 'z'; 000544 assert( (f & (MEM_Static|MEM_Ephem))==0 ); 000545 }else if( f & MEM_Static ){ 000546 c = 't'; 000547 assert( (f & (MEM_Dyn|MEM_Ephem))==0 ); 000548 }else if( f & MEM_Ephem ){ 000549 c = 'e'; 000550 assert( (f & (MEM_Static|MEM_Dyn))==0 ); 000551 }else{ 000552 c = 's'; 000553 } 000554 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n); 000555 for(j=0; j<25 && j<pMem->n; j++){ 000556 c = pMem->z[j]; 000557 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.'); 000558 } 000559 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]); 000560 if( f & MEM_Term ){ 000561 sqlite3_str_appendf(pStr, "(0-term)"); 000562 } 000563 } 000564 } 000565 #endif 000566 000567 #ifdef SQLITE_DEBUG 000568 /* 000569 ** Print the value of a register for tracing purposes: 000570 */ 000571 static void memTracePrint(Mem *p){ 000572 if( p->flags & MEM_Undefined ){ 000573 printf(" undefined"); 000574 }else if( p->flags & MEM_Null ){ 000575 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL"); 000576 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){ 000577 printf(" si:%lld", p->u.i); 000578 }else if( (p->flags & (MEM_IntReal))!=0 ){ 000579 printf(" ir:%lld", p->u.i); 000580 }else if( p->flags & MEM_Int ){ 000581 printf(" i:%lld", p->u.i); 000582 #ifndef SQLITE_OMIT_FLOATING_POINT 000583 }else if( p->flags & MEM_Real ){ 000584 printf(" r:%.17g", p->u.r); 000585 #endif 000586 }else if( sqlite3VdbeMemIsRowSet(p) ){ 000587 printf(" (rowset)"); 000588 }else{ 000589 StrAccum acc; 000590 char zBuf[1000]; 000591 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0); 000592 sqlite3VdbeMemPrettyPrint(p, &acc); 000593 printf(" %s", sqlite3StrAccumFinish(&acc)); 000594 } 000595 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype); 000596 } 000597 static void registerTrace(int iReg, Mem *p){ 000598 printf("R[%d] = ", iReg); 000599 memTracePrint(p); 000600 if( p->pScopyFrom ){ 000601 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg])); 000602 } 000603 printf("\n"); 000604 sqlite3VdbeCheckMemInvariants(p); 000605 } 000606 /**/ void sqlite3PrintMem(Mem *pMem){ 000607 memTracePrint(pMem); 000608 printf("\n"); 000609 fflush(stdout); 000610 } 000611 #endif 000612 000613 #ifdef SQLITE_DEBUG 000614 /* 000615 ** Show the values of all registers in the virtual machine. Used for 000616 ** interactive debugging. 000617 */ 000618 void sqlite3VdbeRegisterDump(Vdbe *v){ 000619 int i; 000620 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i); 000621 } 000622 #endif /* SQLITE_DEBUG */ 000623 000624 000625 #ifdef SQLITE_DEBUG 000626 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M) 000627 #else 000628 # define REGISTER_TRACE(R,M) 000629 #endif 000630 000631 #ifndef NDEBUG 000632 /* 000633 ** This function is only called from within an assert() expression. It 000634 ** checks that the sqlite3.nTransaction variable is correctly set to 000635 ** the number of non-transaction savepoints currently in the 000636 ** linked list starting at sqlite3.pSavepoint. 000637 ** 000638 ** Usage: 000639 ** 000640 ** assert( checkSavepointCount(db) ); 000641 */ 000642 static int checkSavepointCount(sqlite3 *db){ 000643 int n = 0; 000644 Savepoint *p; 000645 for(p=db->pSavepoint; p; p=p->pNext) n++; 000646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) ); 000647 return 1; 000648 } 000649 #endif 000650 000651 /* 000652 ** Return the register of pOp->p2 after first preparing it to be 000653 ** overwritten with an integer value. 000654 */ 000655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){ 000656 sqlite3VdbeMemSetNull(pOut); 000657 pOut->flags = MEM_Int; 000658 return pOut; 000659 } 000660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){ 000661 Mem *pOut; 000662 assert( pOp->p2>0 ); 000663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000664 pOut = &p->aMem[pOp->p2]; 000665 memAboutToChange(p, pOut); 000666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/ 000667 return out2PrereleaseWithClear(pOut); 000668 }else{ 000669 pOut->flags = MEM_Int; 000670 return pOut; 000671 } 000672 } 000673 000674 /* 000675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning 000676 ** with pOp->p3. Return the hash. 000677 */ 000678 static u64 filterHash(const Mem *aMem, const Op *pOp){ 000679 int i, mx; 000680 u64 h = 0; 000681 000682 assert( pOp->p4type==P4_INT32 ); 000683 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){ 000684 const Mem *p = &aMem[i]; 000685 if( p->flags & (MEM_Int|MEM_IntReal) ){ 000686 h += p->u.i; 000687 }else if( p->flags & MEM_Real ){ 000688 h += sqlite3VdbeIntValue(p); 000689 }else if( p->flags & (MEM_Str|MEM_Blob) ){ 000690 /* All strings have the same hash and all blobs have the same hash, 000691 ** though, at least, those hashes are different from each other and 000692 ** from NULL. */ 000693 h += 4093 + (p->flags & (MEM_Str|MEM_Blob)); 000694 } 000695 } 000696 return h; 000697 } 000698 000699 000700 /* 000701 ** For OP_Column, factor out the case where content is loaded from 000702 ** overflow pages, so that the code to implement this case is separate 000703 ** the common case where all content fits on the page. Factoring out 000704 ** the code reduces register pressure and helps the common case 000705 ** to run faster. 000706 */ 000707 static SQLITE_NOINLINE int vdbeColumnFromOverflow( 000708 VdbeCursor *pC, /* The BTree cursor from which we are reading */ 000709 int iCol, /* The column to read */ 000710 int t, /* The serial-type code for the column value */ 000711 i64 iOffset, /* Offset to the start of the content value */ 000712 u32 cacheStatus, /* Current Vdbe.cacheCtr value */ 000713 u32 colCacheCtr, /* Current value of the column cache counter */ 000714 Mem *pDest /* Store the value into this register. */ 000715 ){ 000716 int rc; 000717 sqlite3 *db = pDest->db; 000718 int encoding = pDest->enc; 000719 int len = sqlite3VdbeSerialTypeLen(t); 000720 assert( pC->eCurType==CURTYPE_BTREE ); 000721 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG; 000722 if( len > 4000 && pC->pKeyInfo==0 ){ 000723 /* Cache large column values that are on overflow pages using 000724 ** an RCStr (reference counted string) so that if they are reloaded, 000725 ** that do not have to be copied a second time. The overhead of 000726 ** creating and managing the cache is such that this is only 000727 ** profitable for larger TEXT and BLOB values. 000728 ** 000729 ** Only do this on table-btrees so that writes to index-btrees do not 000730 ** need to clear the cache. This buys performance in the common case 000731 ** in exchange for generality. 000732 */ 000733 VdbeTxtBlbCache *pCache; 000734 char *pBuf; 000735 if( pC->colCache==0 ){ 000736 pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) ); 000737 if( pC->pCache==0 ) return SQLITE_NOMEM; 000738 pC->colCache = 1; 000739 } 000740 pCache = pC->pCache; 000741 if( pCache->pCValue==0 000742 || pCache->iCol!=iCol 000743 || pCache->cacheStatus!=cacheStatus 000744 || pCache->colCacheCtr!=colCacheCtr 000745 || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor) 000746 ){ 000747 if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue); 000748 pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 ); 000749 if( pBuf==0 ) return SQLITE_NOMEM; 000750 rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf); 000751 if( rc ) return rc; 000752 pBuf[len] = 0; 000753 pBuf[len+1] = 0; 000754 pBuf[len+2] = 0; 000755 pCache->iCol = iCol; 000756 pCache->cacheStatus = cacheStatus; 000757 pCache->colCacheCtr = colCacheCtr; 000758 pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor); 000759 }else{ 000760 pBuf = pCache->pCValue; 000761 } 000762 assert( t>=12 ); 000763 sqlite3RCStrRef(pBuf); 000764 if( t&1 ){ 000765 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding, 000766 sqlite3RCStrUnref); 000767 pDest->flags |= MEM_Term; 000768 }else{ 000769 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0, 000770 sqlite3RCStrUnref); 000771 } 000772 }else{ 000773 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest); 000774 if( rc ) return rc; 000775 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest); 000776 if( (t&1)!=0 && encoding==SQLITE_UTF8 ){ 000777 pDest->z[len] = 0; 000778 pDest->flags |= MEM_Term; 000779 } 000780 } 000781 pDest->flags &= ~MEM_Ephem; 000782 return rc; 000783 } 000784 000785 000786 /* 000787 ** Return the symbolic name for the data type of a pMem 000788 */ 000789 static const char *vdbeMemTypeName(Mem *pMem){ 000790 static const char *azTypes[] = { 000791 /* SQLITE_INTEGER */ "INT", 000792 /* SQLITE_FLOAT */ "REAL", 000793 /* SQLITE_TEXT */ "TEXT", 000794 /* SQLITE_BLOB */ "BLOB", 000795 /* SQLITE_NULL */ "NULL" 000796 }; 000797 return azTypes[sqlite3_value_type(pMem)-1]; 000798 } 000799 000800 /* 000801 ** Execute as much of a VDBE program as we can. 000802 ** This is the core of sqlite3_step(). 000803 */ 000804 int sqlite3VdbeExec( 000805 Vdbe *p /* The VDBE */ 000806 ){ 000807 Op *aOp = p->aOp; /* Copy of p->aOp */ 000808 Op *pOp = aOp; /* Current operation */ 000809 #ifdef SQLITE_DEBUG 000810 Op *pOrigOp; /* Value of pOp at the top of the loop */ 000811 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */ 000812 u8 iCompareIsInit = 0; /* iCompare is initialized */ 000813 #endif 000814 int rc = SQLITE_OK; /* Value to return */ 000815 sqlite3 *db = p->db; /* The database */ 000816 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ 000817 u8 encoding = ENC(db); /* The database encoding */ 000818 int iCompare = 0; /* Result of last comparison */ 000819 u64 nVmStep = 0; /* Number of virtual machine steps */ 000820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000821 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */ 000822 #endif 000823 Mem *aMem = p->aMem; /* Copy of p->aMem */ 000824 Mem *pIn1 = 0; /* 1st input operand */ 000825 Mem *pIn2 = 0; /* 2nd input operand */ 000826 Mem *pIn3 = 0; /* 3rd input operand */ 000827 Mem *pOut = 0; /* Output operand */ 000828 u32 colCacheCtr = 0; /* Column cache counter */ 000829 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE) 000830 u64 *pnCycle = 0; 000831 int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0; 000832 #endif 000833 /*** INSERT STACK UNION HERE ***/ 000834 000835 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */ 000836 if( DbMaskNonZero(p->lockMask) ){ 000837 sqlite3VdbeEnter(p); 000838 } 000839 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 000840 if( db->xProgress ){ 000841 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP]; 000842 assert( 0 < db->nProgressOps ); 000843 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps); 000844 }else{ 000845 nProgressLimit = LARGEST_UINT64; 000846 } 000847 #endif 000848 if( p->rc==SQLITE_NOMEM ){ 000849 /* This happens if a malloc() inside a call to sqlite3_column_text() or 000850 ** sqlite3_column_text16() failed. */ 000851 goto no_mem; 000852 } 000853 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY ); 000854 testcase( p->rc!=SQLITE_OK ); 000855 p->rc = SQLITE_OK; 000856 assert( p->bIsReader || p->readOnly!=0 ); 000857 p->iCurrentTime = 0; 000858 assert( p->explain==0 ); 000859 db->busyHandler.nBusy = 0; 000860 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 000861 sqlite3VdbeIOTraceSql(p); 000862 #ifdef SQLITE_DEBUG 000863 sqlite3BeginBenignMalloc(); 000864 if( p->pc==0 000865 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0 000866 ){ 000867 int i; 000868 int once = 1; 000869 sqlite3VdbePrintSql(p); 000870 if( p->db->flags & SQLITE_VdbeListing ){ 000871 printf("VDBE Program Listing:\n"); 000872 for(i=0; i<p->nOp; i++){ 000873 sqlite3VdbePrintOp(stdout, i, &aOp[i]); 000874 } 000875 } 000876 if( p->db->flags & SQLITE_VdbeEQP ){ 000877 for(i=0; i<p->nOp; i++){ 000878 if( aOp[i].opcode==OP_Explain ){ 000879 if( once ) printf("VDBE Query Plan:\n"); 000880 printf("%s\n", aOp[i].p4.z); 000881 once = 0; 000882 } 000883 } 000884 } 000885 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n"); 000886 } 000887 sqlite3EndBenignMalloc(); 000888 #endif 000889 for(pOp=&aOp[p->pc]; 1; pOp++){ 000890 /* Errors are detected by individual opcodes, with an immediate 000891 ** jumps to abort_due_to_error. */ 000892 assert( rc==SQLITE_OK ); 000893 000894 assert( pOp>=aOp && pOp<&aOp[p->nOp]); 000895 nVmStep++; 000896 000897 #if defined(VDBE_PROFILE) 000898 pOp->nExec++; 000899 pnCycle = &pOp->nCycle; 000900 if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime(); 000901 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 000902 if( bStmtScanStatus ){ 000903 pOp->nExec++; 000904 pnCycle = &pOp->nCycle; 000905 *pnCycle -= sqlite3Hwtime(); 000906 } 000907 #endif 000908 000909 /* Only allow tracing if SQLITE_DEBUG is defined. 000910 */ 000911 #ifdef SQLITE_DEBUG 000912 if( db->flags & SQLITE_VdbeTrace ){ 000913 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp); 000914 test_trace_breakpoint((int)(pOp - aOp),pOp,p); 000915 } 000916 #endif 000917 000918 000919 /* Check to see if we need to simulate an interrupt. This only happens 000920 ** if we have a special test build. 000921 */ 000922 #ifdef SQLITE_TEST 000923 if( sqlite3_interrupt_count>0 ){ 000924 sqlite3_interrupt_count--; 000925 if( sqlite3_interrupt_count==0 ){ 000926 sqlite3_interrupt(db); 000927 } 000928 } 000929 #endif 000930 000931 /* Sanity checking on other operands */ 000932 #ifdef SQLITE_DEBUG 000933 { 000934 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode]; 000935 if( (opProperty & OPFLG_IN1)!=0 ){ 000936 assert( pOp->p1>0 ); 000937 assert( pOp->p1<=(p->nMem+1 - p->nCursor) ); 000938 assert( memIsValid(&aMem[pOp->p1]) ); 000939 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) ); 000940 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]); 000941 } 000942 if( (opProperty & OPFLG_IN2)!=0 ){ 000943 assert( pOp->p2>0 ); 000944 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000945 assert( memIsValid(&aMem[pOp->p2]) ); 000946 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) ); 000947 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]); 000948 } 000949 if( (opProperty & OPFLG_IN3)!=0 ){ 000950 assert( pOp->p3>0 ); 000951 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000952 assert( memIsValid(&aMem[pOp->p3]) ); 000953 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) ); 000954 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]); 000955 } 000956 if( (opProperty & OPFLG_OUT2)!=0 ){ 000957 assert( pOp->p2>0 ); 000958 assert( pOp->p2<=(p->nMem+1 - p->nCursor) ); 000959 memAboutToChange(p, &aMem[pOp->p2]); 000960 } 000961 if( (opProperty & OPFLG_OUT3)!=0 ){ 000962 assert( pOp->p3>0 ); 000963 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 000964 memAboutToChange(p, &aMem[pOp->p3]); 000965 } 000966 } 000967 #endif 000968 #ifdef SQLITE_DEBUG 000969 pOrigOp = pOp; 000970 #endif 000971 000972 switch( pOp->opcode ){ 000973 000974 /***************************************************************************** 000975 ** What follows is a massive switch statement where each case implements a 000976 ** separate instruction in the virtual machine. If we follow the usual 000977 ** indentation conventions, each case should be indented by 6 spaces. But 000978 ** that is a lot of wasted space on the left margin. So the code within 000979 ** the switch statement will break with convention and be flush-left. Another 000980 ** big comment (similar to this one) will mark the point in the code where 000981 ** we transition back to normal indentation. 000982 ** 000983 ** The formatting of each case is important. The makefile for SQLite 000984 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this 000985 ** file looking for lines that begin with "case OP_". The opcodes.h files 000986 ** will be filled with #defines that give unique integer values to each 000987 ** opcode and the opcodes.c file is filled with an array of strings where 000988 ** each string is the symbolic name for the corresponding opcode. If the 000989 ** case statement is followed by a comment of the form "/# same as ... #/" 000990 ** that comment is used to determine the particular value of the opcode. 000991 ** 000992 ** Other keywords in the comment that follows each case are used to 000993 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[]. 000994 ** Keywords include: in1, in2, in3, out2, out3. See 000995 ** the mkopcodeh.awk script for additional information. 000996 ** 000997 ** Documentation about VDBE opcodes is generated by scanning this file 000998 ** for lines of that contain "Opcode:". That line and all subsequent 000999 ** comment lines are used in the generation of the opcode.html documentation 001000 ** file. 001001 ** 001002 ** SUMMARY: 001003 ** 001004 ** Formatting is important to scripts that scan this file. 001005 ** Do not deviate from the formatting style currently in use. 001006 ** 001007 *****************************************************************************/ 001008 001009 /* Opcode: Goto * P2 * * * 001010 ** 001011 ** An unconditional jump to address P2. 001012 ** The next instruction executed will be 001013 ** the one at index P2 from the beginning of 001014 ** the program. 001015 ** 001016 ** The P1 parameter is not actually used by this opcode. However, it 001017 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell 001018 ** that this Goto is the bottom of a loop and that the lines from P2 down 001019 ** to the current line should be indented for EXPLAIN output. 001020 */ 001021 case OP_Goto: { /* jump */ 001022 001023 #ifdef SQLITE_DEBUG 001024 /* In debugging mode, when the p5 flags is set on an OP_Goto, that 001025 ** means we should really jump back to the preceding OP_ReleaseReg 001026 ** instruction. */ 001027 if( pOp->p5 ){ 001028 assert( pOp->p2 < (int)(pOp - aOp) ); 001029 assert( pOp->p2 > 1 ); 001030 pOp = &aOp[pOp->p2 - 2]; 001031 assert( pOp[1].opcode==OP_ReleaseReg ); 001032 goto check_for_interrupt; 001033 } 001034 #endif 001035 001036 jump_to_p2_and_check_for_interrupt: 001037 pOp = &aOp[pOp->p2 - 1]; 001038 001039 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, 001040 ** OP_VNext, or OP_SorterNext) all jump here upon 001041 ** completion. Check to see if sqlite3_interrupt() has been called 001042 ** or if the progress callback needs to be invoked. 001043 ** 001044 ** This code uses unstructured "goto" statements and does not look clean. 001045 ** But that is not due to sloppy coding habits. The code is written this 001046 ** way for performance, to avoid having to run the interrupt and progress 001047 ** checks on every opcode. This helps sqlite3_step() to run about 1.5% 001048 ** faster according to "valgrind --tool=cachegrind" */ 001049 check_for_interrupt: 001050 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt; 001051 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001052 /* Call the progress callback if it is configured and the required number 001053 ** of VDBE ops have been executed (either since this invocation of 001054 ** sqlite3VdbeExec() or since last time the progress callback was called). 001055 ** If the progress callback returns non-zero, exit the virtual machine with 001056 ** a return code SQLITE_ABORT. 001057 */ 001058 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 001059 assert( db->nProgressOps!=0 ); 001060 nProgressLimit += db->nProgressOps; 001061 if( db->xProgress(db->pProgressArg) ){ 001062 nProgressLimit = LARGEST_UINT64; 001063 rc = SQLITE_INTERRUPT; 001064 goto abort_due_to_error; 001065 } 001066 } 001067 #endif 001068 001069 break; 001070 } 001071 001072 /* Opcode: Gosub P1 P2 * * * 001073 ** 001074 ** Write the current address onto register P1 001075 ** and then jump to address P2. 001076 */ 001077 case OP_Gosub: { /* jump */ 001078 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001079 pIn1 = &aMem[pOp->p1]; 001080 assert( VdbeMemDynamic(pIn1)==0 ); 001081 memAboutToChange(p, pIn1); 001082 pIn1->flags = MEM_Int; 001083 pIn1->u.i = (int)(pOp-aOp); 001084 REGISTER_TRACE(pOp->p1, pIn1); 001085 goto jump_to_p2_and_check_for_interrupt; 001086 } 001087 001088 /* Opcode: Return P1 P2 P3 * * 001089 ** 001090 ** Jump to the address stored in register P1. If P1 is a return address 001091 ** register, then this accomplishes a return from a subroutine. 001092 ** 001093 ** If P3 is 1, then the jump is only taken if register P1 holds an integer 001094 ** values, otherwise execution falls through to the next opcode, and the 001095 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an 001096 ** integer or else an assert() is raised. P3 should be set to 1 when 001097 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0 001098 ** otherwise. 001099 ** 001100 ** The value in register P1 is unchanged by this opcode. 001101 ** 001102 ** P2 is not used by the byte-code engine. However, if P2 is positive 001103 ** and also less than the current address, then the "EXPLAIN" output 001104 ** formatter in the CLI will indent all opcodes from the P2 opcode up 001105 ** to be not including the current Return. P2 should be the first opcode 001106 ** in the subroutine from which this opcode is returning. Thus the P2 001107 ** value is a byte-code indentation hint. See tag-20220407a in 001108 ** wherecode.c and shell.c. 001109 */ 001110 case OP_Return: { /* in1 */ 001111 pIn1 = &aMem[pOp->p1]; 001112 if( pIn1->flags & MEM_Int ){ 001113 if( pOp->p3 ){ VdbeBranchTaken(1, 2); } 001114 pOp = &aOp[pIn1->u.i]; 001115 }else if( ALWAYS(pOp->p3) ){ 001116 VdbeBranchTaken(0, 2); 001117 } 001118 break; 001119 } 001120 001121 /* Opcode: InitCoroutine P1 P2 P3 * * 001122 ** 001123 ** Set up register P1 so that it will Yield to the coroutine 001124 ** located at address P3. 001125 ** 001126 ** If P2!=0 then the coroutine implementation immediately follows 001127 ** this opcode. So jump over the coroutine implementation to 001128 ** address P2. 001129 ** 001130 ** See also: EndCoroutine 001131 */ 001132 case OP_InitCoroutine: { /* jump0 */ 001133 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001134 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 001135 assert( pOp->p3>=0 && pOp->p3<p->nOp ); 001136 pOut = &aMem[pOp->p1]; 001137 assert( !VdbeMemDynamic(pOut) ); 001138 pOut->u.i = pOp->p3 - 1; 001139 pOut->flags = MEM_Int; 001140 if( pOp->p2==0 ) break; 001141 001142 /* Most jump operations do a goto to this spot in order to update 001143 ** the pOp pointer. */ 001144 jump_to_p2: 001145 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */ 001146 assert( pOp->p2<p->nOp ); /* Jumps must be in range */ 001147 pOp = &aOp[pOp->p2 - 1]; 001148 break; 001149 } 001150 001151 /* Opcode: EndCoroutine P1 * * * * 001152 ** 001153 ** The instruction at the address in register P1 is a Yield. 001154 ** Jump to the P2 parameter of that Yield. 001155 ** After the jump, the value register P1 is left with a value 001156 ** such that subsequent OP_Yields go back to the this same 001157 ** OP_EndCoroutine instruction. 001158 ** 001159 ** See also: InitCoroutine 001160 */ 001161 case OP_EndCoroutine: { /* in1 */ 001162 VdbeOp *pCaller; 001163 pIn1 = &aMem[pOp->p1]; 001164 assert( pIn1->flags==MEM_Int ); 001165 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp ); 001166 pCaller = &aOp[pIn1->u.i]; 001167 assert( pCaller->opcode==OP_Yield ); 001168 assert( pCaller->p2>=0 && pCaller->p2<p->nOp ); 001169 pIn1->u.i = (int)(pOp - p->aOp) - 1; 001170 pOp = &aOp[pCaller->p2 - 1]; 001171 break; 001172 } 001173 001174 /* Opcode: Yield P1 P2 * * * 001175 ** 001176 ** Swap the program counter with the value in register P1. This 001177 ** has the effect of yielding to a coroutine. 001178 ** 001179 ** If the coroutine that is launched by this instruction ends with 001180 ** Yield or Return then continue to the next instruction. But if 001181 ** the coroutine launched by this instruction ends with 001182 ** EndCoroutine, then jump to P2 rather than continuing with the 001183 ** next instruction. 001184 ** 001185 ** See also: InitCoroutine 001186 */ 001187 case OP_Yield: { /* in1, jump0 */ 001188 int pcDest; 001189 pIn1 = &aMem[pOp->p1]; 001190 assert( VdbeMemDynamic(pIn1)==0 ); 001191 pIn1->flags = MEM_Int; 001192 pcDest = (int)pIn1->u.i; 001193 pIn1->u.i = (int)(pOp - aOp); 001194 REGISTER_TRACE(pOp->p1, pIn1); 001195 pOp = &aOp[pcDest]; 001196 break; 001197 } 001198 001199 /* Opcode: HaltIfNull P1 P2 P3 P4 P5 001200 ** Synopsis: if r[P3]=null halt 001201 ** 001202 ** Check the value in register P3. If it is NULL then Halt using 001203 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the 001204 ** value in register P3 is not NULL, then this routine is a no-op. 001205 ** The P5 parameter should be 1. 001206 */ 001207 case OP_HaltIfNull: { /* in3 */ 001208 pIn3 = &aMem[pOp->p3]; 001209 #ifdef SQLITE_DEBUG 001210 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001211 #endif 001212 if( (pIn3->flags & MEM_Null)==0 ) break; 001213 /* Fall through into OP_Halt */ 001214 /* no break */ deliberate_fall_through 001215 } 001216 001217 /* Opcode: Halt P1 P2 * P4 P5 001218 ** 001219 ** Exit immediately. All open cursors, etc are closed 001220 ** automatically. 001221 ** 001222 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(), 001223 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0). 001224 ** For errors, it can be some other value. If P1!=0 then P2 will determine 001225 ** whether or not to rollback the current transaction. Do not rollback 001226 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort, 001227 ** then back out all changes that have occurred during this execution of the 001228 ** VDBE, but do not rollback the transaction. 001229 ** 001230 ** If P4 is not null then it is an error message string. 001231 ** 001232 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string. 001233 ** 001234 ** 0: (no change) 001235 ** 1: NOT NULL constraint failed: P4 001236 ** 2: UNIQUE constraint failed: P4 001237 ** 3: CHECK constraint failed: P4 001238 ** 4: FOREIGN KEY constraint failed: P4 001239 ** 001240 ** If P5 is not zero and P4 is NULL, then everything after the ":" is 001241 ** omitted. 001242 ** 001243 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of 001244 ** every program. So a jump past the last instruction of the program 001245 ** is the same as executing Halt. 001246 */ 001247 case OP_Halt: { 001248 VdbeFrame *pFrame; 001249 int pcx; 001250 001251 #ifdef SQLITE_DEBUG 001252 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); } 001253 #endif 001254 001255 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates 001256 ** something is wrong with the code generator. Raise an assertion in order 001257 ** to bring this to the attention of fuzzers and other testing tools. */ 001258 assert( pOp->p1!=SQLITE_INTERNAL ); 001259 001260 if( p->pFrame && pOp->p1==SQLITE_OK ){ 001261 /* Halt the sub-program. Return control to the parent frame. */ 001262 pFrame = p->pFrame; 001263 p->pFrame = pFrame->pParent; 001264 p->nFrame--; 001265 sqlite3VdbeSetChanges(db, p->nChange); 001266 pcx = sqlite3VdbeFrameRestore(pFrame); 001267 if( pOp->p2==OE_Ignore ){ 001268 /* Instruction pcx is the OP_Program that invoked the sub-program 001269 ** currently being halted. If the p2 instruction of this OP_Halt 001270 ** instruction is set to OE_Ignore, then the sub-program is throwing 001271 ** an IGNORE exception. In this case jump to the address specified 001272 ** as the p2 of the calling OP_Program. */ 001273 pcx = p->aOp[pcx].p2-1; 001274 } 001275 aOp = p->aOp; 001276 aMem = p->aMem; 001277 pOp = &aOp[pcx]; 001278 break; 001279 } 001280 p->rc = pOp->p1; 001281 p->errorAction = (u8)pOp->p2; 001282 assert( pOp->p5<=4 ); 001283 if( p->rc ){ 001284 if( pOp->p5 ){ 001285 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK", 001286 "FOREIGN KEY" }; 001287 testcase( pOp->p5==1 ); 001288 testcase( pOp->p5==2 ); 001289 testcase( pOp->p5==3 ); 001290 testcase( pOp->p5==4 ); 001291 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]); 001292 if( pOp->p4.z ){ 001293 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z); 001294 } 001295 }else{ 001296 sqlite3VdbeError(p, "%s", pOp->p4.z); 001297 } 001298 pcx = (int)(pOp - aOp); 001299 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg); 001300 } 001301 rc = sqlite3VdbeHalt(p); 001302 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); 001303 if( rc==SQLITE_BUSY ){ 001304 p->rc = SQLITE_BUSY; 001305 }else{ 001306 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); 001307 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 ); 001308 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; 001309 } 001310 goto vdbe_return; 001311 } 001312 001313 /* Opcode: Integer P1 P2 * * * 001314 ** Synopsis: r[P2]=P1 001315 ** 001316 ** The 32-bit integer value P1 is written into register P2. 001317 */ 001318 case OP_Integer: { /* out2 */ 001319 pOut = out2Prerelease(p, pOp); 001320 pOut->u.i = pOp->p1; 001321 break; 001322 } 001323 001324 /* Opcode: Int64 * P2 * P4 * 001325 ** Synopsis: r[P2]=P4 001326 ** 001327 ** P4 is a pointer to a 64-bit integer value. 001328 ** Write that value into register P2. 001329 */ 001330 case OP_Int64: { /* out2 */ 001331 pOut = out2Prerelease(p, pOp); 001332 assert( pOp->p4.pI64!=0 ); 001333 pOut->u.i = *pOp->p4.pI64; 001334 break; 001335 } 001336 001337 #ifndef SQLITE_OMIT_FLOATING_POINT 001338 /* Opcode: Real * P2 * P4 * 001339 ** Synopsis: r[P2]=P4 001340 ** 001341 ** P4 is a pointer to a 64-bit floating point value. 001342 ** Write that value into register P2. 001343 */ 001344 case OP_Real: { /* same as TK_FLOAT, out2 */ 001345 pOut = out2Prerelease(p, pOp); 001346 pOut->flags = MEM_Real; 001347 assert( !sqlite3IsNaN(*pOp->p4.pReal) ); 001348 pOut->u.r = *pOp->p4.pReal; 001349 break; 001350 } 001351 #endif 001352 001353 /* Opcode: String8 * P2 * P4 * 001354 ** Synopsis: r[P2]='P4' 001355 ** 001356 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 001357 ** into a String opcode before it is executed for the first time. During 001358 ** this transformation, the length of string P4 is computed and stored 001359 ** as the P1 parameter. 001360 */ 001361 case OP_String8: { /* same as TK_STRING, out2 */ 001362 assert( pOp->p4.z!=0 ); 001363 pOut = out2Prerelease(p, pOp); 001364 pOp->p1 = sqlite3Strlen30(pOp->p4.z); 001365 001366 #ifndef SQLITE_OMIT_UTF16 001367 if( encoding!=SQLITE_UTF8 ){ 001368 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC); 001369 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG ); 001370 if( rc ) goto too_big; 001371 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem; 001372 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z ); 001373 assert( VdbeMemDynamic(pOut)==0 ); 001374 pOut->szMalloc = 0; 001375 pOut->flags |= MEM_Static; 001376 if( pOp->p4type==P4_DYNAMIC ){ 001377 sqlite3DbFree(db, pOp->p4.z); 001378 } 001379 pOp->p4type = P4_DYNAMIC; 001380 pOp->p4.z = pOut->z; 001381 pOp->p1 = pOut->n; 001382 } 001383 #endif 001384 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001385 goto too_big; 001386 } 001387 pOp->opcode = OP_String; 001388 assert( rc==SQLITE_OK ); 001389 /* Fall through to the next case, OP_String */ 001390 /* no break */ deliberate_fall_through 001391 } 001392 001393 /* Opcode: String P1 P2 P3 P4 P5 001394 ** Synopsis: r[P2]='P4' (len=P1) 001395 ** 001396 ** The string value P4 of length P1 (bytes) is stored in register P2. 001397 ** 001398 ** If P3 is not zero and the content of register P3 is equal to P5, then 001399 ** the datatype of the register P2 is converted to BLOB. The content is 001400 ** the same sequence of bytes, it is merely interpreted as a BLOB instead 001401 ** of a string, as if it had been CAST. In other words: 001402 ** 001403 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB) 001404 */ 001405 case OP_String: { /* out2 */ 001406 assert( pOp->p4.z!=0 ); 001407 pOut = out2Prerelease(p, pOp); 001408 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 001409 pOut->z = pOp->p4.z; 001410 pOut->n = pOp->p1; 001411 pOut->enc = encoding; 001412 UPDATE_MAX_BLOBSIZE(pOut); 001413 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 001414 if( pOp->p3>0 ){ 001415 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001416 pIn3 = &aMem[pOp->p3]; 001417 assert( pIn3->flags & MEM_Int ); 001418 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term; 001419 } 001420 #endif 001421 break; 001422 } 001423 001424 /* Opcode: BeginSubrtn * P2 * * * 001425 ** Synopsis: r[P2]=NULL 001426 ** 001427 ** Mark the beginning of a subroutine that can be entered in-line 001428 ** or that can be called using OP_Gosub. The subroutine should 001429 ** be terminated by an OP_Return instruction that has a P1 operand that 001430 ** is the same as the P2 operand to this opcode and that has P3 set to 1. 001431 ** If the subroutine is entered in-line, then the OP_Return will simply 001432 ** fall through. But if the subroutine is entered using OP_Gosub, then 001433 ** the OP_Return will jump back to the first instruction after the OP_Gosub. 001434 ** 001435 ** This routine works by loading a NULL into the P2 register. When the 001436 ** return address register contains a NULL, the OP_Return instruction is 001437 ** a no-op that simply falls through to the next instruction (assuming that 001438 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is 001439 ** entered in-line, then the OP_Return will cause in-line execution to 001440 ** continue. But if the subroutine is entered via OP_Gosub, then the 001441 ** OP_Return will cause a return to the address following the OP_Gosub. 001442 ** 001443 ** This opcode is identical to OP_Null. It has a different name 001444 ** only to make the byte code easier to read and verify. 001445 */ 001446 /* Opcode: Null P1 P2 P3 * * 001447 ** Synopsis: r[P2..P3]=NULL 001448 ** 001449 ** Write a NULL into registers P2. If P3 greater than P2, then also write 001450 ** NULL into register P3 and every register in between P2 and P3. If P3 001451 ** is less than P2 (typically P3 is zero) then only register P2 is 001452 ** set to NULL. 001453 ** 001454 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that 001455 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on 001456 ** OP_Ne or OP_Eq. 001457 */ 001458 case OP_BeginSubrtn: 001459 case OP_Null: { /* out2 */ 001460 int cnt; 001461 u16 nullFlag; 001462 pOut = out2Prerelease(p, pOp); 001463 cnt = pOp->p3-pOp->p2; 001464 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 001465 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null; 001466 pOut->n = 0; 001467 #ifdef SQLITE_DEBUG 001468 pOut->uTemp = 0; 001469 #endif 001470 while( cnt>0 ){ 001471 pOut++; 001472 memAboutToChange(p, pOut); 001473 sqlite3VdbeMemSetNull(pOut); 001474 pOut->flags = nullFlag; 001475 pOut->n = 0; 001476 cnt--; 001477 } 001478 break; 001479 } 001480 001481 /* Opcode: SoftNull P1 * * * * 001482 ** Synopsis: r[P1]=NULL 001483 ** 001484 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord 001485 ** instruction, but do not free any string or blob memory associated with 001486 ** the register, so that if the value was a string or blob that was 001487 ** previously copied using OP_SCopy, the copies will continue to be valid. 001488 */ 001489 case OP_SoftNull: { 001490 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 001491 pOut = &aMem[pOp->p1]; 001492 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null; 001493 break; 001494 } 001495 001496 /* Opcode: Blob P1 P2 * P4 * 001497 ** Synopsis: r[P2]=P4 (len=P1) 001498 ** 001499 ** P4 points to a blob of data P1 bytes long. Store this 001500 ** blob in register P2. If P4 is a NULL pointer, then construct 001501 ** a zero-filled blob that is P1 bytes long in P2. 001502 */ 001503 case OP_Blob: { /* out2 */ 001504 assert( pOp->p1 <= SQLITE_MAX_LENGTH ); 001505 pOut = out2Prerelease(p, pOp); 001506 if( pOp->p4.z==0 ){ 001507 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1); 001508 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem; 001509 }else{ 001510 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0); 001511 } 001512 pOut->enc = encoding; 001513 UPDATE_MAX_BLOBSIZE(pOut); 001514 break; 001515 } 001516 001517 /* Opcode: Variable P1 P2 * * * 001518 ** Synopsis: r[P2]=parameter(P1) 001519 ** 001520 ** Transfer the values of bound parameter P1 into register P2 001521 */ 001522 case OP_Variable: { /* out2 */ 001523 Mem *pVar; /* Value being transferred */ 001524 001525 assert( pOp->p1>0 && pOp->p1<=p->nVar ); 001526 pVar = &p->aVar[pOp->p1 - 1]; 001527 if( sqlite3VdbeMemTooBig(pVar) ){ 001528 goto too_big; 001529 } 001530 pOut = &aMem[pOp->p2]; 001531 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut); 001532 memcpy(pOut, pVar, MEMCELLSIZE); 001533 pOut->flags &= ~(MEM_Dyn|MEM_Ephem); 001534 pOut->flags |= MEM_Static|MEM_FromBind; 001535 UPDATE_MAX_BLOBSIZE(pOut); 001536 break; 001537 } 001538 001539 /* Opcode: Move P1 P2 P3 * * 001540 ** Synopsis: r[P2@P3]=r[P1@P3] 001541 ** 001542 ** Move the P3 values in register P1..P1+P3-1 over into 001543 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are 001544 ** left holding a NULL. It is an error for register ranges 001545 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error 001546 ** for P3 to be less than 1. 001547 */ 001548 case OP_Move: { 001549 int n; /* Number of registers left to copy */ 001550 int p1; /* Register to copy from */ 001551 int p2; /* Register to copy to */ 001552 001553 n = pOp->p3; 001554 p1 = pOp->p1; 001555 p2 = pOp->p2; 001556 assert( n>0 && p1>0 && p2>0 ); 001557 assert( p1+n<=p2 || p2+n<=p1 ); 001558 001559 pIn1 = &aMem[p1]; 001560 pOut = &aMem[p2]; 001561 do{ 001562 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] ); 001563 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] ); 001564 assert( memIsValid(pIn1) ); 001565 memAboutToChange(p, pOut); 001566 sqlite3VdbeMemMove(pOut, pIn1); 001567 #ifdef SQLITE_DEBUG 001568 pIn1->pScopyFrom = 0; 001569 { int i; 001570 for(i=1; i<p->nMem; i++){ 001571 if( aMem[i].pScopyFrom==pIn1 ){ 001572 aMem[i].pScopyFrom = pOut; 001573 } 001574 } 001575 } 001576 #endif 001577 Deephemeralize(pOut); 001578 REGISTER_TRACE(p2++, pOut); 001579 pIn1++; 001580 pOut++; 001581 }while( --n ); 001582 break; 001583 } 001584 001585 /* Opcode: Copy P1 P2 P3 * P5 001586 ** Synopsis: r[P2@P3+1]=r[P1@P3+1] 001587 ** 001588 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3. 001589 ** 001590 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the 001591 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot 001592 ** be merged. The 0x0001 bit is used by the query planner and does not 001593 ** come into play during query execution. 001594 ** 001595 ** This instruction makes a deep copy of the value. A duplicate 001596 ** is made of any string or blob constant. See also OP_SCopy. 001597 */ 001598 case OP_Copy: { 001599 int n; 001600 001601 n = pOp->p3; 001602 pIn1 = &aMem[pOp->p1]; 001603 pOut = &aMem[pOp->p2]; 001604 assert( pOut!=pIn1 ); 001605 while( 1 ){ 001606 memAboutToChange(p, pOut); 001607 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001608 Deephemeralize(pOut); 001609 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){ 001610 pOut->flags &= ~MEM_Subtype; 001611 } 001612 #ifdef SQLITE_DEBUG 001613 pOut->pScopyFrom = 0; 001614 #endif 001615 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut); 001616 if( (n--)==0 ) break; 001617 pOut++; 001618 pIn1++; 001619 } 001620 break; 001621 } 001622 001623 /* Opcode: SCopy P1 P2 * * * 001624 ** Synopsis: r[P2]=r[P1] 001625 ** 001626 ** Make a shallow copy of register P1 into register P2. 001627 ** 001628 ** This instruction makes a shallow copy of the value. If the value 001629 ** is a string or blob, then the copy is only a pointer to the 001630 ** original and hence if the original changes so will the copy. 001631 ** Worse, if the original is deallocated, the copy becomes invalid. 001632 ** Thus the program must guarantee that the original will not change 001633 ** during the lifetime of the copy. Use OP_Copy to make a complete 001634 ** copy. 001635 */ 001636 case OP_SCopy: { /* out2 */ 001637 pIn1 = &aMem[pOp->p1]; 001638 pOut = &aMem[pOp->p2]; 001639 assert( pOut!=pIn1 ); 001640 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem); 001641 #ifdef SQLITE_DEBUG 001642 pOut->pScopyFrom = pIn1; 001643 pOut->mScopyFlags = pIn1->flags; 001644 #endif 001645 break; 001646 } 001647 001648 /* Opcode: IntCopy P1 P2 * * * 001649 ** Synopsis: r[P2]=r[P1] 001650 ** 001651 ** Transfer the integer value held in register P1 into register P2. 001652 ** 001653 ** This is an optimized version of SCopy that works only for integer 001654 ** values. 001655 */ 001656 case OP_IntCopy: { /* out2 */ 001657 pIn1 = &aMem[pOp->p1]; 001658 assert( (pIn1->flags & MEM_Int)!=0 ); 001659 pOut = &aMem[pOp->p2]; 001660 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i); 001661 break; 001662 } 001663 001664 /* Opcode: FkCheck * * * * * 001665 ** 001666 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved 001667 ** foreign key constraint violations. If there are no foreign key 001668 ** constraint violations, this is a no-op. 001669 ** 001670 ** FK constraint violations are also checked when the prepared statement 001671 ** exits. This opcode is used to raise foreign key constraint errors prior 001672 ** to returning results such as a row change count or the result of a 001673 ** RETURNING clause. 001674 */ 001675 case OP_FkCheck: { 001676 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){ 001677 goto abort_due_to_error; 001678 } 001679 break; 001680 } 001681 001682 /* Opcode: ResultRow P1 P2 * * * 001683 ** Synopsis: output=r[P1@P2] 001684 ** 001685 ** The registers P1 through P1+P2-1 contain a single row of 001686 ** results. This opcode causes the sqlite3_step() call to terminate 001687 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt 001688 ** structure to provide access to the r(P1)..r(P1+P2-1) values as 001689 ** the result row. 001690 */ 001691 case OP_ResultRow: { 001692 assert( p->nResColumn==pOp->p2 ); 001693 assert( pOp->p1>0 || CORRUPT_DB ); 001694 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 001695 001696 p->cacheCtr = (p->cacheCtr + 2)|1; 001697 p->pResultRow = &aMem[pOp->p1]; 001698 #ifdef SQLITE_DEBUG 001699 { 001700 Mem *pMem = p->pResultRow; 001701 int i; 001702 for(i=0; i<pOp->p2; i++){ 001703 assert( memIsValid(&pMem[i]) ); 001704 REGISTER_TRACE(pOp->p1+i, &pMem[i]); 001705 /* The registers in the result will not be used again when the 001706 ** prepared statement restarts. This is because sqlite3_column() 001707 ** APIs might have caused type conversions of made other changes to 001708 ** the register values. Therefore, we can go ahead and break any 001709 ** OP_SCopy dependencies. */ 001710 pMem[i].pScopyFrom = 0; 001711 } 001712 } 001713 #endif 001714 if( db->mallocFailed ) goto no_mem; 001715 if( db->mTrace & SQLITE_TRACE_ROW ){ 001716 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0); 001717 } 001718 p->pc = (int)(pOp - aOp) + 1; 001719 rc = SQLITE_ROW; 001720 goto vdbe_return; 001721 } 001722 001723 /* Opcode: Concat P1 P2 P3 * * 001724 ** Synopsis: r[P3]=r[P2]+r[P1] 001725 ** 001726 ** Add the text in register P1 onto the end of the text in 001727 ** register P2 and store the result in register P3. 001728 ** If either the P1 or P2 text are NULL then store NULL in P3. 001729 ** 001730 ** P3 = P2 || P1 001731 ** 001732 ** It is illegal for P1 and P3 to be the same register. Sometimes, 001733 ** if P3 is the same register as P2, the implementation is able 001734 ** to avoid a memcpy(). 001735 */ 001736 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */ 001737 i64 nByte; /* Total size of the output string or blob */ 001738 u16 flags1; /* Initial flags for P1 */ 001739 u16 flags2; /* Initial flags for P2 */ 001740 001741 pIn1 = &aMem[pOp->p1]; 001742 pIn2 = &aMem[pOp->p2]; 001743 pOut = &aMem[pOp->p3]; 001744 testcase( pOut==pIn2 ); 001745 assert( pIn1!=pOut ); 001746 flags1 = pIn1->flags; 001747 testcase( flags1 & MEM_Null ); 001748 testcase( pIn2->flags & MEM_Null ); 001749 if( (flags1 | pIn2->flags) & MEM_Null ){ 001750 sqlite3VdbeMemSetNull(pOut); 001751 break; 001752 } 001753 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){ 001754 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem; 001755 flags1 = pIn1->flags & ~MEM_Str; 001756 }else if( (flags1 & MEM_Zero)!=0 ){ 001757 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem; 001758 flags1 = pIn1->flags & ~MEM_Str; 001759 } 001760 flags2 = pIn2->flags; 001761 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){ 001762 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem; 001763 flags2 = pIn2->flags & ~MEM_Str; 001764 }else if( (flags2 & MEM_Zero)!=0 ){ 001765 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem; 001766 flags2 = pIn2->flags & ~MEM_Str; 001767 } 001768 nByte = pIn1->n + pIn2->n; 001769 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 001770 goto too_big; 001771 } 001772 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){ 001773 goto no_mem; 001774 } 001775 MemSetTypeFlag(pOut, MEM_Str); 001776 if( pOut!=pIn2 ){ 001777 memcpy(pOut->z, pIn2->z, pIn2->n); 001778 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) ); 001779 pIn2->flags = flags2; 001780 } 001781 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n); 001782 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 001783 pIn1->flags = flags1; 001784 if( encoding>SQLITE_UTF8 ) nByte &= ~1; 001785 pOut->z[nByte]=0; 001786 pOut->z[nByte+1] = 0; 001787 pOut->flags |= MEM_Term; 001788 pOut->n = (int)nByte; 001789 pOut->enc = encoding; 001790 UPDATE_MAX_BLOBSIZE(pOut); 001791 break; 001792 } 001793 001794 /* Opcode: Add P1 P2 P3 * * 001795 ** Synopsis: r[P3]=r[P1]+r[P2] 001796 ** 001797 ** Add the value in register P1 to the value in register P2 001798 ** and store the result in register P3. 001799 ** If either input is NULL, the result is NULL. 001800 */ 001801 /* Opcode: Multiply P1 P2 P3 * * 001802 ** Synopsis: r[P3]=r[P1]*r[P2] 001803 ** 001804 ** 001805 ** Multiply the value in register P1 by the value in register P2 001806 ** and store the result in register P3. 001807 ** If either input is NULL, the result is NULL. 001808 */ 001809 /* Opcode: Subtract P1 P2 P3 * * 001810 ** Synopsis: r[P3]=r[P2]-r[P1] 001811 ** 001812 ** Subtract the value in register P1 from the value in register P2 001813 ** and store the result in register P3. 001814 ** If either input is NULL, the result is NULL. 001815 */ 001816 /* Opcode: Divide P1 P2 P3 * * 001817 ** Synopsis: r[P3]=r[P2]/r[P1] 001818 ** 001819 ** Divide the value in register P1 by the value in register P2 001820 ** and store the result in register P3 (P3=P2/P1). If the value in 001821 ** register P1 is zero, then the result is NULL. If either input is 001822 ** NULL, the result is NULL. 001823 */ 001824 /* Opcode: Remainder P1 P2 P3 * * 001825 ** Synopsis: r[P3]=r[P2]%r[P1] 001826 ** 001827 ** Compute the remainder after integer register P2 is divided by 001828 ** register P1 and store the result in register P3. 001829 ** If the value in register P1 is zero the result is NULL. 001830 ** If either operand is NULL, the result is NULL. 001831 */ 001832 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */ 001833 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */ 001834 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */ 001835 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */ 001836 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */ 001837 u16 type1; /* Numeric type of left operand */ 001838 u16 type2; /* Numeric type of right operand */ 001839 i64 iA; /* Integer value of left operand */ 001840 i64 iB; /* Integer value of right operand */ 001841 double rA; /* Real value of left operand */ 001842 double rB; /* Real value of right operand */ 001843 001844 pIn1 = &aMem[pOp->p1]; 001845 type1 = pIn1->flags; 001846 pIn2 = &aMem[pOp->p2]; 001847 type2 = pIn2->flags; 001848 pOut = &aMem[pOp->p3]; 001849 if( (type1 & type2 & MEM_Int)!=0 ){ 001850 int_math: 001851 iA = pIn1->u.i; 001852 iB = pIn2->u.i; 001853 switch( pOp->opcode ){ 001854 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break; 001855 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break; 001856 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break; 001857 case OP_Divide: { 001858 if( iA==0 ) goto arithmetic_result_is_null; 001859 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math; 001860 iB /= iA; 001861 break; 001862 } 001863 default: { 001864 if( iA==0 ) goto arithmetic_result_is_null; 001865 if( iA==-1 ) iA = 1; 001866 iB %= iA; 001867 break; 001868 } 001869 } 001870 pOut->u.i = iB; 001871 MemSetTypeFlag(pOut, MEM_Int); 001872 }else if( ((type1 | type2) & MEM_Null)!=0 ){ 001873 goto arithmetic_result_is_null; 001874 }else{ 001875 type1 = numericType(pIn1); 001876 type2 = numericType(pIn2); 001877 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math; 001878 fp_math: 001879 rA = sqlite3VdbeRealValue(pIn1); 001880 rB = sqlite3VdbeRealValue(pIn2); 001881 switch( pOp->opcode ){ 001882 case OP_Add: rB += rA; break; 001883 case OP_Subtract: rB -= rA; break; 001884 case OP_Multiply: rB *= rA; break; 001885 case OP_Divide: { 001886 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 001887 if( rA==(double)0 ) goto arithmetic_result_is_null; 001888 rB /= rA; 001889 break; 001890 } 001891 default: { 001892 iA = sqlite3VdbeIntValue(pIn1); 001893 iB = sqlite3VdbeIntValue(pIn2); 001894 if( iA==0 ) goto arithmetic_result_is_null; 001895 if( iA==-1 ) iA = 1; 001896 rB = (double)(iB % iA); 001897 break; 001898 } 001899 } 001900 #ifdef SQLITE_OMIT_FLOATING_POINT 001901 pOut->u.i = rB; 001902 MemSetTypeFlag(pOut, MEM_Int); 001903 #else 001904 if( sqlite3IsNaN(rB) ){ 001905 goto arithmetic_result_is_null; 001906 } 001907 pOut->u.r = rB; 001908 MemSetTypeFlag(pOut, MEM_Real); 001909 #endif 001910 } 001911 break; 001912 001913 arithmetic_result_is_null: 001914 sqlite3VdbeMemSetNull(pOut); 001915 break; 001916 } 001917 001918 /* Opcode: CollSeq P1 * * P4 001919 ** 001920 ** P4 is a pointer to a CollSeq object. If the next call to a user function 001921 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will 001922 ** be returned. This is used by the built-in min(), max() and nullif() 001923 ** functions. 001924 ** 001925 ** If P1 is not zero, then it is a register that a subsequent min() or 001926 ** max() aggregate will set to 1 if the current row is not the minimum or 001927 ** maximum. The P1 register is initialized to 0 by this instruction. 001928 ** 001929 ** The interface used by the implementation of the aforementioned functions 001930 ** to retrieve the collation sequence set by this opcode is not available 001931 ** publicly. Only built-in functions have access to this feature. 001932 */ 001933 case OP_CollSeq: { 001934 assert( pOp->p4type==P4_COLLSEQ ); 001935 if( pOp->p1 ){ 001936 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0); 001937 } 001938 break; 001939 } 001940 001941 /* Opcode: BitAnd P1 P2 P3 * * 001942 ** Synopsis: r[P3]=r[P1]&r[P2] 001943 ** 001944 ** Take the bit-wise AND of the values in register P1 and P2 and 001945 ** store the result in register P3. 001946 ** If either input is NULL, the result is NULL. 001947 */ 001948 /* Opcode: BitOr P1 P2 P3 * * 001949 ** Synopsis: r[P3]=r[P1]|r[P2] 001950 ** 001951 ** Take the bit-wise OR of the values in register P1 and P2 and 001952 ** store the result in register P3. 001953 ** If either input is NULL, the result is NULL. 001954 */ 001955 /* Opcode: ShiftLeft P1 P2 P3 * * 001956 ** Synopsis: r[P3]=r[P2]<<r[P1] 001957 ** 001958 ** Shift the integer value in register P2 to the left by the 001959 ** number of bits specified by the integer in register P1. 001960 ** Store the result in register P3. 001961 ** If either input is NULL, the result is NULL. 001962 */ 001963 /* Opcode: ShiftRight P1 P2 P3 * * 001964 ** Synopsis: r[P3]=r[P2]>>r[P1] 001965 ** 001966 ** Shift the integer value in register P2 to the right by the 001967 ** number of bits specified by the integer in register P1. 001968 ** Store the result in register P3. 001969 ** If either input is NULL, the result is NULL. 001970 */ 001971 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */ 001972 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */ 001973 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */ 001974 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */ 001975 i64 iA; 001976 u64 uA; 001977 i64 iB; 001978 u8 op; 001979 001980 pIn1 = &aMem[pOp->p1]; 001981 pIn2 = &aMem[pOp->p2]; 001982 pOut = &aMem[pOp->p3]; 001983 if( (pIn1->flags | pIn2->flags) & MEM_Null ){ 001984 sqlite3VdbeMemSetNull(pOut); 001985 break; 001986 } 001987 iA = sqlite3VdbeIntValue(pIn2); 001988 iB = sqlite3VdbeIntValue(pIn1); 001989 op = pOp->opcode; 001990 if( op==OP_BitAnd ){ 001991 iA &= iB; 001992 }else if( op==OP_BitOr ){ 001993 iA |= iB; 001994 }else if( iB!=0 ){ 001995 assert( op==OP_ShiftRight || op==OP_ShiftLeft ); 001996 001997 /* If shifting by a negative amount, shift in the other direction */ 001998 if( iB<0 ){ 001999 assert( OP_ShiftRight==OP_ShiftLeft+1 ); 002000 op = 2*OP_ShiftLeft + 1 - op; 002001 iB = iB>(-64) ? -iB : 64; 002002 } 002003 002004 if( iB>=64 ){ 002005 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1; 002006 }else{ 002007 memcpy(&uA, &iA, sizeof(uA)); 002008 if( op==OP_ShiftLeft ){ 002009 uA <<= iB; 002010 }else{ 002011 uA >>= iB; 002012 /* Sign-extend on a right shift of a negative number */ 002013 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB); 002014 } 002015 memcpy(&iA, &uA, sizeof(iA)); 002016 } 002017 } 002018 pOut->u.i = iA; 002019 MemSetTypeFlag(pOut, MEM_Int); 002020 break; 002021 } 002022 002023 /* Opcode: AddImm P1 P2 * * * 002024 ** Synopsis: r[P1]=r[P1]+P2 002025 ** 002026 ** Add the constant P2 to the value in register P1. 002027 ** The result is always an integer. 002028 ** 002029 ** To force any register to be an integer, just add 0. 002030 */ 002031 case OP_AddImm: { /* in1 */ 002032 pIn1 = &aMem[pOp->p1]; 002033 memAboutToChange(p, pIn1); 002034 sqlite3VdbeMemIntegerify(pIn1); 002035 *(u64*)&pIn1->u.i += (u64)pOp->p2; 002036 break; 002037 } 002038 002039 /* Opcode: MustBeInt P1 P2 * * * 002040 ** 002041 ** Force the value in register P1 to be an integer. If the value 002042 ** in P1 is not an integer and cannot be converted into an integer 002043 ** without data loss, then jump immediately to P2, or if P2==0 002044 ** raise an SQLITE_MISMATCH exception. 002045 */ 002046 case OP_MustBeInt: { /* jump0, in1 */ 002047 pIn1 = &aMem[pOp->p1]; 002048 if( (pIn1->flags & MEM_Int)==0 ){ 002049 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding); 002050 if( (pIn1->flags & MEM_Int)==0 ){ 002051 VdbeBranchTaken(1, 2); 002052 if( pOp->p2==0 ){ 002053 rc = SQLITE_MISMATCH; 002054 goto abort_due_to_error; 002055 }else{ 002056 goto jump_to_p2; 002057 } 002058 } 002059 } 002060 VdbeBranchTaken(0, 2); 002061 MemSetTypeFlag(pIn1, MEM_Int); 002062 break; 002063 } 002064 002065 #ifndef SQLITE_OMIT_FLOATING_POINT 002066 /* Opcode: RealAffinity P1 * * * * 002067 ** 002068 ** If register P1 holds an integer convert it to a real value. 002069 ** 002070 ** This opcode is used when extracting information from a column that 002071 ** has REAL affinity. Such column values may still be stored as 002072 ** integers, for space efficiency, but after extraction we want them 002073 ** to have only a real value. 002074 */ 002075 case OP_RealAffinity: { /* in1 */ 002076 pIn1 = &aMem[pOp->p1]; 002077 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){ 002078 testcase( pIn1->flags & MEM_Int ); 002079 testcase( pIn1->flags & MEM_IntReal ); 002080 sqlite3VdbeMemRealify(pIn1); 002081 REGISTER_TRACE(pOp->p1, pIn1); 002082 } 002083 break; 002084 } 002085 #endif 002086 002087 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_ANALYZE) 002088 /* Opcode: Cast P1 P2 * * * 002089 ** Synopsis: affinity(r[P1]) 002090 ** 002091 ** Force the value in register P1 to be the type defined by P2. 002092 ** 002093 ** <ul> 002094 ** <li> P2=='A' → BLOB 002095 ** <li> P2=='B' → TEXT 002096 ** <li> P2=='C' → NUMERIC 002097 ** <li> P2=='D' → INTEGER 002098 ** <li> P2=='E' → REAL 002099 ** </ul> 002100 ** 002101 ** A NULL value is not changed by this routine. It remains NULL. 002102 */ 002103 case OP_Cast: { /* in1 */ 002104 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL ); 002105 testcase( pOp->p2==SQLITE_AFF_TEXT ); 002106 testcase( pOp->p2==SQLITE_AFF_BLOB ); 002107 testcase( pOp->p2==SQLITE_AFF_NUMERIC ); 002108 testcase( pOp->p2==SQLITE_AFF_INTEGER ); 002109 testcase( pOp->p2==SQLITE_AFF_REAL ); 002110 pIn1 = &aMem[pOp->p1]; 002111 memAboutToChange(p, pIn1); 002112 rc = ExpandBlob(pIn1); 002113 if( rc ) goto abort_due_to_error; 002114 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding); 002115 if( rc ) goto abort_due_to_error; 002116 UPDATE_MAX_BLOBSIZE(pIn1); 002117 REGISTER_TRACE(pOp->p1, pIn1); 002118 break; 002119 } 002120 #endif /* SQLITE_OMIT_CAST */ 002121 002122 /* Opcode: Eq P1 P2 P3 P4 P5 002123 ** Synopsis: IF r[P3]==r[P1] 002124 ** 002125 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then 002126 ** jump to address P2. 002127 ** 002128 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002129 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002130 ** to coerce both inputs according to this affinity before the 002131 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002132 ** affinity is used. Note that the affinity conversions are stored 002133 ** back into the input registers P1 and P3. So this opcode can cause 002134 ** persistent changes to registers P1 and P3. 002135 ** 002136 ** Once any conversions have taken place, and neither value is NULL, 002137 ** the values are compared. If both values are blobs then memcmp() is 002138 ** used to determine the results of the comparison. If both values 002139 ** are text, then the appropriate collating function specified in 002140 ** P4 is used to do the comparison. If P4 is not specified then 002141 ** memcmp() is used to compare text string. If both values are 002142 ** numeric, then a numeric comparison is used. If the two values 002143 ** are of different types, then numbers are considered less than 002144 ** strings and strings are considered less than blobs. 002145 ** 002146 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either 002147 ** true or false and is never NULL. If both operands are NULL then the result 002148 ** of comparison is true. If either operand is NULL then the result is false. 002149 ** If neither operand is NULL the result is the same as it would be if 002150 ** the SQLITE_NULLEQ flag were omitted from P5. 002151 ** 002152 ** This opcode saves the result of comparison for use by the new 002153 ** OP_Jump opcode. 002154 */ 002155 /* Opcode: Ne P1 P2 P3 P4 P5 002156 ** Synopsis: IF r[P3]!=r[P1] 002157 ** 002158 ** This works just like the Eq opcode except that the jump is taken if 002159 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for 002160 ** additional information. 002161 */ 002162 /* Opcode: Lt P1 P2 P3 P4 P5 002163 ** Synopsis: IF r[P3]<r[P1] 002164 ** 002165 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then 002166 ** jump to address P2. 002167 ** 002168 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or 002169 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL 002170 ** bit is clear then fall through if either operand is NULL. 002171 ** 002172 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character - 002173 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 002174 ** to coerce both inputs according to this affinity before the 002175 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric 002176 ** affinity is used. Note that the affinity conversions are stored 002177 ** back into the input registers P1 and P3. So this opcode can cause 002178 ** persistent changes to registers P1 and P3. 002179 ** 002180 ** Once any conversions have taken place, and neither value is NULL, 002181 ** the values are compared. If both values are blobs then memcmp() is 002182 ** used to determine the results of the comparison. If both values 002183 ** are text, then the appropriate collating function specified in 002184 ** P4 is used to do the comparison. If P4 is not specified then 002185 ** memcmp() is used to compare text string. If both values are 002186 ** numeric, then a numeric comparison is used. If the two values 002187 ** are of different types, then numbers are considered less than 002188 ** strings and strings are considered less than blobs. 002189 ** 002190 ** This opcode saves the result of comparison for use by the new 002191 ** OP_Jump opcode. 002192 */ 002193 /* Opcode: Le P1 P2 P3 P4 P5 002194 ** Synopsis: IF r[P3]<=r[P1] 002195 ** 002196 ** This works just like the Lt opcode except that the jump is taken if 002197 ** the content of register P3 is less than or equal to the content of 002198 ** register P1. See the Lt opcode for additional information. 002199 */ 002200 /* Opcode: Gt P1 P2 P3 P4 P5 002201 ** Synopsis: IF r[P3]>r[P1] 002202 ** 002203 ** This works just like the Lt opcode except that the jump is taken if 002204 ** the content of register P3 is greater than the content of 002205 ** register P1. See the Lt opcode for additional information. 002206 */ 002207 /* Opcode: Ge P1 P2 P3 P4 P5 002208 ** Synopsis: IF r[P3]>=r[P1] 002209 ** 002210 ** This works just like the Lt opcode except that the jump is taken if 002211 ** the content of register P3 is greater than or equal to the content of 002212 ** register P1. See the Lt opcode for additional information. 002213 */ 002214 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */ 002215 case OP_Ne: /* same as TK_NE, jump, in1, in3 */ 002216 case OP_Lt: /* same as TK_LT, jump, in1, in3 */ 002217 case OP_Le: /* same as TK_LE, jump, in1, in3 */ 002218 case OP_Gt: /* same as TK_GT, jump, in1, in3 */ 002219 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */ 002220 int res, res2; /* Result of the comparison of pIn1 against pIn3 */ 002221 char affinity; /* Affinity to use for comparison */ 002222 u16 flags1; /* Copy of initial value of pIn1->flags */ 002223 u16 flags3; /* Copy of initial value of pIn3->flags */ 002224 002225 pIn1 = &aMem[pOp->p1]; 002226 pIn3 = &aMem[pOp->p3]; 002227 flags1 = pIn1->flags; 002228 flags3 = pIn3->flags; 002229 if( (flags1 & flags3 & MEM_Int)!=0 ){ 002230 /* Common case of comparison of two integers */ 002231 if( pIn3->u.i > pIn1->u.i ){ 002232 if( sqlite3aGTb[pOp->opcode] ){ 002233 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002234 goto jump_to_p2; 002235 } 002236 iCompare = +1; 002237 VVA_ONLY( iCompareIsInit = 1; ) 002238 }else if( pIn3->u.i < pIn1->u.i ){ 002239 if( sqlite3aLTb[pOp->opcode] ){ 002240 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002241 goto jump_to_p2; 002242 } 002243 iCompare = -1; 002244 VVA_ONLY( iCompareIsInit = 1; ) 002245 }else{ 002246 if( sqlite3aEQb[pOp->opcode] ){ 002247 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002248 goto jump_to_p2; 002249 } 002250 iCompare = 0; 002251 VVA_ONLY( iCompareIsInit = 1; ) 002252 } 002253 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002254 break; 002255 } 002256 if( (flags1 | flags3)&MEM_Null ){ 002257 /* One or both operands are NULL */ 002258 if( pOp->p5 & SQLITE_NULLEQ ){ 002259 /* If SQLITE_NULLEQ is set (which will only happen if the operator is 002260 ** OP_Eq or OP_Ne) then take the jump or not depending on whether 002261 ** or not both operands are null. 002262 */ 002263 assert( (flags1 & MEM_Cleared)==0 ); 002264 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB ); 002265 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 ); 002266 if( (flags1&flags3&MEM_Null)!=0 002267 && (flags3&MEM_Cleared)==0 002268 ){ 002269 res = 0; /* Operands are equal */ 002270 }else{ 002271 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */ 002272 } 002273 }else{ 002274 /* SQLITE_NULLEQ is clear and at least one operand is NULL, 002275 ** then the result is always NULL. 002276 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. 002277 */ 002278 VdbeBranchTaken(2,3); 002279 if( pOp->p5 & SQLITE_JUMPIFNULL ){ 002280 goto jump_to_p2; 002281 } 002282 iCompare = 1; /* Operands are not equal */ 002283 VVA_ONLY( iCompareIsInit = 1; ) 002284 break; 002285 } 002286 }else{ 002287 /* Neither operand is NULL and we couldn't do the special high-speed 002288 ** integer comparison case. So do a general-case comparison. */ 002289 affinity = pOp->p5 & SQLITE_AFF_MASK; 002290 if( affinity>=SQLITE_AFF_NUMERIC ){ 002291 if( (flags1 | flags3)&MEM_Str ){ 002292 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002293 applyNumericAffinity(pIn1,0); 002294 assert( flags3==pIn3->flags || CORRUPT_DB ); 002295 flags3 = pIn3->flags; 002296 } 002297 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){ 002298 applyNumericAffinity(pIn3,0); 002299 } 002300 } 002301 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){ 002302 if( (flags1 & MEM_Str)!=0 ){ 002303 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002304 }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002305 testcase( pIn1->flags & MEM_Int ); 002306 testcase( pIn1->flags & MEM_Real ); 002307 testcase( pIn1->flags & MEM_IntReal ); 002308 sqlite3VdbeMemStringify(pIn1, encoding, 1); 002309 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) ); 002310 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask); 002311 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str; 002312 } 002313 if( (flags3 & MEM_Str)!=0 ){ 002314 pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal); 002315 }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){ 002316 testcase( pIn3->flags & MEM_Int ); 002317 testcase( pIn3->flags & MEM_Real ); 002318 testcase( pIn3->flags & MEM_IntReal ); 002319 sqlite3VdbeMemStringify(pIn3, encoding, 1); 002320 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) ); 002321 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask); 002322 } 002323 } 002324 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 ); 002325 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl); 002326 } 002327 002328 /* At this point, res is negative, zero, or positive if reg[P1] is 002329 ** less than, equal to, or greater than reg[P3], respectively. Compute 002330 ** the answer to this operator in res2, depending on what the comparison 002331 ** operator actually is. The next block of code depends on the fact 002332 ** that the 6 comparison operators are consecutive integers in this 002333 ** order: NE, EQ, GT, LE, LT, GE */ 002334 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 ); 002335 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 ); 002336 if( res<0 ){ 002337 res2 = sqlite3aLTb[pOp->opcode]; 002338 }else if( res==0 ){ 002339 res2 = sqlite3aEQb[pOp->opcode]; 002340 }else{ 002341 res2 = sqlite3aGTb[pOp->opcode]; 002342 } 002343 iCompare = res; 002344 VVA_ONLY( iCompareIsInit = 1; ) 002345 002346 /* Undo any changes made by applyAffinity() to the input registers. */ 002347 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) ); 002348 pIn3->flags = flags3; 002349 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) ); 002350 pIn1->flags = flags1; 002351 002352 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3); 002353 if( res2 ){ 002354 goto jump_to_p2; 002355 } 002356 break; 002357 } 002358 002359 /* Opcode: ElseEq * P2 * * * 002360 ** 002361 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There 002362 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other 002363 ** opcodes are allowed to occur between this instruction and the previous 002364 ** OP_Lt or OP_Gt. 002365 ** 002366 ** If the result of an OP_Eq comparison on the same two operands as 002367 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If 002368 ** the result of an OP_Eq comparison on the two previous operands 002369 ** would have been false or NULL, then fall through. 002370 */ 002371 case OP_ElseEq: { /* same as TK_ESCAPE, jump */ 002372 002373 #ifdef SQLITE_DEBUG 002374 /* Verify the preconditions of this opcode - that it follows an OP_Lt or 002375 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */ 002376 int iAddr; 002377 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){ 002378 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue; 002379 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt ); 002380 break; 002381 } 002382 #endif /* SQLITE_DEBUG */ 002383 assert( iCompareIsInit ); 002384 VdbeBranchTaken(iCompare==0, 2); 002385 if( iCompare==0 ) goto jump_to_p2; 002386 break; 002387 } 002388 002389 002390 /* Opcode: Permutation * * * P4 * 002391 ** 002392 ** Set the permutation used by the OP_Compare operator in the next 002393 ** instruction. The permutation is stored in the P4 operand. 002394 ** 002395 ** The permutation is only valid for the next opcode which must be 002396 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5. 002397 ** 002398 ** The first integer in the P4 integer array is the length of the array 002399 ** and does not become part of the permutation. 002400 */ 002401 case OP_Permutation: { 002402 assert( pOp->p4type==P4_INTARRAY ); 002403 assert( pOp->p4.ai ); 002404 assert( pOp[1].opcode==OP_Compare ); 002405 assert( pOp[1].p5 & OPFLAG_PERMUTE ); 002406 break; 002407 } 002408 002409 /* Opcode: Compare P1 P2 P3 P4 P5 002410 ** Synopsis: r[P1@P3] <-> r[P2@P3] 002411 ** 002412 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this 002413 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of 002414 ** the comparison for use by the next OP_Jump instruct. 002415 ** 002416 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is 002417 ** determined by the most recent OP_Permutation operator. If the 002418 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential 002419 ** order. 002420 ** 002421 ** P4 is a KeyInfo structure that defines collating sequences and sort 002422 ** orders for the comparison. The permutation applies to registers 002423 ** only. The KeyInfo elements are used sequentially. 002424 ** 002425 ** The comparison is a sort comparison, so NULLs compare equal, 002426 ** NULLs are less than numbers, numbers are less than strings, 002427 ** and strings are less than blobs. 002428 ** 002429 ** This opcode must be immediately followed by an OP_Jump opcode. 002430 */ 002431 case OP_Compare: { 002432 int n; 002433 int i; 002434 int p1; 002435 int p2; 002436 const KeyInfo *pKeyInfo; 002437 u32 idx; 002438 CollSeq *pColl; /* Collating sequence to use on this term */ 002439 int bRev; /* True for DESCENDING sort order */ 002440 u32 *aPermute; /* The permutation */ 002441 002442 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){ 002443 aPermute = 0; 002444 }else{ 002445 assert( pOp>aOp ); 002446 assert( pOp[-1].opcode==OP_Permutation ); 002447 assert( pOp[-1].p4type==P4_INTARRAY ); 002448 aPermute = pOp[-1].p4.ai + 1; 002449 assert( aPermute!=0 ); 002450 } 002451 n = pOp->p3; 002452 pKeyInfo = pOp->p4.pKeyInfo; 002453 assert( n>0 ); 002454 assert( pKeyInfo!=0 ); 002455 p1 = pOp->p1; 002456 p2 = pOp->p2; 002457 #ifdef SQLITE_DEBUG 002458 if( aPermute ){ 002459 int k, mx = 0; 002460 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k]; 002461 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 ); 002462 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 ); 002463 }else{ 002464 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 ); 002465 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 ); 002466 } 002467 #endif /* SQLITE_DEBUG */ 002468 for(i=0; i<n; i++){ 002469 idx = aPermute ? aPermute[i] : (u32)i; 002470 assert( memIsValid(&aMem[p1+idx]) ); 002471 assert( memIsValid(&aMem[p2+idx]) ); 002472 REGISTER_TRACE(p1+idx, &aMem[p1+idx]); 002473 REGISTER_TRACE(p2+idx, &aMem[p2+idx]); 002474 assert( i<pKeyInfo->nKeyField ); 002475 pColl = pKeyInfo->aColl[i]; 002476 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC); 002477 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl); 002478 VVA_ONLY( iCompareIsInit = 1; ) 002479 if( iCompare ){ 002480 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) 002481 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null)) 002482 ){ 002483 iCompare = -iCompare; 002484 } 002485 if( bRev ) iCompare = -iCompare; 002486 break; 002487 } 002488 } 002489 assert( pOp[1].opcode==OP_Jump ); 002490 break; 002491 } 002492 002493 /* Opcode: Jump P1 P2 P3 * * 002494 ** 002495 ** Jump to the instruction at address P1, P2, or P3 depending on whether 002496 ** in the most recent OP_Compare instruction the P1 vector was less than, 002497 ** equal to, or greater than the P2 vector, respectively. 002498 ** 002499 ** This opcode must immediately follow an OP_Compare opcode. 002500 */ 002501 case OP_Jump: { /* jump */ 002502 assert( pOp>aOp && pOp[-1].opcode==OP_Compare ); 002503 assert( iCompareIsInit ); 002504 if( iCompare<0 ){ 002505 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1]; 002506 }else if( iCompare==0 ){ 002507 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1]; 002508 }else{ 002509 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1]; 002510 } 002511 break; 002512 } 002513 002514 /* Opcode: And P1 P2 P3 * * 002515 ** Synopsis: r[P3]=(r[P1] && r[P2]) 002516 ** 002517 ** Take the logical AND of the values in registers P1 and P2 and 002518 ** write the result into register P3. 002519 ** 002520 ** If either P1 or P2 is 0 (false) then the result is 0 even if 002521 ** the other input is NULL. A NULL and true or two NULLs give 002522 ** a NULL output. 002523 */ 002524 /* Opcode: Or P1 P2 P3 * * 002525 ** Synopsis: r[P3]=(r[P1] || r[P2]) 002526 ** 002527 ** Take the logical OR of the values in register P1 and P2 and 002528 ** store the answer in register P3. 002529 ** 002530 ** If either P1 or P2 is nonzero (true) then the result is 1 (true) 002531 ** even if the other input is NULL. A NULL and false or two NULLs 002532 ** give a NULL output. 002533 */ 002534 case OP_And: /* same as TK_AND, in1, in2, out3 */ 002535 case OP_Or: { /* same as TK_OR, in1, in2, out3 */ 002536 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002537 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */ 002538 002539 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2); 002540 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2); 002541 if( pOp->opcode==OP_And ){ 002542 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 }; 002543 v1 = and_logic[v1*3+v2]; 002544 }else{ 002545 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 }; 002546 v1 = or_logic[v1*3+v2]; 002547 } 002548 pOut = &aMem[pOp->p3]; 002549 if( v1==2 ){ 002550 MemSetTypeFlag(pOut, MEM_Null); 002551 }else{ 002552 pOut->u.i = v1; 002553 MemSetTypeFlag(pOut, MEM_Int); 002554 } 002555 break; 002556 } 002557 002558 /* Opcode: IsTrue P1 P2 P3 P4 * 002559 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4 002560 ** 002561 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and 002562 ** IS NOT FALSE operators. 002563 ** 002564 ** Interpret the value in register P1 as a boolean value. Store that 002565 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is 002566 ** NULL, then the P3 is stored in register P2. Invert the answer if P4 002567 ** is 1. 002568 ** 002569 ** The logic is summarized like this: 002570 ** 002571 ** <ul> 002572 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE 002573 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE 002574 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE 002575 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE 002576 ** </ul> 002577 */ 002578 case OP_IsTrue: { /* in1, out2 */ 002579 assert( pOp->p4type==P4_INT32 ); 002580 assert( pOp->p4.i==0 || pOp->p4.i==1 ); 002581 assert( pOp->p3==0 || pOp->p3==1 ); 002582 sqlite3VdbeMemSetInt64(&aMem[pOp->p2], 002583 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i); 002584 break; 002585 } 002586 002587 /* Opcode: Not P1 P2 * * * 002588 ** Synopsis: r[P2]= !r[P1] 002589 ** 002590 ** Interpret the value in register P1 as a boolean value. Store the 002591 ** boolean complement in register P2. If the value in register P1 is 002592 ** NULL, then a NULL is stored in P2. 002593 */ 002594 case OP_Not: { /* same as TK_NOT, in1, out2 */ 002595 pIn1 = &aMem[pOp->p1]; 002596 pOut = &aMem[pOp->p2]; 002597 if( (pIn1->flags & MEM_Null)==0 ){ 002598 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0)); 002599 }else{ 002600 sqlite3VdbeMemSetNull(pOut); 002601 } 002602 break; 002603 } 002604 002605 /* Opcode: BitNot P1 P2 * * * 002606 ** Synopsis: r[P2]= ~r[P1] 002607 ** 002608 ** Interpret the content of register P1 as an integer. Store the 002609 ** ones-complement of the P1 value into register P2. If P1 holds 002610 ** a NULL then store a NULL in P2. 002611 */ 002612 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */ 002613 pIn1 = &aMem[pOp->p1]; 002614 pOut = &aMem[pOp->p2]; 002615 sqlite3VdbeMemSetNull(pOut); 002616 if( (pIn1->flags & MEM_Null)==0 ){ 002617 pOut->flags = MEM_Int; 002618 pOut->u.i = ~sqlite3VdbeIntValue(pIn1); 002619 } 002620 break; 002621 } 002622 002623 /* Opcode: Once P1 P2 * * * 002624 ** 002625 ** Fall through to the next instruction the first time this opcode is 002626 ** encountered on each invocation of the byte-code program. Jump to P2 002627 ** on the second and all subsequent encounters during the same invocation. 002628 ** 002629 ** Top-level programs determine first invocation by comparing the P1 002630 ** operand against the P1 operand on the OP_Init opcode at the beginning 002631 ** of the program. If the P1 values differ, then fall through and make 002632 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are 002633 ** the same then take the jump. 002634 ** 002635 ** For subprograms, there is a bitmask in the VdbeFrame that determines 002636 ** whether or not the jump should be taken. The bitmask is necessary 002637 ** because the self-altering code trick does not work for recursive 002638 ** triggers. 002639 */ 002640 case OP_Once: { /* jump */ 002641 u32 iAddr; /* Address of this instruction */ 002642 assert( p->aOp[0].opcode==OP_Init ); 002643 if( p->pFrame ){ 002644 iAddr = (int)(pOp - p->aOp); 002645 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){ 002646 VdbeBranchTaken(1, 2); 002647 goto jump_to_p2; 002648 } 002649 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7); 002650 }else{ 002651 if( p->aOp[0].p1==pOp->p1 ){ 002652 VdbeBranchTaken(1, 2); 002653 goto jump_to_p2; 002654 } 002655 } 002656 VdbeBranchTaken(0, 2); 002657 pOp->p1 = p->aOp[0].p1; 002658 break; 002659 } 002660 002661 /* Opcode: If P1 P2 P3 * * 002662 ** 002663 ** Jump to P2 if the value in register P1 is true. The value 002664 ** is considered true if it is numeric and non-zero. If the value 002665 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002666 */ 002667 case OP_If: { /* jump, in1 */ 002668 int c; 002669 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3); 002670 VdbeBranchTaken(c!=0, 2); 002671 if( c ) goto jump_to_p2; 002672 break; 002673 } 002674 002675 /* Opcode: IfNot P1 P2 P3 * * 002676 ** 002677 ** Jump to P2 if the value in register P1 is False. The value 002678 ** is considered false if it has a numeric value of zero. If the value 002679 ** in P1 is NULL then take the jump if and only if P3 is non-zero. 002680 */ 002681 case OP_IfNot: { /* jump, in1 */ 002682 int c; 002683 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3); 002684 VdbeBranchTaken(c!=0, 2); 002685 if( c ) goto jump_to_p2; 002686 break; 002687 } 002688 002689 /* Opcode: IsNull P1 P2 * * * 002690 ** Synopsis: if r[P1]==NULL goto P2 002691 ** 002692 ** Jump to P2 if the value in register P1 is NULL. 002693 */ 002694 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */ 002695 pIn1 = &aMem[pOp->p1]; 002696 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2); 002697 if( (pIn1->flags & MEM_Null)!=0 ){ 002698 goto jump_to_p2; 002699 } 002700 break; 002701 } 002702 002703 /* Opcode: IsType P1 P2 P3 P4 P5 002704 ** Synopsis: if typeof(P1.P3) in P5 goto P2 002705 ** 002706 ** Jump to P2 if the type of a column in a btree is one of the types specified 002707 ** by the P5 bitmask. 002708 ** 002709 ** P1 is normally a cursor on a btree for which the row decode cache is 002710 ** valid through at least column P3. In other words, there should have been 002711 ** a prior OP_Column for column P3 or greater. If the cursor is not valid, 002712 ** then this opcode might give spurious results. 002713 ** The the btree row has fewer than P3 columns, then use P4 as the 002714 ** datatype. 002715 ** 002716 ** If P1 is -1, then P3 is a register number and the datatype is taken 002717 ** from the value in that register. 002718 ** 002719 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant 002720 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04. 002721 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10. 002722 ** 002723 ** WARNING: This opcode does not reliably distinguish between NULL and REAL 002724 ** when P1>=0. If the database contains a NaN value, this opcode will think 002725 ** that the datatype is REAL when it should be NULL. When P1<0 and the value 002726 ** is already stored in register P3, then this opcode does reliably 002727 ** distinguish between NULL and REAL. The problem only arises then P1>=0. 002728 ** 002729 ** Take the jump to address P2 if and only if the datatype of the 002730 ** value determined by P1 and P3 corresponds to one of the bits in the 002731 ** P5 bitmask. 002732 ** 002733 */ 002734 case OP_IsType: { /* jump */ 002735 VdbeCursor *pC; 002736 u16 typeMask; 002737 u32 serialType; 002738 002739 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor ); 002740 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) ); 002741 if( pOp->p1>=0 ){ 002742 pC = p->apCsr[pOp->p1]; 002743 assert( pC!=0 ); 002744 assert( pOp->p3>=0 ); 002745 if( pOp->p3<pC->nHdrParsed ){ 002746 serialType = pC->aType[pOp->p3]; 002747 if( serialType>=12 ){ 002748 if( serialType&1 ){ 002749 typeMask = 0x04; /* SQLITE_TEXT */ 002750 }else{ 002751 typeMask = 0x08; /* SQLITE_BLOB */ 002752 } 002753 }else{ 002754 static const unsigned char aMask[] = { 002755 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2, 002756 0x01, 0x01, 0x10, 0x10 002757 }; 002758 testcase( serialType==0 ); 002759 testcase( serialType==1 ); 002760 testcase( serialType==2 ); 002761 testcase( serialType==3 ); 002762 testcase( serialType==4 ); 002763 testcase( serialType==5 ); 002764 testcase( serialType==6 ); 002765 testcase( serialType==7 ); 002766 testcase( serialType==8 ); 002767 testcase( serialType==9 ); 002768 testcase( serialType==10 ); 002769 testcase( serialType==11 ); 002770 typeMask = aMask[serialType]; 002771 } 002772 }else{ 002773 typeMask = 1 << (pOp->p4.i - 1); 002774 testcase( typeMask==0x01 ); 002775 testcase( typeMask==0x02 ); 002776 testcase( typeMask==0x04 ); 002777 testcase( typeMask==0x08 ); 002778 testcase( typeMask==0x10 ); 002779 } 002780 }else{ 002781 assert( memIsValid(&aMem[pOp->p3]) ); 002782 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1); 002783 testcase( typeMask==0x01 ); 002784 testcase( typeMask==0x02 ); 002785 testcase( typeMask==0x04 ); 002786 testcase( typeMask==0x08 ); 002787 testcase( typeMask==0x10 ); 002788 } 002789 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2); 002790 if( typeMask & pOp->p5 ){ 002791 goto jump_to_p2; 002792 } 002793 break; 002794 } 002795 002796 /* Opcode: ZeroOrNull P1 P2 P3 * * 002797 ** Synopsis: r[P2] = 0 OR NULL 002798 ** 002799 ** If both registers P1 and P3 are NOT NULL, then store a zero in 002800 ** register P2. If either registers P1 or P3 are NULL then put 002801 ** a NULL in register P2. 002802 */ 002803 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */ 002804 if( (aMem[pOp->p1].flags & MEM_Null)!=0 002805 || (aMem[pOp->p3].flags & MEM_Null)!=0 002806 ){ 002807 sqlite3VdbeMemSetNull(aMem + pOp->p2); 002808 }else{ 002809 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0); 002810 } 002811 break; 002812 } 002813 002814 /* Opcode: NotNull P1 P2 * * * 002815 ** Synopsis: if r[P1]!=NULL goto P2 002816 ** 002817 ** Jump to P2 if the value in register P1 is not NULL. 002818 */ 002819 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */ 002820 pIn1 = &aMem[pOp->p1]; 002821 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2); 002822 if( (pIn1->flags & MEM_Null)==0 ){ 002823 goto jump_to_p2; 002824 } 002825 break; 002826 } 002827 002828 /* Opcode: IfNullRow P1 P2 P3 * * 002829 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2 002830 ** 002831 ** Check the cursor P1 to see if it is currently pointing at a NULL row. 002832 ** If it is, then set register P3 to NULL and jump immediately to P2. 002833 ** If P1 is not on a NULL row, then fall through without making any 002834 ** changes. 002835 ** 002836 ** If P1 is not an open cursor, then this opcode is a no-op. 002837 */ 002838 case OP_IfNullRow: { /* jump */ 002839 VdbeCursor *pC; 002840 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002841 pC = p->apCsr[pOp->p1]; 002842 if( pC && pC->nullRow ){ 002843 sqlite3VdbeMemSetNull(aMem + pOp->p3); 002844 goto jump_to_p2; 002845 } 002846 break; 002847 } 002848 002849 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 002850 /* Opcode: Offset P1 P2 P3 * * 002851 ** Synopsis: r[P3] = sqlite_offset(P1) 002852 ** 002853 ** Store in register r[P3] the byte offset into the database file that is the 002854 ** start of the payload for the record at which that cursor P1 is currently 002855 ** pointing. 002856 ** 002857 ** P2 is the column number for the argument to the sqlite_offset() function. 002858 ** This opcode does not use P2 itself, but the P2 value is used by the 002859 ** code generator. The P1, P2, and P3 operands to this opcode are the 002860 ** same as for OP_Column. 002861 ** 002862 ** This opcode is only available if SQLite is compiled with the 002863 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option. 002864 */ 002865 case OP_Offset: { /* out3 */ 002866 VdbeCursor *pC; /* The VDBE cursor */ 002867 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002868 pC = p->apCsr[pOp->p1]; 002869 pOut = &p->aMem[pOp->p3]; 002870 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){ 002871 sqlite3VdbeMemSetNull(pOut); 002872 }else{ 002873 if( pC->deferredMoveto ){ 002874 rc = sqlite3VdbeFinishMoveto(pC); 002875 if( rc ) goto abort_due_to_error; 002876 } 002877 if( sqlite3BtreeEof(pC->uc.pCursor) ){ 002878 sqlite3VdbeMemSetNull(pOut); 002879 }else{ 002880 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor)); 002881 } 002882 } 002883 break; 002884 } 002885 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */ 002886 002887 /* Opcode: Column P1 P2 P3 P4 P5 002888 ** Synopsis: r[P3]=PX cursor P1 column P2 002889 ** 002890 ** Interpret the data that cursor P1 points to as a structure built using 002891 ** the MakeRecord instruction. (See the MakeRecord opcode for additional 002892 ** information about the format of the data.) Extract the P2-th column 002893 ** from this record. If there are less than (P2+1) 002894 ** values in the record, extract a NULL. 002895 ** 002896 ** The value extracted is stored in register P3. 002897 ** 002898 ** If the record contains fewer than P2 fields, then extract a NULL. Or, 002899 ** if the P4 argument is a P4_MEM use the value of the P4 argument as 002900 ** the result. 002901 ** 002902 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed 002903 ** to only be used by the length() function or the equivalent. The content 002904 ** of large blobs is not loaded, thus saving CPU cycles. If the 002905 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the 002906 ** typeof() function or the IS NULL or IS NOT NULL operators or the 002907 ** equivalent. In this case, all content loading can be omitted. 002908 */ 002909 case OP_Column: { /* ncycle */ 002910 u32 p2; /* column number to retrieve */ 002911 VdbeCursor *pC; /* The VDBE cursor */ 002912 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */ 002913 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */ 002914 int len; /* The length of the serialized data for the column */ 002915 int i; /* Loop counter */ 002916 Mem *pDest; /* Where to write the extracted value */ 002917 Mem sMem; /* For storing the record being decoded */ 002918 const u8 *zData; /* Part of the record being decoded */ 002919 const u8 *zHdr; /* Next unparsed byte of the header */ 002920 const u8 *zEndHdr; /* Pointer to first byte after the header */ 002921 u64 offset64; /* 64-bit offset */ 002922 u32 t; /* A type code from the record header */ 002923 Mem *pReg; /* PseudoTable input register */ 002924 002925 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 002926 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 002927 pC = p->apCsr[pOp->p1]; 002928 p2 = (u32)pOp->p2; 002929 002930 op_column_restart: 002931 assert( pC!=0 ); 002932 assert( p2<(u32)pC->nField 002933 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) ); 002934 aOffset = pC->aOffset; 002935 assert( aOffset==pC->aType+pC->nField ); 002936 assert( pC->eCurType!=CURTYPE_VTAB ); 002937 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 002938 assert( pC->eCurType!=CURTYPE_SORTER ); 002939 002940 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/ 002941 if( pC->nullRow ){ 002942 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){ 002943 /* For the special case of as pseudo-cursor, the seekResult field 002944 ** identifies the register that holds the record */ 002945 pReg = &aMem[pC->seekResult]; 002946 assert( pReg->flags & MEM_Blob ); 002947 assert( memIsValid(pReg) ); 002948 pC->payloadSize = pC->szRow = pReg->n; 002949 pC->aRow = (u8*)pReg->z; 002950 }else{ 002951 pDest = &aMem[pOp->p3]; 002952 memAboutToChange(p, pDest); 002953 sqlite3VdbeMemSetNull(pDest); 002954 goto op_column_out; 002955 } 002956 }else{ 002957 pCrsr = pC->uc.pCursor; 002958 if( pC->deferredMoveto ){ 002959 u32 iMap; 002960 assert( !pC->isEphemeral ); 002961 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){ 002962 pC = pC->pAltCursor; 002963 p2 = iMap - 1; 002964 goto op_column_restart; 002965 } 002966 rc = sqlite3VdbeFinishMoveto(pC); 002967 if( rc ) goto abort_due_to_error; 002968 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){ 002969 rc = sqlite3VdbeHandleMovedCursor(pC); 002970 if( rc ) goto abort_due_to_error; 002971 goto op_column_restart; 002972 } 002973 assert( pC->eCurType==CURTYPE_BTREE ); 002974 assert( pCrsr ); 002975 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 002976 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr); 002977 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow); 002978 assert( pC->szRow<=pC->payloadSize ); 002979 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */ 002980 } 002981 pC->cacheStatus = p->cacheCtr; 002982 if( (aOffset[0] = pC->aRow[0])<0x80 ){ 002983 pC->iHdrOffset = 1; 002984 }else{ 002985 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset); 002986 } 002987 pC->nHdrParsed = 0; 002988 002989 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/ 002990 /* pC->aRow does not have to hold the entire row, but it does at least 002991 ** need to cover the header of the record. If pC->aRow does not contain 002992 ** the complete header, then set it to zero, forcing the header to be 002993 ** dynamically allocated. */ 002994 pC->aRow = 0; 002995 pC->szRow = 0; 002996 002997 /* Make sure a corrupt database has not given us an oversize header. 002998 ** Do this now to avoid an oversize memory allocation. 002999 ** 003000 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte 003001 ** types use so much data space that there can only be 4096 and 32 of 003002 ** them, respectively. So the maximum header length results from a 003003 ** 3-byte type for each of the maximum of 32768 columns plus three 003004 ** extra bytes for the header length itself. 32768*3 + 3 = 98307. 003005 */ 003006 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){ 003007 goto op_column_corrupt; 003008 } 003009 }else{ 003010 /* This is an optimization. By skipping over the first few tests 003011 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a 003012 ** measurable performance gain. 003013 ** 003014 ** This branch is taken even if aOffset[0]==0. Such a record is never 003015 ** generated by SQLite, and could be considered corruption, but we 003016 ** accept it for historical reasons. When aOffset[0]==0, the code this 003017 ** branch jumps to reads past the end of the record, but never more 003018 ** than a few bytes. Even if the record occurs at the end of the page 003019 ** content area, the "page header" comes after the page content and so 003020 ** this overread is harmless. Similar overreads can occur for a corrupt 003021 ** database file. 003022 */ 003023 zData = pC->aRow; 003024 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */ 003025 testcase( aOffset[0]==0 ); 003026 goto op_column_read_header; 003027 } 003028 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){ 003029 rc = sqlite3VdbeHandleMovedCursor(pC); 003030 if( rc ) goto abort_due_to_error; 003031 goto op_column_restart; 003032 } 003033 003034 /* Make sure at least the first p2+1 entries of the header have been 003035 ** parsed and valid information is in aOffset[] and pC->aType[]. 003036 */ 003037 if( pC->nHdrParsed<=p2 ){ 003038 /* If there is more header available for parsing in the record, try 003039 ** to extract additional fields up through the p2+1-th field 003040 */ 003041 if( pC->iHdrOffset<aOffset[0] ){ 003042 /* Make sure zData points to enough of the record to cover the header. */ 003043 if( pC->aRow==0 ){ 003044 memset(&sMem, 0, sizeof(sMem)); 003045 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem); 003046 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003047 zData = (u8*)sMem.z; 003048 }else{ 003049 zData = pC->aRow; 003050 } 003051 003052 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */ 003053 op_column_read_header: 003054 i = pC->nHdrParsed; 003055 offset64 = aOffset[i]; 003056 zHdr = zData + pC->iHdrOffset; 003057 zEndHdr = zData + aOffset[0]; 003058 testcase( zHdr>=zEndHdr ); 003059 do{ 003060 if( (pC->aType[i] = t = zHdr[0])<0x80 ){ 003061 zHdr++; 003062 offset64 += sqlite3VdbeOneByteSerialTypeLen(t); 003063 }else{ 003064 zHdr += sqlite3GetVarint32(zHdr, &t); 003065 pC->aType[i] = t; 003066 offset64 += sqlite3VdbeSerialTypeLen(t); 003067 } 003068 aOffset[++i] = (u32)(offset64 & 0xffffffff); 003069 }while( (u32)i<=p2 && zHdr<zEndHdr ); 003070 003071 /* The record is corrupt if any of the following are true: 003072 ** (1) the bytes of the header extend past the declared header size 003073 ** (2) the entire header was used but not all data was used 003074 ** (3) the end of the data extends beyond the end of the record. 003075 */ 003076 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize)) 003077 || (offset64 > pC->payloadSize) 003078 ){ 003079 if( aOffset[0]==0 ){ 003080 i = 0; 003081 zHdr = zEndHdr; 003082 }else{ 003083 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003084 goto op_column_corrupt; 003085 } 003086 } 003087 003088 pC->nHdrParsed = i; 003089 pC->iHdrOffset = (u32)(zHdr - zData); 003090 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem); 003091 }else{ 003092 t = 0; 003093 } 003094 003095 /* If after trying to extract new entries from the header, nHdrParsed is 003096 ** still not up to p2, that means that the record has fewer than p2 003097 ** columns. So the result will be either the default value or a NULL. 003098 */ 003099 if( pC->nHdrParsed<=p2 ){ 003100 pDest = &aMem[pOp->p3]; 003101 memAboutToChange(p, pDest); 003102 if( pOp->p4type==P4_MEM ){ 003103 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static); 003104 }else{ 003105 sqlite3VdbeMemSetNull(pDest); 003106 } 003107 goto op_column_out; 003108 } 003109 }else{ 003110 t = pC->aType[p2]; 003111 } 003112 003113 /* Extract the content for the p2+1-th column. Control can only 003114 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are 003115 ** all valid. 003116 */ 003117 assert( p2<pC->nHdrParsed ); 003118 assert( rc==SQLITE_OK ); 003119 pDest = &aMem[pOp->p3]; 003120 memAboutToChange(p, pDest); 003121 assert( sqlite3VdbeCheckMemInvariants(pDest) ); 003122 if( VdbeMemDynamic(pDest) ){ 003123 sqlite3VdbeMemSetNull(pDest); 003124 } 003125 assert( t==pC->aType[p2] ); 003126 if( pC->szRow>=aOffset[p2+1] ){ 003127 /* This is the common case where the desired content fits on the original 003128 ** page - where the content is not on an overflow page */ 003129 zData = pC->aRow + aOffset[p2]; 003130 if( t<12 ){ 003131 sqlite3VdbeSerialGet(zData, t, pDest); 003132 }else{ 003133 /* If the column value is a string, we need a persistent value, not 003134 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent 003135 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize(). 003136 */ 003137 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term }; 003138 pDest->n = len = (t-12)/2; 003139 pDest->enc = encoding; 003140 if( pDest->szMalloc < len+2 ){ 003141 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big; 003142 pDest->flags = MEM_Null; 003143 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem; 003144 }else{ 003145 pDest->z = pDest->zMalloc; 003146 } 003147 memcpy(pDest->z, zData, len); 003148 pDest->z[len] = 0; 003149 pDest->z[len+1] = 0; 003150 pDest->flags = aFlag[t&1]; 003151 } 003152 }else{ 003153 u8 p5; 003154 pDest->enc = encoding; 003155 assert( pDest->db==db ); 003156 /* This branch happens only when content is on overflow pages */ 003157 if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0 003158 && (p5==OPFLAG_TYPEOFARG 003159 || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG)) 003160 ) 003161 ) 003162 || sqlite3VdbeSerialTypeLen(t)==0 003163 ){ 003164 /* Content is irrelevant for 003165 ** 1. the typeof() function, 003166 ** 2. the length(X) function if X is a blob, and 003167 ** 3. if the content length is zero. 003168 ** So we might as well use bogus content rather than reading 003169 ** content from disk. 003170 ** 003171 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the 003172 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may 003173 ** read more. Use the global constant sqlite3CtypeMap[] as the array, 003174 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint()) 003175 ** and it begins with a bunch of zeros. 003176 */ 003177 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest); 003178 }else{ 003179 rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2], 003180 p->cacheCtr, colCacheCtr, pDest); 003181 if( rc ){ 003182 if( rc==SQLITE_NOMEM ) goto no_mem; 003183 if( rc==SQLITE_TOOBIG ) goto too_big; 003184 goto abort_due_to_error; 003185 } 003186 } 003187 } 003188 003189 op_column_out: 003190 UPDATE_MAX_BLOBSIZE(pDest); 003191 REGISTER_TRACE(pOp->p3, pDest); 003192 break; 003193 003194 op_column_corrupt: 003195 if( aOp[0].p3>0 ){ 003196 pOp = &aOp[aOp[0].p3-1]; 003197 break; 003198 }else{ 003199 rc = SQLITE_CORRUPT_BKPT; 003200 goto abort_due_to_error; 003201 } 003202 } 003203 003204 /* Opcode: TypeCheck P1 P2 P3 P4 * 003205 ** Synopsis: typecheck(r[P1@P2]) 003206 ** 003207 ** Apply affinities to the range of P2 registers beginning with P1. 003208 ** Take the affinities from the Table object in P4. If any value 003209 ** cannot be coerced into the correct type, then raise an error. 003210 ** 003211 ** This opcode is similar to OP_Affinity except that this opcode 003212 ** forces the register type to the Table column type. This is used 003213 ** to implement "strict affinity". 003214 ** 003215 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3 003216 ** is zero. When P3 is non-zero, no type checking occurs for 003217 ** static generated columns. Virtual columns are computed at query time 003218 ** and so they are never checked. 003219 ** 003220 ** Preconditions: 003221 ** 003222 ** <ul> 003223 ** <li> P2 should be the number of non-virtual columns in the 003224 ** table of P4. 003225 ** <li> Table P4 should be a STRICT table. 003226 ** </ul> 003227 ** 003228 ** If any precondition is false, an assertion fault occurs. 003229 */ 003230 case OP_TypeCheck: { 003231 Table *pTab; 003232 Column *aCol; 003233 int i; 003234 003235 assert( pOp->p4type==P4_TABLE ); 003236 pTab = pOp->p4.pTab; 003237 assert( pTab->tabFlags & TF_Strict ); 003238 assert( pTab->nNVCol==pOp->p2 ); 003239 aCol = pTab->aCol; 003240 pIn1 = &aMem[pOp->p1]; 003241 for(i=0; i<pTab->nCol; i++){ 003242 if( aCol[i].colFlags & COLFLAG_GENERATED ){ 003243 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue; 003244 if( pOp->p3 ){ pIn1++; continue; } 003245 } 003246 assert( pIn1 < &aMem[pOp->p1+pOp->p2] ); 003247 applyAffinity(pIn1, aCol[i].affinity, encoding); 003248 if( (pIn1->flags & MEM_Null)==0 ){ 003249 switch( aCol[i].eCType ){ 003250 case COLTYPE_BLOB: { 003251 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error; 003252 break; 003253 } 003254 case COLTYPE_INTEGER: 003255 case COLTYPE_INT: { 003256 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error; 003257 break; 003258 } 003259 case COLTYPE_TEXT: { 003260 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error; 003261 break; 003262 } 003263 case COLTYPE_REAL: { 003264 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real ); 003265 assert( (pIn1->flags & MEM_IntReal)==0 ); 003266 if( pIn1->flags & MEM_Int ){ 003267 /* When applying REAL affinity, if the result is still an MEM_Int 003268 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003269 ** so that we keep the high-resolution integer value but know that 003270 ** the type really wants to be REAL. */ 003271 testcase( pIn1->u.i==140737488355328LL ); 003272 testcase( pIn1->u.i==140737488355327LL ); 003273 testcase( pIn1->u.i==-140737488355328LL ); 003274 testcase( pIn1->u.i==-140737488355329LL ); 003275 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){ 003276 pIn1->flags |= MEM_IntReal; 003277 pIn1->flags &= ~MEM_Int; 003278 }else{ 003279 pIn1->u.r = (double)pIn1->u.i; 003280 pIn1->flags |= MEM_Real; 003281 pIn1->flags &= ~MEM_Int; 003282 } 003283 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){ 003284 goto vdbe_type_error; 003285 } 003286 break; 003287 } 003288 default: { 003289 /* COLTYPE_ANY. Accept anything. */ 003290 break; 003291 } 003292 } 003293 } 003294 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003295 pIn1++; 003296 } 003297 assert( pIn1 == &aMem[pOp->p1+pOp->p2] ); 003298 break; 003299 003300 vdbe_type_error: 003301 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s", 003302 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1], 003303 pTab->zName, aCol[i].zCnName); 003304 rc = SQLITE_CONSTRAINT_DATATYPE; 003305 goto abort_due_to_error; 003306 } 003307 003308 /* Opcode: Affinity P1 P2 * P4 * 003309 ** Synopsis: affinity(r[P1@P2]) 003310 ** 003311 ** Apply affinities to a range of P2 registers starting with P1. 003312 ** 003313 ** P4 is a string that is P2 characters long. The N-th character of the 003314 ** string indicates the column affinity that should be used for the N-th 003315 ** memory cell in the range. 003316 */ 003317 case OP_Affinity: { 003318 const char *zAffinity; /* The affinity to be applied */ 003319 003320 zAffinity = pOp->p4.z; 003321 assert( zAffinity!=0 ); 003322 assert( pOp->p2>0 ); 003323 assert( zAffinity[pOp->p2]==0 ); 003324 pIn1 = &aMem[pOp->p1]; 003325 while( 1 /*exit-by-break*/ ){ 003326 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] ); 003327 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) ); 003328 applyAffinity(pIn1, zAffinity[0], encoding); 003329 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){ 003330 /* When applying REAL affinity, if the result is still an MEM_Int 003331 ** that will fit in 6 bytes, then change the type to MEM_IntReal 003332 ** so that we keep the high-resolution integer value but know that 003333 ** the type really wants to be REAL. */ 003334 testcase( pIn1->u.i==140737488355328LL ); 003335 testcase( pIn1->u.i==140737488355327LL ); 003336 testcase( pIn1->u.i==-140737488355328LL ); 003337 testcase( pIn1->u.i==-140737488355329LL ); 003338 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){ 003339 pIn1->flags |= MEM_IntReal; 003340 pIn1->flags &= ~MEM_Int; 003341 }else{ 003342 pIn1->u.r = (double)pIn1->u.i; 003343 pIn1->flags |= MEM_Real; 003344 pIn1->flags &= ~(MEM_Int|MEM_Str); 003345 } 003346 } 003347 REGISTER_TRACE((int)(pIn1-aMem), pIn1); 003348 zAffinity++; 003349 if( zAffinity[0]==0 ) break; 003350 pIn1++; 003351 } 003352 break; 003353 } 003354 003355 /* Opcode: MakeRecord P1 P2 P3 P4 * 003356 ** Synopsis: r[P3]=mkrec(r[P1@P2]) 003357 ** 003358 ** Convert P2 registers beginning with P1 into the [record format] 003359 ** use as a data record in a database table or as a key 003360 ** in an index. The OP_Column opcode can decode the record later. 003361 ** 003362 ** P4 may be a string that is P2 characters long. The N-th character of the 003363 ** string indicates the column affinity that should be used for the N-th 003364 ** field of the index key. 003365 ** 003366 ** The mapping from character to affinity is given by the SQLITE_AFF_ 003367 ** macros defined in sqliteInt.h. 003368 ** 003369 ** If P4 is NULL then all index fields have the affinity BLOB. 003370 ** 003371 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM 003372 ** compile-time option is enabled: 003373 ** 003374 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index 003375 ** of the right-most table that can be null-trimmed. 003376 ** 003377 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value 003378 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to 003379 ** accept no-change records with serial_type 10. This value is 003380 ** only used inside an assert() and does not affect the end result. 003381 */ 003382 case OP_MakeRecord: { 003383 Mem *pRec; /* The new record */ 003384 u64 nData; /* Number of bytes of data space */ 003385 int nHdr; /* Number of bytes of header space */ 003386 i64 nByte; /* Data space required for this record */ 003387 i64 nZero; /* Number of zero bytes at the end of the record */ 003388 int nVarint; /* Number of bytes in a varint */ 003389 u32 serial_type; /* Type field */ 003390 Mem *pData0; /* First field to be combined into the record */ 003391 Mem *pLast; /* Last field of the record */ 003392 int nField; /* Number of fields in the record */ 003393 char *zAffinity; /* The affinity string for the record */ 003394 u32 len; /* Length of a field */ 003395 u8 *zHdr; /* Where to write next byte of the header */ 003396 u8 *zPayload; /* Where to write next byte of the payload */ 003397 003398 /* Assuming the record contains N fields, the record format looks 003399 ** like this: 003400 ** 003401 ** ------------------------------------------------------------------------ 003402 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 003403 ** ------------------------------------------------------------------------ 003404 ** 003405 ** Data(0) is taken from register P1. Data(1) comes from register P1+1 003406 ** and so forth. 003407 ** 003408 ** Each type field is a varint representing the serial type of the 003409 ** corresponding data element (see sqlite3VdbeSerialType()). The 003410 ** hdr-size field is also a varint which is the offset from the beginning 003411 ** of the record to data0. 003412 */ 003413 nData = 0; /* Number of bytes of data space */ 003414 nHdr = 0; /* Number of bytes of header space */ 003415 nZero = 0; /* Number of zero bytes at the end of the record */ 003416 nField = pOp->p1; 003417 zAffinity = pOp->p4.z; 003418 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 ); 003419 pData0 = &aMem[nField]; 003420 nField = pOp->p2; 003421 pLast = &pData0[nField-1]; 003422 003423 /* Identify the output register */ 003424 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 ); 003425 pOut = &aMem[pOp->p3]; 003426 memAboutToChange(p, pOut); 003427 003428 /* Apply the requested affinity to all inputs 003429 */ 003430 assert( pData0<=pLast ); 003431 if( zAffinity ){ 003432 pRec = pData0; 003433 do{ 003434 applyAffinity(pRec, zAffinity[0], encoding); 003435 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){ 003436 pRec->flags |= MEM_IntReal; 003437 pRec->flags &= ~(MEM_Int); 003438 } 003439 REGISTER_TRACE((int)(pRec-aMem), pRec); 003440 zAffinity++; 003441 pRec++; 003442 assert( zAffinity[0]==0 || pRec<=pLast ); 003443 }while( zAffinity[0] ); 003444 } 003445 003446 #ifdef SQLITE_ENABLE_NULL_TRIM 003447 /* NULLs can be safely trimmed from the end of the record, as long as 003448 ** as the schema format is 2 or more and none of the omitted columns 003449 ** have a non-NULL default value. Also, the record must be left with 003450 ** at least one field. If P5>0 then it will be one more than the 003451 ** index of the right-most column with a non-NULL default value */ 003452 if( pOp->p5 ){ 003453 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){ 003454 pLast--; 003455 nField--; 003456 } 003457 } 003458 #endif 003459 003460 /* Loop through the elements that will make up the record to figure 003461 ** out how much space is required for the new record. After this loop, 003462 ** the Mem.uTemp field of each term should hold the serial-type that will 003463 ** be used for that term in the generated record: 003464 ** 003465 ** Mem.uTemp value type 003466 ** --------------- --------------- 003467 ** 0 NULL 003468 ** 1 1-byte signed integer 003469 ** 2 2-byte signed integer 003470 ** 3 3-byte signed integer 003471 ** 4 4-byte signed integer 003472 ** 5 6-byte signed integer 003473 ** 6 8-byte signed integer 003474 ** 7 IEEE float 003475 ** 8 Integer constant 0 003476 ** 9 Integer constant 1 003477 ** 10,11 reserved for expansion 003478 ** N>=12 and even BLOB 003479 ** N>=13 and odd text 003480 ** 003481 ** The following additional values are computed: 003482 ** nHdr Number of bytes needed for the record header 003483 ** nData Number of bytes of data space needed for the record 003484 ** nZero Zero bytes at the end of the record 003485 */ 003486 pRec = pLast; 003487 do{ 003488 assert( memIsValid(pRec) ); 003489 if( pRec->flags & MEM_Null ){ 003490 if( pRec->flags & MEM_Zero ){ 003491 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual 003492 ** table methods that never invoke sqlite3_result_xxxxx() while 003493 ** computing an unchanging column value in an UPDATE statement. 003494 ** Give such values a special internal-use-only serial-type of 10 003495 ** so that they can be passed through to xUpdate and have 003496 ** a true sqlite3_value_nochange(). */ 003497 #ifndef SQLITE_ENABLE_NULL_TRIM 003498 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB ); 003499 #endif 003500 pRec->uTemp = 10; 003501 }else{ 003502 pRec->uTemp = 0; 003503 } 003504 nHdr++; 003505 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){ 003506 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ 003507 i64 i = pRec->u.i; 003508 u64 uu; 003509 testcase( pRec->flags & MEM_Int ); 003510 testcase( pRec->flags & MEM_IntReal ); 003511 if( i<0 ){ 003512 uu = ~i; 003513 }else{ 003514 uu = i; 003515 } 003516 nHdr++; 003517 testcase( uu==127 ); testcase( uu==128 ); 003518 testcase( uu==32767 ); testcase( uu==32768 ); 003519 testcase( uu==8388607 ); testcase( uu==8388608 ); 003520 testcase( uu==2147483647 ); testcase( uu==2147483648LL ); 003521 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL ); 003522 if( uu<=127 ){ 003523 if( (i&1)==i && p->minWriteFileFormat>=4 ){ 003524 pRec->uTemp = 8+(u32)uu; 003525 }else{ 003526 nData++; 003527 pRec->uTemp = 1; 003528 } 003529 }else if( uu<=32767 ){ 003530 nData += 2; 003531 pRec->uTemp = 2; 003532 }else if( uu<=8388607 ){ 003533 nData += 3; 003534 pRec->uTemp = 3; 003535 }else if( uu<=2147483647 ){ 003536 nData += 4; 003537 pRec->uTemp = 4; 003538 }else if( uu<=140737488355327LL ){ 003539 nData += 6; 003540 pRec->uTemp = 5; 003541 }else{ 003542 nData += 8; 003543 if( pRec->flags & MEM_IntReal ){ 003544 /* If the value is IntReal and is going to take up 8 bytes to store 003545 ** as an integer, then we might as well make it an 8-byte floating 003546 ** point value */ 003547 pRec->u.r = (double)pRec->u.i; 003548 pRec->flags &= ~MEM_IntReal; 003549 pRec->flags |= MEM_Real; 003550 pRec->uTemp = 7; 003551 }else{ 003552 pRec->uTemp = 6; 003553 } 003554 } 003555 }else if( pRec->flags & MEM_Real ){ 003556 nHdr++; 003557 nData += 8; 003558 pRec->uTemp = 7; 003559 }else{ 003560 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) ); 003561 assert( pRec->n>=0 ); 003562 len = (u32)pRec->n; 003563 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0); 003564 if( pRec->flags & MEM_Zero ){ 003565 serial_type += pRec->u.nZero*2; 003566 if( nData ){ 003567 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem; 003568 len += pRec->u.nZero; 003569 }else{ 003570 nZero += pRec->u.nZero; 003571 } 003572 } 003573 nData += len; 003574 nHdr += sqlite3VarintLen(serial_type); 003575 pRec->uTemp = serial_type; 003576 } 003577 if( pRec==pData0 ) break; 003578 pRec--; 003579 }while(1); 003580 003581 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint 003582 ** which determines the total number of bytes in the header. The varint 003583 ** value is the size of the header in bytes including the size varint 003584 ** itself. */ 003585 testcase( nHdr==126 ); 003586 testcase( nHdr==127 ); 003587 if( nHdr<=126 ){ 003588 /* The common case */ 003589 nHdr += 1; 003590 }else{ 003591 /* Rare case of a really large header */ 003592 nVarint = sqlite3VarintLen(nHdr); 003593 nHdr += nVarint; 003594 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; 003595 } 003596 nByte = nHdr+nData; 003597 003598 /* Make sure the output register has a buffer large enough to store 003599 ** the new record. The output register (pOp->p3) is not allowed to 003600 ** be one of the input registers (because the following call to 003601 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). 003602 */ 003603 if( nByte+nZero<=pOut->szMalloc ){ 003604 /* The output register is already large enough to hold the record. 003605 ** No error checks or buffer enlargement is required */ 003606 pOut->z = pOut->zMalloc; 003607 }else{ 003608 /* Need to make sure that the output is not too big and then enlarge 003609 ** the output register to hold the full result */ 003610 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ 003611 goto too_big; 003612 } 003613 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ 003614 goto no_mem; 003615 } 003616 } 003617 pOut->n = (int)nByte; 003618 pOut->flags = MEM_Blob; 003619 if( nZero ){ 003620 pOut->u.nZero = nZero; 003621 pOut->flags |= MEM_Zero; 003622 } 003623 UPDATE_MAX_BLOBSIZE(pOut); 003624 zHdr = (u8 *)pOut->z; 003625 zPayload = zHdr + nHdr; 003626 003627 /* Write the record */ 003628 if( nHdr<0x80 ){ 003629 *(zHdr++) = nHdr; 003630 }else{ 003631 zHdr += sqlite3PutVarint(zHdr,nHdr); 003632 } 003633 assert( pData0<=pLast ); 003634 pRec = pData0; 003635 while( 1 /*exit-by-break*/ ){ 003636 serial_type = pRec->uTemp; 003637 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more 003638 ** additional varints, one per column. 003639 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record 003640 ** immediately follow the header. */ 003641 if( serial_type<=7 ){ 003642 *(zHdr++) = serial_type; 003643 if( serial_type==0 ){ 003644 /* NULL value. No change in zPayload */ 003645 }else{ 003646 u64 v; 003647 if( serial_type==7 ){ 003648 assert( sizeof(v)==sizeof(pRec->u.r) ); 003649 memcpy(&v, &pRec->u.r, sizeof(v)); 003650 swapMixedEndianFloat(v); 003651 }else{ 003652 v = pRec->u.i; 003653 } 003654 len = sqlite3SmallTypeSizes[serial_type]; 003655 assert( len>=1 && len<=8 && len!=5 && len!=7 ); 003656 switch( len ){ 003657 default: zPayload[7] = (u8)(v&0xff); v >>= 8; 003658 zPayload[6] = (u8)(v&0xff); v >>= 8; 003659 /* no break */ deliberate_fall_through 003660 case 6: zPayload[5] = (u8)(v&0xff); v >>= 8; 003661 zPayload[4] = (u8)(v&0xff); v >>= 8; 003662 /* no break */ deliberate_fall_through 003663 case 4: zPayload[3] = (u8)(v&0xff); v >>= 8; 003664 /* no break */ deliberate_fall_through 003665 case 3: zPayload[2] = (u8)(v&0xff); v >>= 8; 003666 /* no break */ deliberate_fall_through 003667 case 2: zPayload[1] = (u8)(v&0xff); v >>= 8; 003668 /* no break */ deliberate_fall_through 003669 case 1: zPayload[0] = (u8)(v&0xff); 003670 } 003671 zPayload += len; 003672 } 003673 }else if( serial_type<0x80 ){ 003674 *(zHdr++) = serial_type; 003675 if( serial_type>=14 && pRec->n>0 ){ 003676 assert( pRec->z!=0 ); 003677 memcpy(zPayload, pRec->z, pRec->n); 003678 zPayload += pRec->n; 003679 } 003680 }else{ 003681 zHdr += sqlite3PutVarint(zHdr, serial_type); 003682 if( pRec->n ){ 003683 assert( pRec->z!=0 ); 003684 memcpy(zPayload, pRec->z, pRec->n); 003685 zPayload += pRec->n; 003686 } 003687 } 003688 if( pRec==pLast ) break; 003689 pRec++; 003690 } 003691 assert( nHdr==(int)(zHdr - (u8*)pOut->z) ); 003692 assert( nByte==(int)(zPayload - (u8*)pOut->z) ); 003693 003694 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 003695 REGISTER_TRACE(pOp->p3, pOut); 003696 break; 003697 } 003698 003699 /* Opcode: Count P1 P2 P3 * * 003700 ** Synopsis: r[P2]=count() 003701 ** 003702 ** Store the number of entries (an integer value) in the table or index 003703 ** opened by cursor P1 in register P2. 003704 ** 003705 ** If P3==0, then an exact count is obtained, which involves visiting 003706 ** every btree page of the table. But if P3 is non-zero, an estimate 003707 ** is returned based on the current cursor position. 003708 */ 003709 case OP_Count: { /* out2 */ 003710 i64 nEntry; 003711 BtCursor *pCrsr; 003712 003713 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE ); 003714 pCrsr = p->apCsr[pOp->p1]->uc.pCursor; 003715 assert( pCrsr ); 003716 if( pOp->p3 ){ 003717 nEntry = sqlite3BtreeRowCountEst(pCrsr); 003718 }else{ 003719 nEntry = 0; /* Not needed. Only used to silence a warning. */ 003720 rc = sqlite3BtreeCount(db, pCrsr, &nEntry); 003721 if( rc ) goto abort_due_to_error; 003722 } 003723 pOut = out2Prerelease(p, pOp); 003724 pOut->u.i = nEntry; 003725 goto check_for_interrupt; 003726 } 003727 003728 /* Opcode: Savepoint P1 * * P4 * 003729 ** 003730 ** Open, release or rollback the savepoint named by parameter P4, depending 003731 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN). 003732 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE). 003733 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK). 003734 */ 003735 case OP_Savepoint: { 003736 int p1; /* Value of P1 operand */ 003737 char *zName; /* Name of savepoint */ 003738 int nName; 003739 Savepoint *pNew; 003740 Savepoint *pSavepoint; 003741 Savepoint *pTmp; 003742 int iSavepoint; 003743 int ii; 003744 003745 p1 = pOp->p1; 003746 zName = pOp->p4.z; 003747 003748 /* Assert that the p1 parameter is valid. Also that if there is no open 003749 ** transaction, then there cannot be any savepoints. 003750 */ 003751 assert( db->pSavepoint==0 || db->autoCommit==0 ); 003752 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK ); 003753 assert( db->pSavepoint || db->isTransactionSavepoint==0 ); 003754 assert( checkSavepointCount(db) ); 003755 assert( p->bIsReader ); 003756 003757 if( p1==SAVEPOINT_BEGIN ){ 003758 if( db->nVdbeWrite>0 ){ 003759 /* A new savepoint cannot be created if there are active write 003760 ** statements (i.e. open read/write incremental blob handles). 003761 */ 003762 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress"); 003763 rc = SQLITE_BUSY; 003764 }else{ 003765 nName = sqlite3Strlen30(zName); 003766 003767 #ifndef SQLITE_OMIT_VIRTUALTABLE 003768 /* This call is Ok even if this savepoint is actually a transaction 003769 ** savepoint (and therefore should not prompt xSavepoint()) callbacks. 003770 ** If this is a transaction savepoint being opened, it is guaranteed 003771 ** that the db->aVTrans[] array is empty. */ 003772 assert( db->autoCommit==0 || db->nVTrans==0 ); 003773 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, 003774 db->nStatement+db->nSavepoint); 003775 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003776 #endif 003777 003778 /* Create a new savepoint structure. */ 003779 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1); 003780 if( pNew ){ 003781 pNew->zName = (char *)&pNew[1]; 003782 memcpy(pNew->zName, zName, nName+1); 003783 003784 /* If there is no open transaction, then mark this as a special 003785 ** "transaction savepoint". */ 003786 if( db->autoCommit ){ 003787 db->autoCommit = 0; 003788 db->isTransactionSavepoint = 1; 003789 }else{ 003790 db->nSavepoint++; 003791 } 003792 003793 /* Link the new savepoint into the database handle's list. */ 003794 pNew->pNext = db->pSavepoint; 003795 db->pSavepoint = pNew; 003796 pNew->nDeferredCons = db->nDeferredCons; 003797 pNew->nDeferredImmCons = db->nDeferredImmCons; 003798 } 003799 } 003800 }else{ 003801 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK ); 003802 iSavepoint = 0; 003803 003804 /* Find the named savepoint. If there is no such savepoint, then an 003805 ** an error is returned to the user. */ 003806 for( 003807 pSavepoint = db->pSavepoint; 003808 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName); 003809 pSavepoint = pSavepoint->pNext 003810 ){ 003811 iSavepoint++; 003812 } 003813 if( !pSavepoint ){ 003814 sqlite3VdbeError(p, "no such savepoint: %s", zName); 003815 rc = SQLITE_ERROR; 003816 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){ 003817 /* It is not possible to release (commit) a savepoint if there are 003818 ** active write statements. 003819 */ 003820 sqlite3VdbeError(p, "cannot release savepoint - " 003821 "SQL statements in progress"); 003822 rc = SQLITE_BUSY; 003823 }else{ 003824 003825 /* Determine whether or not this is a transaction savepoint. If so, 003826 ** and this is a RELEASE command, then the current transaction 003827 ** is committed. 003828 */ 003829 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint; 003830 if( isTransaction && p1==SAVEPOINT_RELEASE ){ 003831 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003832 goto vdbe_return; 003833 } 003834 db->autoCommit = 1; 003835 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003836 p->pc = (int)(pOp - aOp); 003837 db->autoCommit = 0; 003838 p->rc = rc = SQLITE_BUSY; 003839 goto vdbe_return; 003840 } 003841 rc = p->rc; 003842 if( rc ){ 003843 db->autoCommit = 0; 003844 }else{ 003845 db->isTransactionSavepoint = 0; 003846 } 003847 }else{ 003848 int isSchemaChange; 003849 iSavepoint = db->nSavepoint - iSavepoint - 1; 003850 if( p1==SAVEPOINT_ROLLBACK ){ 003851 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0; 003852 for(ii=0; ii<db->nDb; ii++){ 003853 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, 003854 SQLITE_ABORT_ROLLBACK, 003855 isSchemaChange==0); 003856 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003857 } 003858 }else{ 003859 assert( p1==SAVEPOINT_RELEASE ); 003860 isSchemaChange = 0; 003861 } 003862 for(ii=0; ii<db->nDb; ii++){ 003863 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint); 003864 if( rc!=SQLITE_OK ){ 003865 goto abort_due_to_error; 003866 } 003867 } 003868 if( isSchemaChange ){ 003869 sqlite3ExpirePreparedStatements(db, 0); 003870 sqlite3ResetAllSchemasOfConnection(db); 003871 db->mDbFlags |= DBFLAG_SchemaChange; 003872 } 003873 } 003874 if( rc ) goto abort_due_to_error; 003875 003876 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 003877 ** savepoints nested inside of the savepoint being operated on. */ 003878 while( db->pSavepoint!=pSavepoint ){ 003879 pTmp = db->pSavepoint; 003880 db->pSavepoint = pTmp->pNext; 003881 sqlite3DbFree(db, pTmp); 003882 db->nSavepoint--; 003883 } 003884 003885 /* If it is a RELEASE, then destroy the savepoint being operated on 003886 ** too. If it is a ROLLBACK TO, then set the number of deferred 003887 ** constraint violations present in the database to the value stored 003888 ** when the savepoint was created. */ 003889 if( p1==SAVEPOINT_RELEASE ){ 003890 assert( pSavepoint==db->pSavepoint ); 003891 db->pSavepoint = pSavepoint->pNext; 003892 sqlite3DbFree(db, pSavepoint); 003893 if( !isTransaction ){ 003894 db->nSavepoint--; 003895 } 003896 }else{ 003897 assert( p1==SAVEPOINT_ROLLBACK ); 003898 db->nDeferredCons = pSavepoint->nDeferredCons; 003899 db->nDeferredImmCons = pSavepoint->nDeferredImmCons; 003900 } 003901 003902 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){ 003903 rc = sqlite3VtabSavepoint(db, p1, iSavepoint); 003904 if( rc!=SQLITE_OK ) goto abort_due_to_error; 003905 } 003906 } 003907 } 003908 if( rc ) goto abort_due_to_error; 003909 if( p->eVdbeState==VDBE_HALT_STATE ){ 003910 rc = SQLITE_DONE; 003911 goto vdbe_return; 003912 } 003913 break; 003914 } 003915 003916 /* Opcode: AutoCommit P1 P2 * * * 003917 ** 003918 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll 003919 ** back any currently active btree transactions. If there are any active 003920 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if 003921 ** there are active writing VMs or active VMs that use shared cache. 003922 ** 003923 ** This instruction causes the VM to halt. 003924 */ 003925 case OP_AutoCommit: { 003926 int desiredAutoCommit; 003927 int iRollback; 003928 003929 desiredAutoCommit = pOp->p1; 003930 iRollback = pOp->p2; 003931 assert( desiredAutoCommit==1 || desiredAutoCommit==0 ); 003932 assert( desiredAutoCommit==1 || iRollback==0 ); 003933 assert( db->nVdbeActive>0 ); /* At least this one VM is active */ 003934 assert( p->bIsReader ); 003935 003936 if( desiredAutoCommit!=db->autoCommit ){ 003937 if( iRollback ){ 003938 assert( desiredAutoCommit==1 ); 003939 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK); 003940 db->autoCommit = 1; 003941 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){ 003942 /* If this instruction implements a COMMIT and other VMs are writing 003943 ** return an error indicating that the other VMs must complete first. 003944 */ 003945 sqlite3VdbeError(p, "cannot commit transaction - " 003946 "SQL statements in progress"); 003947 rc = SQLITE_BUSY; 003948 goto abort_due_to_error; 003949 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){ 003950 goto vdbe_return; 003951 }else{ 003952 db->autoCommit = (u8)desiredAutoCommit; 003953 } 003954 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){ 003955 p->pc = (int)(pOp - aOp); 003956 db->autoCommit = (u8)(1-desiredAutoCommit); 003957 p->rc = rc = SQLITE_BUSY; 003958 goto vdbe_return; 003959 } 003960 sqlite3CloseSavepoints(db); 003961 if( p->rc==SQLITE_OK ){ 003962 rc = SQLITE_DONE; 003963 }else{ 003964 rc = SQLITE_ERROR; 003965 } 003966 goto vdbe_return; 003967 }else{ 003968 sqlite3VdbeError(p, 003969 (!desiredAutoCommit)?"cannot start a transaction within a transaction":( 003970 (iRollback)?"cannot rollback - no transaction is active": 003971 "cannot commit - no transaction is active")); 003972 003973 rc = SQLITE_ERROR; 003974 goto abort_due_to_error; 003975 } 003976 /*NOTREACHED*/ assert(0); 003977 } 003978 003979 /* Opcode: Transaction P1 P2 P3 P4 P5 003980 ** 003981 ** Begin a transaction on database P1 if a transaction is not already 003982 ** active. 003983 ** If P2 is non-zero, then a write-transaction is started, or if a 003984 ** read-transaction is already active, it is upgraded to a write-transaction. 003985 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more 003986 ** then an exclusive transaction is started. 003987 ** 003988 ** P1 is the index of the database file on which the transaction is 003989 ** started. Index 0 is the main database file and index 1 is the 003990 ** file used for temporary tables. Indices of 2 or more are used for 003991 ** attached databases. 003992 ** 003993 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is 003994 ** true (this flag is set if the Vdbe may modify more than one row and may 003995 ** throw an ABORT exception), a statement transaction may also be opened. 003996 ** More specifically, a statement transaction is opened iff the database 003997 ** connection is currently not in autocommit mode, or if there are other 003998 ** active statements. A statement transaction allows the changes made by this 003999 ** VDBE to be rolled back after an error without having to roll back the 004000 ** entire transaction. If no error is encountered, the statement transaction 004001 ** will automatically commit when the VDBE halts. 004002 ** 004003 ** If P5!=0 then this opcode also checks the schema cookie against P3 004004 ** and the schema generation counter against P4. 004005 ** The cookie changes its value whenever the database schema changes. 004006 ** This operation is used to detect when that the cookie has changed 004007 ** and that the current process needs to reread the schema. If the schema 004008 ** cookie in P3 differs from the schema cookie in the database header or 004009 ** if the schema generation counter in P4 differs from the current 004010 ** generation counter, then an SQLITE_SCHEMA error is raised and execution 004011 ** halts. The sqlite3_step() wrapper function might then reprepare the 004012 ** statement and rerun it from the beginning. 004013 */ 004014 case OP_Transaction: { 004015 Btree *pBt; 004016 Db *pDb; 004017 int iMeta = 0; 004018 004019 assert( p->bIsReader ); 004020 assert( p->readOnly==0 || pOp->p2==0 ); 004021 assert( pOp->p2>=0 && pOp->p2<=2 ); 004022 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004023 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004024 assert( rc==SQLITE_OK ); 004025 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){ 004026 if( db->flags & SQLITE_QueryOnly ){ 004027 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */ 004028 rc = SQLITE_READONLY; 004029 }else{ 004030 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current 004031 ** transaction */ 004032 rc = SQLITE_CORRUPT; 004033 } 004034 goto abort_due_to_error; 004035 } 004036 pDb = &db->aDb[pOp->p1]; 004037 pBt = pDb->pBt; 004038 004039 if( pBt ){ 004040 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta); 004041 testcase( rc==SQLITE_BUSY_SNAPSHOT ); 004042 testcase( rc==SQLITE_BUSY_RECOVERY ); 004043 if( rc!=SQLITE_OK ){ 004044 if( (rc&0xff)==SQLITE_BUSY ){ 004045 p->pc = (int)(pOp - aOp); 004046 p->rc = rc; 004047 goto vdbe_return; 004048 } 004049 goto abort_due_to_error; 004050 } 004051 004052 if( p->usesStmtJournal 004053 && pOp->p2 004054 && (db->autoCommit==0 || db->nVdbeRead>1) 004055 ){ 004056 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ); 004057 if( p->iStatement==0 ){ 004058 assert( db->nStatement>=0 && db->nSavepoint>=0 ); 004059 db->nStatement++; 004060 p->iStatement = db->nSavepoint + db->nStatement; 004061 } 004062 004063 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); 004064 if( rc==SQLITE_OK ){ 004065 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement); 004066 } 004067 004068 /* Store the current value of the database handles deferred constraint 004069 ** counter. If the statement transaction needs to be rolled back, 004070 ** the value of this counter needs to be restored too. */ 004071 p->nStmtDefCons = db->nDeferredCons; 004072 p->nStmtDefImmCons = db->nDeferredImmCons; 004073 } 004074 } 004075 assert( pOp->p5==0 || pOp->p4type==P4_INT32 ); 004076 if( rc==SQLITE_OK 004077 && pOp->p5 004078 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i) 004079 ){ 004080 /* 004081 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema 004082 ** version is checked to ensure that the schema has not changed since the 004083 ** SQL statement was prepared. 004084 */ 004085 sqlite3DbFree(db, p->zErrMsg); 004086 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed"); 004087 /* If the schema-cookie from the database file matches the cookie 004088 ** stored with the in-memory representation of the schema, do 004089 ** not reload the schema from the database file. 004090 ** 004091 ** If virtual-tables are in use, this is not just an optimization. 004092 ** Often, v-tables store their data in other SQLite tables, which 004093 ** are queried from within xNext() and other v-table methods using 004094 ** prepared queries. If such a query is out-of-date, we do not want to 004095 ** discard the database schema, as the user code implementing the 004096 ** v-table would have to be ready for the sqlite3_vtab structure itself 004097 ** to be invalidated whenever sqlite3_step() is called from within 004098 ** a v-table method. 004099 */ 004100 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){ 004101 sqlite3ResetOneSchema(db, pOp->p1); 004102 } 004103 p->expired = 1; 004104 rc = SQLITE_SCHEMA; 004105 004106 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes() 004107 ** from being modified in sqlite3VdbeHalt(). If this statement is 004108 ** reprepared, changeCntOn will be set again. */ 004109 p->changeCntOn = 0; 004110 } 004111 if( rc ) goto abort_due_to_error; 004112 break; 004113 } 004114 004115 /* Opcode: ReadCookie P1 P2 P3 * * 004116 ** 004117 ** Read cookie number P3 from database P1 and write it into register P2. 004118 ** P3==1 is the schema version. P3==2 is the database format. 004119 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is 004120 ** the main database file and P1==1 is the database file used to store 004121 ** temporary tables. 004122 ** 004123 ** There must be a read-lock on the database (either a transaction 004124 ** must be started or there must be an open cursor) before 004125 ** executing this instruction. 004126 */ 004127 case OP_ReadCookie: { /* out2 */ 004128 int iMeta; 004129 int iDb; 004130 int iCookie; 004131 004132 assert( p->bIsReader ); 004133 iDb = pOp->p1; 004134 iCookie = pOp->p3; 004135 assert( pOp->p3<SQLITE_N_BTREE_META ); 004136 assert( iDb>=0 && iDb<db->nDb ); 004137 assert( db->aDb[iDb].pBt!=0 ); 004138 assert( DbMaskTest(p->btreeMask, iDb) ); 004139 004140 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta); 004141 pOut = out2Prerelease(p, pOp); 004142 pOut->u.i = iMeta; 004143 break; 004144 } 004145 004146 /* Opcode: SetCookie P1 P2 P3 * P5 004147 ** 004148 ** Write the integer value P3 into cookie number P2 of database P1. 004149 ** P2==1 is the schema version. P2==2 is the database format. 004150 ** P2==3 is the recommended pager cache 004151 ** size, and so forth. P1==0 is the main database file and P1==1 is the 004152 ** database file used to store temporary tables. 004153 ** 004154 ** A transaction must be started before executing this opcode. 004155 ** 004156 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal 004157 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement 004158 ** has P5 set to 1, so that the internal schema version will be different 004159 ** from the database schema version, resulting in a schema reset. 004160 */ 004161 case OP_SetCookie: { 004162 Db *pDb; 004163 004164 sqlite3VdbeIncrWriteCounter(p, 0); 004165 assert( pOp->p2<SQLITE_N_BTREE_META ); 004166 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 004167 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 004168 assert( p->readOnly==0 ); 004169 pDb = &db->aDb[pOp->p1]; 004170 assert( pDb->pBt!=0 ); 004171 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); 004172 /* See note about index shifting on OP_ReadCookie */ 004173 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3); 004174 if( pOp->p2==BTREE_SCHEMA_VERSION ){ 004175 /* When the schema cookie changes, record the new cookie internally */ 004176 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5; 004177 db->mDbFlags |= DBFLAG_SchemaChange; 004178 sqlite3FkClearTriggerCache(db, pOp->p1); 004179 }else if( pOp->p2==BTREE_FILE_FORMAT ){ 004180 /* Record changes in the file format */ 004181 pDb->pSchema->file_format = pOp->p3; 004182 } 004183 if( pOp->p1==1 ){ 004184 /* Invalidate all prepared statements whenever the TEMP database 004185 ** schema is changed. Ticket #1644 */ 004186 sqlite3ExpirePreparedStatements(db, 0); 004187 p->expired = 0; 004188 } 004189 if( rc ) goto abort_due_to_error; 004190 break; 004191 } 004192 004193 /* Opcode: OpenRead P1 P2 P3 P4 P5 004194 ** Synopsis: root=P2 iDb=P3 004195 ** 004196 ** Open a read-only cursor for the database table whose root page is 004197 ** P2 in a database file. The database file is determined by P3. 004198 ** P3==0 means the main database, P3==1 means the database used for 004199 ** temporary tables, and P3>1 means used the corresponding attached 004200 ** database. Give the new cursor an identifier of P1. The P1 004201 ** values need not be contiguous but all P1 values should be small integers. 004202 ** It is an error for P1 to be negative. 004203 ** 004204 ** Allowed P5 bits: 004205 ** <ul> 004206 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004207 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004208 ** of OP_SeekLE/OP_IdxLT) 004209 ** </ul> 004210 ** 004211 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004212 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004213 ** object, then table being opened must be an [index b-tree] where the 004214 ** KeyInfo object defines the content and collating 004215 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004216 ** value, then the table being opened must be a [table b-tree] with a 004217 ** number of columns no less than the value of P4. 004218 ** 004219 ** See also: OpenWrite, ReopenIdx 004220 */ 004221 /* Opcode: ReopenIdx P1 P2 P3 P4 P5 004222 ** Synopsis: root=P2 iDb=P3 004223 ** 004224 ** The ReopenIdx opcode works like OP_OpenRead except that it first 004225 ** checks to see if the cursor on P1 is already open on the same 004226 ** b-tree and if it is this opcode becomes a no-op. In other words, 004227 ** if the cursor is already open, do not reopen it. 004228 ** 004229 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ 004230 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must 004231 ** be the same as every other ReopenIdx or OpenRead for the same cursor 004232 ** number. 004233 ** 004234 ** Allowed P5 bits: 004235 ** <ul> 004236 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004237 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004238 ** of OP_SeekLE/OP_IdxLT) 004239 ** </ul> 004240 ** 004241 ** See also: OP_OpenRead, OP_OpenWrite 004242 */ 004243 /* Opcode: OpenWrite P1 P2 P3 P4 P5 004244 ** Synopsis: root=P2 iDb=P3 004245 ** 004246 ** Open a read/write cursor named P1 on the table or index whose root 004247 ** page is P2 (or whose root page is held in register P2 if the 004248 ** OPFLAG_P2ISREG bit is set in P5 - see below). 004249 ** 004250 ** The P4 value may be either an integer (P4_INT32) or a pointer to 004251 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 004252 ** object, then table being opened must be an [index b-tree] where the 004253 ** KeyInfo object defines the content and collating 004254 ** sequence of that index b-tree. Otherwise, if P4 is an integer 004255 ** value, then the table being opened must be a [table b-tree] with a 004256 ** number of columns no less than the value of P4. 004257 ** 004258 ** Allowed P5 bits: 004259 ** <ul> 004260 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for 004261 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT 004262 ** of OP_SeekLE/OP_IdxLT) 004263 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek 004264 ** and subsequently delete entries in an index btree. This is a 004265 ** hint to the storage engine that the storage engine is allowed to 004266 ** ignore. The hint is not used by the official SQLite b*tree storage 004267 ** engine, but is used by COMDB2. 004268 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2 004269 ** as the root page, not the value of P2 itself. 004270 ** </ul> 004271 ** 004272 ** This instruction works like OpenRead except that it opens the cursor 004273 ** in read/write mode. 004274 ** 004275 ** See also: OP_OpenRead, OP_ReopenIdx 004276 */ 004277 case OP_ReopenIdx: { /* ncycle */ 004278 int nField; 004279 KeyInfo *pKeyInfo; 004280 u32 p2; 004281 int iDb; 004282 int wrFlag; 004283 Btree *pX; 004284 VdbeCursor *pCur; 004285 Db *pDb; 004286 004287 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004288 assert( pOp->p4type==P4_KEYINFO ); 004289 pCur = p->apCsr[pOp->p1]; 004290 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){ 004291 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */ 004292 assert( pCur->eCurType==CURTYPE_BTREE ); 004293 sqlite3BtreeClearCursor(pCur->uc.pCursor); 004294 goto open_cursor_set_hints; 004295 } 004296 /* If the cursor is not currently open or is open on a different 004297 ** index, then fall through into OP_OpenRead to force a reopen */ 004298 case OP_OpenRead: /* ncycle */ 004299 case OP_OpenWrite: 004300 004301 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ ); 004302 assert( p->bIsReader ); 004303 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx 004304 || p->readOnly==0 ); 004305 004306 if( p->expired==1 ){ 004307 rc = SQLITE_ABORT_ROLLBACK; 004308 goto abort_due_to_error; 004309 } 004310 004311 nField = 0; 004312 pKeyInfo = 0; 004313 p2 = (u32)pOp->p2; 004314 iDb = pOp->p3; 004315 assert( iDb>=0 && iDb<db->nDb ); 004316 assert( DbMaskTest(p->btreeMask, iDb) ); 004317 pDb = &db->aDb[iDb]; 004318 pX = pDb->pBt; 004319 assert( pX!=0 ); 004320 if( pOp->opcode==OP_OpenWrite ){ 004321 assert( OPFLAG_FORDELETE==BTREE_FORDELETE ); 004322 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE); 004323 assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); 004324 if( pDb->pSchema->file_format < p->minWriteFileFormat ){ 004325 p->minWriteFileFormat = pDb->pSchema->file_format; 004326 } 004327 }else{ 004328 wrFlag = 0; 004329 } 004330 if( pOp->p5 & OPFLAG_P2ISREG ){ 004331 assert( p2>0 ); 004332 assert( p2<=(u32)(p->nMem+1 - p->nCursor) ); 004333 assert( pOp->opcode==OP_OpenWrite ); 004334 pIn2 = &aMem[p2]; 004335 assert( memIsValid(pIn2) ); 004336 assert( (pIn2->flags & MEM_Int)!=0 ); 004337 sqlite3VdbeMemIntegerify(pIn2); 004338 p2 = (int)pIn2->u.i; 004339 /* The p2 value always comes from a prior OP_CreateBtree opcode and 004340 ** that opcode will always set the p2 value to 2 or more or else fail. 004341 ** If there were a failure, the prepared statement would have halted 004342 ** before reaching this instruction. */ 004343 assert( p2>=2 ); 004344 } 004345 if( pOp->p4type==P4_KEYINFO ){ 004346 pKeyInfo = pOp->p4.pKeyInfo; 004347 assert( pKeyInfo->enc==ENC(db) ); 004348 assert( pKeyInfo->db==db ); 004349 nField = pKeyInfo->nAllField; 004350 }else if( pOp->p4type==P4_INT32 ){ 004351 nField = pOp->p4.i; 004352 } 004353 assert( pOp->p1>=0 ); 004354 assert( nField>=0 ); 004355 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */ 004356 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE); 004357 if( pCur==0 ) goto no_mem; 004358 pCur->iDb = iDb; 004359 pCur->nullRow = 1; 004360 pCur->isOrdered = 1; 004361 pCur->pgnoRoot = p2; 004362 #ifdef SQLITE_DEBUG 004363 pCur->wrFlag = wrFlag; 004364 #endif 004365 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor); 004366 pCur->pKeyInfo = pKeyInfo; 004367 /* Set the VdbeCursor.isTable variable. Previous versions of 004368 ** SQLite used to check if the root-page flags were sane at this point 004369 ** and report database corruption if they were not, but this check has 004370 ** since moved into the btree layer. */ 004371 pCur->isTable = pOp->p4type!=P4_KEYINFO; 004372 004373 open_cursor_set_hints: 004374 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD ); 004375 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ ); 004376 testcase( pOp->p5 & OPFLAG_BULKCSR ); 004377 testcase( pOp->p2 & OPFLAG_SEEKEQ ); 004378 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor, 004379 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ))); 004380 if( rc ) goto abort_due_to_error; 004381 break; 004382 } 004383 004384 /* Opcode: OpenDup P1 P2 * * * 004385 ** 004386 ** Open a new cursor P1 that points to the same ephemeral table as 004387 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral 004388 ** opcode. Only ephemeral cursors may be duplicated. 004389 ** 004390 ** Duplicate ephemeral cursors are used for self-joins of materialized views. 004391 */ 004392 case OP_OpenDup: { /* ncycle */ 004393 VdbeCursor *pOrig; /* The original cursor to be duplicated */ 004394 VdbeCursor *pCx; /* The new cursor */ 004395 004396 pOrig = p->apCsr[pOp->p2]; 004397 assert( pOrig ); 004398 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */ 004399 004400 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE); 004401 if( pCx==0 ) goto no_mem; 004402 pCx->nullRow = 1; 004403 pCx->isEphemeral = 1; 004404 pCx->pKeyInfo = pOrig->pKeyInfo; 004405 pCx->isTable = pOrig->isTable; 004406 pCx->pgnoRoot = pOrig->pgnoRoot; 004407 pCx->isOrdered = pOrig->isOrdered; 004408 pCx->ub.pBtx = pOrig->ub.pBtx; 004409 pCx->noReuse = 1; 004410 pOrig->noReuse = 1; 004411 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004412 pCx->pKeyInfo, pCx->uc.pCursor); 004413 /* The sqlite3BtreeCursor() routine can only fail for the first cursor 004414 ** opened for a database. Since there is already an open cursor when this 004415 ** opcode is run, the sqlite3BtreeCursor() cannot fail */ 004416 assert( rc==SQLITE_OK ); 004417 break; 004418 } 004419 004420 004421 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5 004422 ** Synopsis: nColumn=P2 004423 ** 004424 ** Open a new cursor P1 to a transient table. 004425 ** The cursor is always opened read/write even if 004426 ** the main database is read-only. The ephemeral 004427 ** table is deleted automatically when the cursor is closed. 004428 ** 004429 ** If the cursor P1 is already opened on an ephemeral table, the table 004430 ** is cleared (all content is erased). 004431 ** 004432 ** P2 is the number of columns in the ephemeral table. 004433 ** The cursor points to a BTree table if P4==0 and to a BTree index 004434 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure 004435 ** that defines the format of keys in the index. 004436 ** 004437 ** The P5 parameter can be a mask of the BTREE_* flags defined 004438 ** in btree.h. These flags control aspects of the operation of 004439 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are 004440 ** added automatically. 004441 ** 004442 ** If P3 is positive, then reg[P3] is modified slightly so that it 004443 ** can be used as zero-length data for OP_Insert. This is an optimization 004444 ** that avoids an extra OP_Blob opcode to initialize that register. 004445 */ 004446 /* Opcode: OpenAutoindex P1 P2 * P4 * 004447 ** Synopsis: nColumn=P2 004448 ** 004449 ** This opcode works the same as OP_OpenEphemeral. It has a 004450 ** different name to distinguish its use. Tables created using 004451 ** by this opcode will be used for automatically created transient 004452 ** indices in joins. 004453 */ 004454 case OP_OpenAutoindex: /* ncycle */ 004455 case OP_OpenEphemeral: { /* ncycle */ 004456 VdbeCursor *pCx; 004457 KeyInfo *pKeyInfo; 004458 004459 static const int vfsFlags = 004460 SQLITE_OPEN_READWRITE | 004461 SQLITE_OPEN_CREATE | 004462 SQLITE_OPEN_EXCLUSIVE | 004463 SQLITE_OPEN_DELETEONCLOSE | 004464 SQLITE_OPEN_TRANSIENT_DB; 004465 assert( pOp->p1>=0 ); 004466 assert( pOp->p2>=0 ); 004467 if( pOp->p3>0 ){ 004468 /* Make register reg[P3] into a value that can be used as the data 004469 ** form sqlite3BtreeInsert() where the length of the data is zero. */ 004470 assert( pOp->p2==0 ); /* Only used when number of columns is zero */ 004471 assert( pOp->opcode==OP_OpenEphemeral ); 004472 assert( aMem[pOp->p3].flags & MEM_Null ); 004473 aMem[pOp->p3].n = 0; 004474 aMem[pOp->p3].z = ""; 004475 } 004476 pCx = p->apCsr[pOp->p1]; 004477 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){ 004478 /* If the ephemeral table is already open and has no duplicates from 004479 ** OP_OpenDup, then erase all existing content so that the table is 004480 ** empty again, rather than creating a new table. */ 004481 assert( pCx->isEphemeral ); 004482 pCx->seqCount = 0; 004483 pCx->cacheStatus = CACHE_STALE; 004484 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0); 004485 }else{ 004486 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE); 004487 if( pCx==0 ) goto no_mem; 004488 pCx->isEphemeral = 1; 004489 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx, 004490 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, 004491 vfsFlags); 004492 if( rc==SQLITE_OK ){ 004493 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0); 004494 if( rc==SQLITE_OK ){ 004495 /* If a transient index is required, create it by calling 004496 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before 004497 ** opening it. If a transient table is required, just use the 004498 ** automatically created table with root-page 1 (an BLOB_INTKEY table). 004499 */ 004500 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){ 004501 assert( pOp->p4type==P4_KEYINFO ); 004502 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot, 004503 BTREE_BLOBKEY | pOp->p5); 004504 if( rc==SQLITE_OK ){ 004505 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 ); 004506 assert( pKeyInfo->db==db ); 004507 assert( pKeyInfo->enc==ENC(db) ); 004508 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR, 004509 pKeyInfo, pCx->uc.pCursor); 004510 } 004511 pCx->isTable = 0; 004512 }else{ 004513 pCx->pgnoRoot = SCHEMA_ROOT; 004514 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR, 004515 0, pCx->uc.pCursor); 004516 pCx->isTable = 1; 004517 } 004518 } 004519 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED); 004520 if( rc ){ 004521 sqlite3BtreeClose(pCx->ub.pBtx); 004522 } 004523 } 004524 } 004525 if( rc ) goto abort_due_to_error; 004526 pCx->nullRow = 1; 004527 break; 004528 } 004529 004530 /* Opcode: SorterOpen P1 P2 P3 P4 * 004531 ** 004532 ** This opcode works like OP_OpenEphemeral except that it opens 004533 ** a transient index that is specifically designed to sort large 004534 ** tables using an external merge-sort algorithm. 004535 ** 004536 ** If argument P3 is non-zero, then it indicates that the sorter may 004537 ** assume that a stable sort considering the first P3 fields of each 004538 ** key is sufficient to produce the required results. 004539 */ 004540 case OP_SorterOpen: { 004541 VdbeCursor *pCx; 004542 004543 assert( pOp->p1>=0 ); 004544 assert( pOp->p2>=0 ); 004545 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER); 004546 if( pCx==0 ) goto no_mem; 004547 pCx->pKeyInfo = pOp->p4.pKeyInfo; 004548 assert( pCx->pKeyInfo->db==db ); 004549 assert( pCx->pKeyInfo->enc==ENC(db) ); 004550 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx); 004551 if( rc ) goto abort_due_to_error; 004552 break; 004553 } 004554 004555 /* Opcode: SequenceTest P1 P2 * * * 004556 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2 004557 ** 004558 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump 004559 ** to P2. Regardless of whether or not the jump is taken, increment the 004560 ** the sequence value. 004561 */ 004562 case OP_SequenceTest: { 004563 VdbeCursor *pC; 004564 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004565 pC = p->apCsr[pOp->p1]; 004566 assert( isSorter(pC) ); 004567 if( (pC->seqCount++)==0 ){ 004568 goto jump_to_p2; 004569 } 004570 break; 004571 } 004572 004573 /* Opcode: OpenPseudo P1 P2 P3 * * 004574 ** Synopsis: P3 columns in r[P2] 004575 ** 004576 ** Open a new cursor that points to a fake table that contains a single 004577 ** row of data. The content of that one row is the content of memory 004578 ** register P2. In other words, cursor P1 becomes an alias for the 004579 ** MEM_Blob content contained in register P2. 004580 ** 004581 ** A pseudo-table created by this opcode is used to hold a single 004582 ** row output from the sorter so that the row can be decomposed into 004583 ** individual columns using the OP_Column opcode. The OP_Column opcode 004584 ** is the only cursor opcode that works with a pseudo-table. 004585 ** 004586 ** P3 is the number of fields in the records that will be stored by 004587 ** the pseudo-table. If P2 is 0 or negative then the pseudo-cursor 004588 ** will return NULL for every column. 004589 */ 004590 case OP_OpenPseudo: { 004591 VdbeCursor *pCx; 004592 004593 assert( pOp->p1>=0 ); 004594 assert( pOp->p3>=0 ); 004595 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO); 004596 if( pCx==0 ) goto no_mem; 004597 pCx->nullRow = 1; 004598 pCx->seekResult = pOp->p2; 004599 pCx->isTable = 1; 004600 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx 004601 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test 004602 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto() 004603 ** which is a performance optimization */ 004604 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor(); 004605 assert( pOp->p5==0 ); 004606 break; 004607 } 004608 004609 /* Opcode: Close P1 * * * * 004610 ** 004611 ** Close a cursor previously opened as P1. If P1 is not 004612 ** currently open, this instruction is a no-op. 004613 */ 004614 case OP_Close: { /* ncycle */ 004615 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004616 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]); 004617 p->apCsr[pOp->p1] = 0; 004618 break; 004619 } 004620 004621 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 004622 /* Opcode: ColumnsUsed P1 * * P4 * 004623 ** 004624 ** This opcode (which only exists if SQLite was compiled with 004625 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the 004626 ** table or index for cursor P1 are used. P4 is a 64-bit integer 004627 ** (P4_INT64) in which the first 63 bits are one for each of the 004628 ** first 63 columns of the table or index that are actually used 004629 ** by the cursor. The high-order bit is set if any column after 004630 ** the 64th is used. 004631 */ 004632 case OP_ColumnsUsed: { 004633 VdbeCursor *pC; 004634 pC = p->apCsr[pOp->p1]; 004635 assert( pC->eCurType==CURTYPE_BTREE ); 004636 pC->maskUsed = *(u64*)pOp->p4.pI64; 004637 break; 004638 } 004639 #endif 004640 004641 /* Opcode: SeekGE P1 P2 P3 P4 * 004642 ** Synopsis: key=r[P3@P4] 004643 ** 004644 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004645 ** use the value in register P3 as the key. If cursor P1 refers 004646 ** to an SQL index, then P3 is the first in an array of P4 registers 004647 ** that are used as an unpacked index key. 004648 ** 004649 ** Reposition cursor P1 so that it points to the smallest entry that 004650 ** is greater than or equal to the key value. If there are no records 004651 ** greater than or equal to the key and P2 is not zero, then jump to P2. 004652 ** 004653 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004654 ** opcode will either land on a record that exactly matches the key, or 004655 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004656 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004657 ** The IdxGT opcode will be skipped if this opcode succeeds, but the 004658 ** IdxGT opcode will be used on subsequent loop iterations. The 004659 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004660 ** is an equality search. 004661 ** 004662 ** This opcode leaves the cursor configured to move in forward order, 004663 ** from the beginning toward the end. In other words, the cursor is 004664 ** configured to use Next, not Prev. 004665 ** 004666 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe 004667 */ 004668 /* Opcode: SeekGT P1 P2 P3 P4 * 004669 ** Synopsis: key=r[P3@P4] 004670 ** 004671 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004672 ** use the value in register P3 as a key. If cursor P1 refers 004673 ** to an SQL index, then P3 is the first in an array of P4 registers 004674 ** that are used as an unpacked index key. 004675 ** 004676 ** Reposition cursor P1 so that it points to the smallest entry that 004677 ** is greater than the key value. If there are no records greater than 004678 ** the key and P2 is not zero, then jump to P2. 004679 ** 004680 ** This opcode leaves the cursor configured to move in forward order, 004681 ** from the beginning toward the end. In other words, the cursor is 004682 ** configured to use Next, not Prev. 004683 ** 004684 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe 004685 */ 004686 /* Opcode: SeekLT P1 P2 P3 P4 * 004687 ** Synopsis: key=r[P3@P4] 004688 ** 004689 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004690 ** use the value in register P3 as a key. If cursor P1 refers 004691 ** to an SQL index, then P3 is the first in an array of P4 registers 004692 ** that are used as an unpacked index key. 004693 ** 004694 ** Reposition cursor P1 so that it points to the largest entry that 004695 ** is less than the key value. If there are no records less than 004696 ** the key and P2 is not zero, then jump to P2. 004697 ** 004698 ** This opcode leaves the cursor configured to move in reverse order, 004699 ** from the end toward the beginning. In other words, the cursor is 004700 ** configured to use Prev, not Next. 004701 ** 004702 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe 004703 */ 004704 /* Opcode: SeekLE P1 P2 P3 P4 * 004705 ** Synopsis: key=r[P3@P4] 004706 ** 004707 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 004708 ** use the value in register P3 as a key. If cursor P1 refers 004709 ** to an SQL index, then P3 is the first in an array of P4 registers 004710 ** that are used as an unpacked index key. 004711 ** 004712 ** Reposition cursor P1 so that it points to the largest entry that 004713 ** is less than or equal to the key value. If there are no records 004714 ** less than or equal to the key and P2 is not zero, then jump to P2. 004715 ** 004716 ** This opcode leaves the cursor configured to move in reverse order, 004717 ** from the end toward the beginning. In other words, the cursor is 004718 ** configured to use Prev, not Next. 004719 ** 004720 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this 004721 ** opcode will either land on a record that exactly matches the key, or 004722 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ, 004723 ** this opcode must be followed by an IdxLE opcode with the same arguments. 004724 ** The IdxGE opcode will be skipped if this opcode succeeds, but the 004725 ** IdxGE opcode will be used on subsequent loop iterations. The 004726 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this 004727 ** is an equality search. 004728 ** 004729 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt 004730 */ 004731 case OP_SeekLT: /* jump0, in3, group, ncycle */ 004732 case OP_SeekLE: /* jump0, in3, group, ncycle */ 004733 case OP_SeekGE: /* jump0, in3, group, ncycle */ 004734 case OP_SeekGT: { /* jump0, in3, group, ncycle */ 004735 int res; /* Comparison result */ 004736 int oc; /* Opcode */ 004737 VdbeCursor *pC; /* The cursor to seek */ 004738 UnpackedRecord r; /* The key to seek for */ 004739 int nField; /* Number of columns or fields in the key */ 004740 i64 iKey; /* The rowid we are to seek to */ 004741 int eqOnly; /* Only interested in == results */ 004742 004743 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 004744 assert( pOp->p2!=0 ); 004745 pC = p->apCsr[pOp->p1]; 004746 assert( pC!=0 ); 004747 assert( pC->eCurType==CURTYPE_BTREE ); 004748 assert( OP_SeekLE == OP_SeekLT+1 ); 004749 assert( OP_SeekGE == OP_SeekLT+2 ); 004750 assert( OP_SeekGT == OP_SeekLT+3 ); 004751 assert( pC->isOrdered ); 004752 assert( pC->uc.pCursor!=0 ); 004753 oc = pOp->opcode; 004754 eqOnly = 0; 004755 pC->nullRow = 0; 004756 #ifdef SQLITE_DEBUG 004757 pC->seekOp = pOp->opcode; 004758 #endif 004759 004760 pC->deferredMoveto = 0; 004761 pC->cacheStatus = CACHE_STALE; 004762 if( pC->isTable ){ 004763 u16 flags3, newType; 004764 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */ 004765 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 004766 || CORRUPT_DB ); 004767 004768 /* The input value in P3 might be of any type: integer, real, string, 004769 ** blob, or NULL. But it needs to be an integer before we can do 004770 ** the seek, so convert it. */ 004771 pIn3 = &aMem[pOp->p3]; 004772 flags3 = pIn3->flags; 004773 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){ 004774 applyNumericAffinity(pIn3, 0); 004775 } 004776 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */ 004777 newType = pIn3->flags; /* Record the type after applying numeric affinity */ 004778 pIn3->flags = flags3; /* But convert the type back to its original */ 004779 004780 /* If the P3 value could not be converted into an integer without 004781 ** loss of information, then special processing is required... */ 004782 if( (newType & (MEM_Int|MEM_IntReal))==0 ){ 004783 int c; 004784 if( (newType & MEM_Real)==0 ){ 004785 if( (newType & MEM_Null) || oc>=OP_SeekGE ){ 004786 VdbeBranchTaken(1,2); 004787 goto jump_to_p2; 004788 }else{ 004789 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 004790 if( rc!=SQLITE_OK ) goto abort_due_to_error; 004791 goto seek_not_found; 004792 } 004793 } 004794 c = sqlite3IntFloatCompare(iKey, pIn3->u.r); 004795 004796 /* If the approximation iKey is larger than the actual real search 004797 ** term, substitute >= for > and < for <=. e.g. if the search term 004798 ** is 4.9 and the integer approximation 5: 004799 ** 004800 ** (x > 4.9) -> (x >= 5) 004801 ** (x <= 4.9) -> (x < 5) 004802 */ 004803 if( c>0 ){ 004804 assert( OP_SeekGE==(OP_SeekGT-1) ); 004805 assert( OP_SeekLT==(OP_SeekLE-1) ); 004806 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) ); 004807 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--; 004808 } 004809 004810 /* If the approximation iKey is smaller than the actual real search 004811 ** term, substitute <= for < and > for >=. */ 004812 else if( c<0 ){ 004813 assert( OP_SeekLE==(OP_SeekLT+1) ); 004814 assert( OP_SeekGT==(OP_SeekGE+1) ); 004815 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) ); 004816 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++; 004817 } 004818 } 004819 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res); 004820 pC->movetoTarget = iKey; /* Used by OP_Delete */ 004821 if( rc!=SQLITE_OK ){ 004822 goto abort_due_to_error; 004823 } 004824 }else{ 004825 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the 004826 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be 004827 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively, 004828 ** with the same key. 004829 */ 004830 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){ 004831 eqOnly = 1; 004832 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE ); 004833 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004834 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT ); 004835 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT ); 004836 assert( pOp[1].p1==pOp[0].p1 ); 004837 assert( pOp[1].p2==pOp[0].p2 ); 004838 assert( pOp[1].p3==pOp[0].p3 ); 004839 assert( pOp[1].p4.i==pOp[0].p4.i ); 004840 } 004841 004842 nField = pOp->p4.i; 004843 assert( pOp->p4type==P4_INT32 ); 004844 assert( nField>0 ); 004845 r.pKeyInfo = pC->pKeyInfo; 004846 r.nField = (u16)nField; 004847 004848 /* The next line of code computes as follows, only faster: 004849 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){ 004850 ** r.default_rc = -1; 004851 ** }else{ 004852 ** r.default_rc = +1; 004853 ** } 004854 */ 004855 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1); 004856 assert( oc!=OP_SeekGT || r.default_rc==-1 ); 004857 assert( oc!=OP_SeekLE || r.default_rc==-1 ); 004858 assert( oc!=OP_SeekGE || r.default_rc==+1 ); 004859 assert( oc!=OP_SeekLT || r.default_rc==+1 ); 004860 004861 r.aMem = &aMem[pOp->p3]; 004862 #ifdef SQLITE_DEBUG 004863 { 004864 int i; 004865 for(i=0; i<r.nField; i++){ 004866 assert( memIsValid(&r.aMem[i]) ); 004867 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]); 004868 } 004869 } 004870 #endif 004871 r.eqSeen = 0; 004872 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res); 004873 if( rc!=SQLITE_OK ){ 004874 goto abort_due_to_error; 004875 } 004876 if( eqOnly && r.eqSeen==0 ){ 004877 assert( res!=0 ); 004878 goto seek_not_found; 004879 } 004880 } 004881 #ifdef SQLITE_TEST 004882 sqlite3_search_count++; 004883 #endif 004884 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT ); 004885 if( res<0 || (res==0 && oc==OP_SeekGT) ){ 004886 res = 0; 004887 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 004888 if( rc!=SQLITE_OK ){ 004889 if( rc==SQLITE_DONE ){ 004890 rc = SQLITE_OK; 004891 res = 1; 004892 }else{ 004893 goto abort_due_to_error; 004894 } 004895 } 004896 }else{ 004897 res = 0; 004898 } 004899 }else{ 004900 assert( oc==OP_SeekLT || oc==OP_SeekLE ); 004901 if( res>0 || (res==0 && oc==OP_SeekLT) ){ 004902 res = 0; 004903 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0); 004904 if( rc!=SQLITE_OK ){ 004905 if( rc==SQLITE_DONE ){ 004906 rc = SQLITE_OK; 004907 res = 1; 004908 }else{ 004909 goto abort_due_to_error; 004910 } 004911 } 004912 }else{ 004913 /* res might be negative because the table is empty. Check to 004914 ** see if this is the case. 004915 */ 004916 res = sqlite3BtreeEof(pC->uc.pCursor); 004917 } 004918 } 004919 seek_not_found: 004920 assert( pOp->p2>0 ); 004921 VdbeBranchTaken(res!=0,2); 004922 if( res ){ 004923 goto jump_to_p2; 004924 }else if( eqOnly ){ 004925 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT ); 004926 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */ 004927 } 004928 break; 004929 } 004930 004931 004932 /* Opcode: SeekScan P1 P2 * * P5 004933 ** Synopsis: Scan-ahead up to P1 rows 004934 ** 004935 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this 004936 ** opcode must be immediately followed by OP_SeekGE. This constraint is 004937 ** checked by assert() statements. 004938 ** 004939 ** This opcode uses the P1 through P4 operands of the subsequent 004940 ** OP_SeekGE. In the text that follows, the operands of the subsequent 004941 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only 004942 ** the P1, P2 and P5 operands of this opcode are also used, and are called 004943 ** This.P1, This.P2 and This.P5. 004944 ** 004945 ** This opcode helps to optimize IN operators on a multi-column index 004946 ** where the IN operator is on the later terms of the index by avoiding 004947 ** unnecessary seeks on the btree, substituting steps to the next row 004948 ** of the b-tree instead. A correct answer is obtained if this opcode 004949 ** is omitted or is a no-op. 004950 ** 004951 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which 004952 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing 004953 ** to. Call this SeekGE.P3/P4 row the "target". 004954 ** 004955 ** If the SeekGE.P1 cursor is not currently pointing to a valid row, 004956 ** then this opcode is a no-op and control passes through into the OP_SeekGE. 004957 ** 004958 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row 004959 ** might be the target row, or it might be near and slightly before the 004960 ** target row, or it might be after the target row. If the cursor is 004961 ** currently before the target row, then this opcode attempts to position 004962 ** the cursor on or after the target row by invoking sqlite3BtreeStep() 004963 ** on the cursor between 1 and This.P1 times. 004964 ** 004965 ** The This.P5 parameter is a flag that indicates what to do if the 004966 ** cursor ends up pointing at a valid row that is past the target 004967 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If 004968 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0 004969 ** case occurs when there are no inequality constraints to the right of 004970 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case 004971 ** occurs when there are inequality constraints to the right of the IN 004972 ** operator. In that case, the This.P2 will point either directly to or 004973 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for 004974 ** loop terminate. 004975 ** 004976 ** Possible outcomes from this opcode:<ol> 004977 ** 004978 ** <li> If the cursor is initially not pointed to any valid row, then 004979 ** fall through into the subsequent OP_SeekGE opcode. 004980 ** 004981 ** <li> If the cursor is left pointing to a row that is before the target 004982 ** row, even after making as many as This.P1 calls to 004983 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE. 004984 ** 004985 ** <li> If the cursor is left pointing at the target row, either because it 004986 ** was at the target row to begin with or because one or more 004987 ** sqlite3BtreeNext() calls moved the cursor to the target row, 004988 ** then jump to This.P2.., 004989 ** 004990 ** <li> If the cursor started out before the target row and a call to 004991 ** to sqlite3BtreeNext() moved the cursor off the end of the index 004992 ** (indicating that the target row definitely does not exist in the 004993 ** btree) then jump to SeekGE.P2, ending the loop. 004994 ** 004995 ** <li> If the cursor ends up on a valid row that is past the target row 004996 ** (indicating that the target row does not exist in the btree) then 004997 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0. 004998 ** </ol> 004999 */ 005000 case OP_SeekScan: { /* ncycle */ 005001 VdbeCursor *pC; 005002 int res; 005003 int nStep; 005004 UnpackedRecord r; 005005 005006 assert( pOp[1].opcode==OP_SeekGE ); 005007 005008 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the 005009 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first 005010 ** opcode past the OP_SeekGE itself. */ 005011 assert( pOp->p2>=(int)(pOp-aOp)+2 ); 005012 #ifdef SQLITE_DEBUG 005013 if( pOp->p5==0 ){ 005014 /* There are no inequality constraints following the IN constraint. */ 005015 assert( pOp[1].p1==aOp[pOp->p2-1].p1 ); 005016 assert( pOp[1].p2==aOp[pOp->p2-1].p2 ); 005017 assert( pOp[1].p3==aOp[pOp->p2-1].p3 ); 005018 assert( aOp[pOp->p2-1].opcode==OP_IdxGT 005019 || aOp[pOp->p2-1].opcode==OP_IdxGE ); 005020 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE ); 005021 }else{ 005022 /* There are inequality constraints. */ 005023 assert( pOp->p2==(int)(pOp-aOp)+2 ); 005024 assert( aOp[pOp->p2-1].opcode==OP_SeekGE ); 005025 } 005026 #endif 005027 005028 assert( pOp->p1>0 ); 005029 pC = p->apCsr[pOp[1].p1]; 005030 assert( pC!=0 ); 005031 assert( pC->eCurType==CURTYPE_BTREE ); 005032 assert( !pC->isTable ); 005033 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){ 005034 #ifdef SQLITE_DEBUG 005035 if( db->flags&SQLITE_VdbeTrace ){ 005036 printf("... cursor not valid - fall through\n"); 005037 } 005038 #endif 005039 break; 005040 } 005041 nStep = pOp->p1; 005042 assert( nStep>=1 ); 005043 r.pKeyInfo = pC->pKeyInfo; 005044 r.nField = (u16)pOp[1].p4.i; 005045 r.default_rc = 0; 005046 r.aMem = &aMem[pOp[1].p3]; 005047 #ifdef SQLITE_DEBUG 005048 { 005049 int i; 005050 for(i=0; i<r.nField; i++){ 005051 assert( memIsValid(&r.aMem[i]) ); 005052 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]); 005053 } 005054 } 005055 #endif 005056 res = 0; /* Not needed. Only used to silence a warning. */ 005057 while(1){ 005058 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res); 005059 if( rc ) goto abort_due_to_error; 005060 if( res>0 && pOp->p5==0 ){ 005061 seekscan_search_fail: 005062 /* Jump to SeekGE.P2, ending the loop */ 005063 #ifdef SQLITE_DEBUG 005064 if( db->flags&SQLITE_VdbeTrace ){ 005065 printf("... %d steps and then skip\n", pOp->p1 - nStep); 005066 } 005067 #endif 005068 VdbeBranchTaken(1,3); 005069 pOp++; 005070 goto jump_to_p2; 005071 } 005072 if( res>=0 ){ 005073 /* Jump to This.P2, bypassing the OP_SeekGE opcode */ 005074 #ifdef SQLITE_DEBUG 005075 if( db->flags&SQLITE_VdbeTrace ){ 005076 printf("... %d steps and then success\n", pOp->p1 - nStep); 005077 } 005078 #endif 005079 VdbeBranchTaken(2,3); 005080 goto jump_to_p2; 005081 break; 005082 } 005083 if( nStep<=0 ){ 005084 #ifdef SQLITE_DEBUG 005085 if( db->flags&SQLITE_VdbeTrace ){ 005086 printf("... fall through after %d steps\n", pOp->p1); 005087 } 005088 #endif 005089 VdbeBranchTaken(0,3); 005090 break; 005091 } 005092 nStep--; 005093 pC->cacheStatus = CACHE_STALE; 005094 rc = sqlite3BtreeNext(pC->uc.pCursor, 0); 005095 if( rc ){ 005096 if( rc==SQLITE_DONE ){ 005097 rc = SQLITE_OK; 005098 goto seekscan_search_fail; 005099 }else{ 005100 goto abort_due_to_error; 005101 } 005102 } 005103 } 005104 005105 break; 005106 } 005107 005108 005109 /* Opcode: SeekHit P1 P2 P3 * * 005110 ** Synopsis: set P2<=seekHit<=P3 005111 ** 005112 ** Increase or decrease the seekHit value for cursor P1, if necessary, 005113 ** so that it is no less than P2 and no greater than P3. 005114 ** 005115 ** The seekHit integer represents the maximum of terms in an index for which 005116 ** there is known to be at least one match. If the seekHit value is smaller 005117 ** than the total number of equality terms in an index lookup, then the 005118 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned 005119 ** early, thus saving work. This is part of the IN-early-out optimization. 005120 ** 005121 ** P1 must be a valid b-tree cursor. 005122 */ 005123 case OP_SeekHit: { /* ncycle */ 005124 VdbeCursor *pC; 005125 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005126 pC = p->apCsr[pOp->p1]; 005127 assert( pC!=0 ); 005128 assert( pOp->p3>=pOp->p2 ); 005129 if( pC->seekHit<pOp->p2 ){ 005130 #ifdef SQLITE_DEBUG 005131 if( db->flags&SQLITE_VdbeTrace ){ 005132 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2); 005133 } 005134 #endif 005135 pC->seekHit = pOp->p2; 005136 }else if( pC->seekHit>pOp->p3 ){ 005137 #ifdef SQLITE_DEBUG 005138 if( db->flags&SQLITE_VdbeTrace ){ 005139 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3); 005140 } 005141 #endif 005142 pC->seekHit = pOp->p3; 005143 } 005144 break; 005145 } 005146 005147 /* Opcode: IfNotOpen P1 P2 * * * 005148 ** Synopsis: if( !csr[P1] ) goto P2 005149 ** 005150 ** If cursor P1 is not open or if P1 is set to a NULL row using the 005151 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through. 005152 */ 005153 case OP_IfNotOpen: { /* jump */ 005154 VdbeCursor *pCur; 005155 005156 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005157 pCur = p->apCsr[pOp->p1]; 005158 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2); 005159 if( pCur==0 || pCur->nullRow ){ 005160 goto jump_to_p2_and_check_for_interrupt; 005161 } 005162 break; 005163 } 005164 005165 /* Opcode: Found P1 P2 P3 P4 * 005166 ** Synopsis: key=r[P3@P4] 005167 ** 005168 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005169 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005170 ** record. 005171 ** 005172 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005173 ** is a prefix of any entry in P1 then a jump is made to P2 and 005174 ** P1 is left pointing at the matching entry. 005175 ** 005176 ** This operation leaves the cursor in a state where it can be 005177 ** advanced in the forward direction. The Next instruction will work, 005178 ** but not the Prev instruction. 005179 ** 005180 ** See also: NotFound, NoConflict, NotExists. SeekGe 005181 */ 005182 /* Opcode: NotFound P1 P2 P3 P4 * 005183 ** Synopsis: key=r[P3@P4] 005184 ** 005185 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005186 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005187 ** record. 005188 ** 005189 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005190 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1 005191 ** does contain an entry whose prefix matches the P3/P4 record then control 005192 ** falls through to the next instruction and P1 is left pointing at the 005193 ** matching entry. 005194 ** 005195 ** This operation leaves the cursor in a state where it cannot be 005196 ** advanced in either direction. In other words, the Next and Prev 005197 ** opcodes do not work after this operation. 005198 ** 005199 ** See also: Found, NotExists, NoConflict, IfNoHope 005200 */ 005201 /* Opcode: IfNoHope P1 P2 P3 P4 * 005202 ** Synopsis: key=r[P3@P4] 005203 ** 005204 ** Register P3 is the first of P4 registers that form an unpacked 005205 ** record. Cursor P1 is an index btree. P2 is a jump destination. 005206 ** In other words, the operands to this opcode are the same as the 005207 ** operands to OP_NotFound and OP_IdxGT. 005208 ** 005209 ** This opcode is an optimization attempt only. If this opcode always 005210 ** falls through, the correct answer is still obtained, but extra work 005211 ** is performed. 005212 ** 005213 ** A value of N in the seekHit flag of cursor P1 means that there exists 005214 ** a key P3:N that will match some record in the index. We want to know 005215 ** if it is possible for a record P3:P4 to match some record in the 005216 ** index. If it is not possible, we can skip some work. So if seekHit 005217 ** is less than P4, attempt to find out if a match is possible by running 005218 ** OP_NotFound. 005219 ** 005220 ** This opcode is used in IN clause processing for a multi-column key. 005221 ** If an IN clause is attached to an element of the key other than the 005222 ** left-most element, and if there are no matches on the most recent 005223 ** seek over the whole key, then it might be that one of the key element 005224 ** to the left is prohibiting a match, and hence there is "no hope" of 005225 ** any match regardless of how many IN clause elements are checked. 005226 ** In such a case, we abandon the IN clause search early, using this 005227 ** opcode. The opcode name comes from the fact that the 005228 ** jump is taken if there is "no hope" of achieving a match. 005229 ** 005230 ** See also: NotFound, SeekHit 005231 */ 005232 /* Opcode: NoConflict P1 P2 P3 P4 * 005233 ** Synopsis: key=r[P3@P4] 005234 ** 005235 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If 005236 ** P4>0 then register P3 is the first of P4 registers that form an unpacked 005237 ** record. 005238 ** 005239 ** Cursor P1 is on an index btree. If the record identified by P3 and P4 005240 ** contains any NULL value, jump immediately to P2. If all terms of the 005241 ** record are not-NULL then a check is done to determine if any row in the 005242 ** P1 index btree has a matching key prefix. If there are no matches, jump 005243 ** immediately to P2. If there is a match, fall through and leave the P1 005244 ** cursor pointing to the matching row. 005245 ** 005246 ** This opcode is similar to OP_NotFound with the exceptions that the 005247 ** branch is always taken if any part of the search key input is NULL. 005248 ** 005249 ** This operation leaves the cursor in a state where it cannot be 005250 ** advanced in either direction. In other words, the Next and Prev 005251 ** opcodes do not work after this operation. 005252 ** 005253 ** See also: NotFound, Found, NotExists 005254 */ 005255 case OP_IfNoHope: { /* jump, in3, ncycle */ 005256 VdbeCursor *pC; 005257 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005258 pC = p->apCsr[pOp->p1]; 005259 assert( pC!=0 ); 005260 #ifdef SQLITE_DEBUG 005261 if( db->flags&SQLITE_VdbeTrace ){ 005262 printf("seekHit is %d\n", pC->seekHit); 005263 } 005264 #endif 005265 if( pC->seekHit>=pOp->p4.i ) break; 005266 /* Fall through into OP_NotFound */ 005267 /* no break */ deliberate_fall_through 005268 } 005269 case OP_NoConflict: /* jump, in3, ncycle */ 005270 case OP_NotFound: /* jump, in3, ncycle */ 005271 case OP_Found: { /* jump, in3, ncycle */ 005272 int alreadyExists; 005273 int ii; 005274 VdbeCursor *pC; 005275 UnpackedRecord *pIdxKey; 005276 UnpackedRecord r; 005277 005278 #ifdef SQLITE_TEST 005279 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++; 005280 #endif 005281 005282 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005283 assert( pOp->p4type==P4_INT32 ); 005284 pC = p->apCsr[pOp->p1]; 005285 assert( pC!=0 ); 005286 #ifdef SQLITE_DEBUG 005287 pC->seekOp = pOp->opcode; 005288 #endif 005289 r.aMem = &aMem[pOp->p3]; 005290 assert( pC->eCurType==CURTYPE_BTREE ); 005291 assert( pC->uc.pCursor!=0 ); 005292 assert( pC->isTable==0 ); 005293 r.nField = (u16)pOp->p4.i; 005294 if( r.nField>0 ){ 005295 /* Key values in an array of registers */ 005296 r.pKeyInfo = pC->pKeyInfo; 005297 r.default_rc = 0; 005298 #ifdef SQLITE_DEBUG 005299 for(ii=0; ii<r.nField; ii++){ 005300 assert( memIsValid(&r.aMem[ii]) ); 005301 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 ); 005302 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]); 005303 } 005304 #endif 005305 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult); 005306 }else{ 005307 /* Composite key generated by OP_MakeRecord */ 005308 assert( r.aMem->flags & MEM_Blob ); 005309 assert( pOp->opcode!=OP_NoConflict ); 005310 rc = ExpandBlob(r.aMem); 005311 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 005312 if( rc ) goto no_mem; 005313 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo); 005314 if( pIdxKey==0 ) goto no_mem; 005315 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey); 005316 pIdxKey->default_rc = 0; 005317 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult); 005318 sqlite3DbFreeNN(db, pIdxKey); 005319 } 005320 if( rc!=SQLITE_OK ){ 005321 goto abort_due_to_error; 005322 } 005323 alreadyExists = (pC->seekResult==0); 005324 pC->nullRow = 1-alreadyExists; 005325 pC->deferredMoveto = 0; 005326 pC->cacheStatus = CACHE_STALE; 005327 if( pOp->opcode==OP_Found ){ 005328 VdbeBranchTaken(alreadyExists!=0,2); 005329 if( alreadyExists ) goto jump_to_p2; 005330 }else{ 005331 if( !alreadyExists ){ 005332 VdbeBranchTaken(1,2); 005333 goto jump_to_p2; 005334 } 005335 if( pOp->opcode==OP_NoConflict ){ 005336 /* For the OP_NoConflict opcode, take the jump if any of the 005337 ** input fields are NULL, since any key with a NULL will not 005338 ** conflict */ 005339 for(ii=0; ii<r.nField; ii++){ 005340 if( r.aMem[ii].flags & MEM_Null ){ 005341 VdbeBranchTaken(1,2); 005342 goto jump_to_p2; 005343 } 005344 } 005345 } 005346 VdbeBranchTaken(0,2); 005347 if( pOp->opcode==OP_IfNoHope ){ 005348 pC->seekHit = pOp->p4.i; 005349 } 005350 } 005351 break; 005352 } 005353 005354 /* Opcode: SeekRowid P1 P2 P3 * * 005355 ** Synopsis: intkey=r[P3] 005356 ** 005357 ** P1 is the index of a cursor open on an SQL table btree (with integer 005358 ** keys). If register P3 does not contain an integer or if P1 does not 005359 ** contain a record with rowid P3 then jump immediately to P2. 005360 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain 005361 ** a record with rowid P3 then 005362 ** leave the cursor pointing at that record and fall through to the next 005363 ** instruction. 005364 ** 005365 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists 005366 ** the P3 register must be guaranteed to contain an integer value. With this 005367 ** opcode, register P3 might not contain an integer. 005368 ** 005369 ** The OP_NotFound opcode performs the same operation on index btrees 005370 ** (with arbitrary multi-value keys). 005371 ** 005372 ** This opcode leaves the cursor in a state where it cannot be advanced 005373 ** in either direction. In other words, the Next and Prev opcodes will 005374 ** not work following this opcode. 005375 ** 005376 ** See also: Found, NotFound, NoConflict, SeekRowid 005377 */ 005378 /* Opcode: NotExists P1 P2 P3 * * 005379 ** Synopsis: intkey=r[P3] 005380 ** 005381 ** P1 is the index of a cursor open on an SQL table btree (with integer 005382 ** keys). P3 is an integer rowid. If P1 does not contain a record with 005383 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an 005384 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 005385 ** leave the cursor pointing at that record and fall through to the next 005386 ** instruction. 005387 ** 005388 ** The OP_SeekRowid opcode performs the same operation but also allows the 005389 ** P3 register to contain a non-integer value, in which case the jump is 005390 ** always taken. This opcode requires that P3 always contain an integer. 005391 ** 005392 ** The OP_NotFound opcode performs the same operation on index btrees 005393 ** (with arbitrary multi-value keys). 005394 ** 005395 ** This opcode leaves the cursor in a state where it cannot be advanced 005396 ** in either direction. In other words, the Next and Prev opcodes will 005397 ** not work following this opcode. 005398 ** 005399 ** See also: Found, NotFound, NoConflict, SeekRowid 005400 */ 005401 case OP_SeekRowid: { /* jump0, in3, ncycle */ 005402 VdbeCursor *pC; 005403 BtCursor *pCrsr; 005404 int res; 005405 u64 iKey; 005406 005407 pIn3 = &aMem[pOp->p3]; 005408 testcase( pIn3->flags & MEM_Int ); 005409 testcase( pIn3->flags & MEM_IntReal ); 005410 testcase( pIn3->flags & MEM_Real ); 005411 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str ); 005412 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){ 005413 /* If pIn3->u.i does not contain an integer, compute iKey as the 005414 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted 005415 ** into an integer without loss of information. Take care to avoid 005416 ** changing the datatype of pIn3, however, as it is used by other 005417 ** parts of the prepared statement. */ 005418 Mem x = pIn3[0]; 005419 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding); 005420 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2; 005421 iKey = x.u.i; 005422 goto notExistsWithKey; 005423 } 005424 /* Fall through into OP_NotExists */ 005425 /* no break */ deliberate_fall_through 005426 case OP_NotExists: /* jump, in3, ncycle */ 005427 pIn3 = &aMem[pOp->p3]; 005428 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid ); 005429 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005430 iKey = pIn3->u.i; 005431 notExistsWithKey: 005432 pC = p->apCsr[pOp->p1]; 005433 assert( pC!=0 ); 005434 #ifdef SQLITE_DEBUG 005435 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid; 005436 #endif 005437 assert( pC->isTable ); 005438 assert( pC->eCurType==CURTYPE_BTREE ); 005439 pCrsr = pC->uc.pCursor; 005440 assert( pCrsr!=0 ); 005441 res = 0; 005442 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res); 005443 assert( rc==SQLITE_OK || res==0 ); 005444 pC->movetoTarget = iKey; /* Used by OP_Delete */ 005445 pC->nullRow = 0; 005446 pC->cacheStatus = CACHE_STALE; 005447 pC->deferredMoveto = 0; 005448 VdbeBranchTaken(res!=0,2); 005449 pC->seekResult = res; 005450 if( res!=0 ){ 005451 assert( rc==SQLITE_OK ); 005452 if( pOp->p2==0 ){ 005453 rc = SQLITE_CORRUPT_BKPT; 005454 }else{ 005455 goto jump_to_p2; 005456 } 005457 } 005458 if( rc ) goto abort_due_to_error; 005459 break; 005460 } 005461 005462 /* Opcode: Sequence P1 P2 * * * 005463 ** Synopsis: r[P2]=cursor[P1].ctr++ 005464 ** 005465 ** Find the next available sequence number for cursor P1. 005466 ** Write the sequence number into register P2. 005467 ** The sequence number on the cursor is incremented after this 005468 ** instruction. 005469 */ 005470 case OP_Sequence: { /* out2 */ 005471 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005472 assert( p->apCsr[pOp->p1]!=0 ); 005473 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB ); 005474 pOut = out2Prerelease(p, pOp); 005475 pOut->u.i = p->apCsr[pOp->p1]->seqCount++; 005476 break; 005477 } 005478 005479 005480 /* Opcode: NewRowid P1 P2 P3 * * 005481 ** Synopsis: r[P2]=rowid 005482 ** 005483 ** Get a new integer record number (a.k.a "rowid") used as the key to a table. 005484 ** The record number is not previously used as a key in the database 005485 ** table that cursor P1 points to. The new record number is written 005486 ** written to register P2. 005487 ** 005488 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 005489 ** the largest previously generated record number. No new record numbers are 005490 ** allowed to be less than this value. When this value reaches its maximum, 005491 ** an SQLITE_FULL error is generated. The P3 register is updated with the ' 005492 ** generated record number. This P3 mechanism is used to help implement the 005493 ** AUTOINCREMENT feature. 005494 */ 005495 case OP_NewRowid: { /* out2 */ 005496 i64 v; /* The new rowid */ 005497 VdbeCursor *pC; /* Cursor of table to get the new rowid */ 005498 int res; /* Result of an sqlite3BtreeLast() */ 005499 int cnt; /* Counter to limit the number of searches */ 005500 #ifndef SQLITE_OMIT_AUTOINCREMENT 005501 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */ 005502 VdbeFrame *pFrame; /* Root frame of VDBE */ 005503 #endif 005504 005505 v = 0; 005506 res = 0; 005507 pOut = out2Prerelease(p, pOp); 005508 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005509 pC = p->apCsr[pOp->p1]; 005510 assert( pC!=0 ); 005511 assert( pC->isTable ); 005512 assert( pC->eCurType==CURTYPE_BTREE ); 005513 assert( pC->uc.pCursor!=0 ); 005514 { 005515 /* The next rowid or record number (different terms for the same 005516 ** thing) is obtained in a two-step algorithm. 005517 ** 005518 ** First we attempt to find the largest existing rowid and add one 005519 ** to that. But if the largest existing rowid is already the maximum 005520 ** positive integer, we have to fall through to the second 005521 ** probabilistic algorithm 005522 ** 005523 ** The second algorithm is to select a rowid at random and see if 005524 ** it already exists in the table. If it does not exist, we have 005525 ** succeeded. If the random rowid does exist, we select a new one 005526 ** and try again, up to 100 times. 005527 */ 005528 assert( pC->isTable ); 005529 005530 #ifdef SQLITE_32BIT_ROWID 005531 # define MAX_ROWID 0x7fffffff 005532 #else 005533 /* Some compilers complain about constants of the form 0x7fffffffffffffff. 005534 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems 005535 ** to provide the constant while making all compilers happy. 005536 */ 005537 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff ) 005538 #endif 005539 005540 if( !pC->useRandomRowid ){ 005541 rc = sqlite3BtreeLast(pC->uc.pCursor, &res); 005542 if( rc!=SQLITE_OK ){ 005543 goto abort_due_to_error; 005544 } 005545 if( res ){ 005546 v = 1; /* IMP: R-61914-48074 */ 005547 }else{ 005548 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) ); 005549 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005550 if( v>=MAX_ROWID ){ 005551 pC->useRandomRowid = 1; 005552 }else{ 005553 v++; /* IMP: R-29538-34987 */ 005554 } 005555 } 005556 } 005557 005558 #ifndef SQLITE_OMIT_AUTOINCREMENT 005559 if( pOp->p3 ){ 005560 /* Assert that P3 is a valid memory cell. */ 005561 assert( pOp->p3>0 ); 005562 if( p->pFrame ){ 005563 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 005564 /* Assert that P3 is a valid memory cell. */ 005565 assert( pOp->p3<=pFrame->nMem ); 005566 pMem = &pFrame->aMem[pOp->p3]; 005567 }else{ 005568 /* Assert that P3 is a valid memory cell. */ 005569 assert( pOp->p3<=(p->nMem+1 - p->nCursor) ); 005570 pMem = &aMem[pOp->p3]; 005571 memAboutToChange(p, pMem); 005572 } 005573 assert( memIsValid(pMem) ); 005574 005575 REGISTER_TRACE(pOp->p3, pMem); 005576 sqlite3VdbeMemIntegerify(pMem); 005577 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */ 005578 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){ 005579 rc = SQLITE_FULL; /* IMP: R-17817-00630 */ 005580 goto abort_due_to_error; 005581 } 005582 if( v<pMem->u.i+1 ){ 005583 v = pMem->u.i + 1; 005584 } 005585 pMem->u.i = v; 005586 } 005587 #endif 005588 if( pC->useRandomRowid ){ 005589 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the 005590 ** largest possible integer (9223372036854775807) then the database 005591 ** engine starts picking positive candidate ROWIDs at random until 005592 ** it finds one that is not previously used. */ 005593 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is 005594 ** an AUTOINCREMENT table. */ 005595 cnt = 0; 005596 do{ 005597 sqlite3_randomness(sizeof(v), &v); 005598 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */ 005599 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v, 005600 0, &res))==SQLITE_OK) 005601 && (res==0) 005602 && (++cnt<100)); 005603 if( rc ) goto abort_due_to_error; 005604 if( res==0 ){ 005605 rc = SQLITE_FULL; /* IMP: R-38219-53002 */ 005606 goto abort_due_to_error; 005607 } 005608 assert( v>0 ); /* EV: R-40812-03570 */ 005609 } 005610 pC->deferredMoveto = 0; 005611 pC->cacheStatus = CACHE_STALE; 005612 } 005613 pOut->u.i = v; 005614 break; 005615 } 005616 005617 /* Opcode: Insert P1 P2 P3 P4 P5 005618 ** Synopsis: intkey=r[P3] data=r[P2] 005619 ** 005620 ** Write an entry into the table of cursor P1. A new entry is 005621 ** created if it doesn't already exist or the data for an existing 005622 ** entry is overwritten. The data is the value MEM_Blob stored in register 005623 ** number P2. The key is stored in register P3. The key must 005624 ** be a MEM_Int. 005625 ** 005626 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is 005627 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set, 005628 ** then rowid is stored for subsequent return by the 005629 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified). 005630 ** 005631 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 005632 ** run faster by avoiding an unnecessary seek on cursor P1. However, 005633 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 005634 ** seeks on the cursor or if the most recent seek used a key equal to P3. 005635 ** 005636 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an 005637 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode 005638 ** is part of an INSERT operation. The difference is only important to 005639 ** the update hook. 005640 ** 005641 ** Parameter P4 may point to a Table structure, or may be NULL. If it is 005642 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 005643 ** following a successful insert. 005644 ** 005645 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically 005646 ** allocated, then ownership of P2 is transferred to the pseudo-cursor 005647 ** and register P2 becomes ephemeral. If the cursor is changed, the 005648 ** value of register P2 will then change. Make sure this does not 005649 ** cause any problems.) 005650 ** 005651 ** This instruction only works on tables. The equivalent instruction 005652 ** for indices is OP_IdxInsert. 005653 */ 005654 case OP_Insert: { 005655 Mem *pData; /* MEM cell holding data for the record to be inserted */ 005656 Mem *pKey; /* MEM cell holding key for the record */ 005657 VdbeCursor *pC; /* Cursor to table into which insert is written */ 005658 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */ 005659 const char *zDb; /* database name - used by the update hook */ 005660 Table *pTab; /* Table structure - used by update and pre-update hooks */ 005661 BtreePayload x; /* Payload to be inserted */ 005662 005663 pData = &aMem[pOp->p2]; 005664 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005665 assert( memIsValid(pData) ); 005666 pC = p->apCsr[pOp->p1]; 005667 assert( pC!=0 ); 005668 assert( pC->eCurType==CURTYPE_BTREE ); 005669 assert( pC->deferredMoveto==0 ); 005670 assert( pC->uc.pCursor!=0 ); 005671 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable ); 005672 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC ); 005673 REGISTER_TRACE(pOp->p2, pData); 005674 sqlite3VdbeIncrWriteCounter(p, pC); 005675 005676 pKey = &aMem[pOp->p3]; 005677 assert( pKey->flags & MEM_Int ); 005678 assert( memIsValid(pKey) ); 005679 REGISTER_TRACE(pOp->p3, pKey); 005680 x.nKey = pKey->u.i; 005681 005682 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005683 assert( pC->iDb>=0 ); 005684 zDb = db->aDb[pC->iDb].zDbSName; 005685 pTab = pOp->p4.pTab; 005686 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) ); 005687 }else{ 005688 pTab = 0; 005689 zDb = 0; 005690 } 005691 005692 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005693 /* Invoke the pre-update hook, if any */ 005694 if( pTab ){ 005695 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){ 005696 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1); 005697 } 005698 if( db->xUpdateCallback==0 || pTab->aCol==0 ){ 005699 /* Prevent post-update hook from running in cases when it should not */ 005700 pTab = 0; 005701 } 005702 } 005703 if( pOp->p5 & OPFLAG_ISNOOP ) break; 005704 #endif 005705 005706 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 ); 005707 if( pOp->p5 & OPFLAG_NCHANGE ){ 005708 p->nChange++; 005709 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey; 005710 } 005711 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 ); 005712 x.pData = pData->z; 005713 x.nData = pData->n; 005714 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0); 005715 if( pData->flags & MEM_Zero ){ 005716 x.nZero = pData->u.nZero; 005717 }else{ 005718 x.nZero = 0; 005719 } 005720 x.pKey = 0; 005721 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT ); 005722 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 005723 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 005724 seekResult 005725 ); 005726 pC->deferredMoveto = 0; 005727 pC->cacheStatus = CACHE_STALE; 005728 colCacheCtr++; 005729 005730 /* Invoke the update-hook if required. */ 005731 if( rc ) goto abort_due_to_error; 005732 if( pTab ){ 005733 assert( db->xUpdateCallback!=0 ); 005734 assert( pTab->aCol!=0 ); 005735 db->xUpdateCallback(db->pUpdateArg, 005736 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT, 005737 zDb, pTab->zName, x.nKey); 005738 } 005739 break; 005740 } 005741 005742 /* Opcode: RowCell P1 P2 P3 * * 005743 ** 005744 ** P1 and P2 are both open cursors. Both must be opened on the same type 005745 ** of table - intkey or index. This opcode is used as part of copying 005746 ** the current row from P2 into P1. If the cursors are opened on intkey 005747 ** tables, register P3 contains the rowid to use with the new record in 005748 ** P1. If they are opened on index tables, P3 is not used. 005749 ** 005750 ** This opcode must be followed by either an Insert or InsertIdx opcode 005751 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation. 005752 */ 005753 case OP_RowCell: { 005754 VdbeCursor *pDest; /* Cursor to write to */ 005755 VdbeCursor *pSrc; /* Cursor to read from */ 005756 i64 iKey; /* Rowid value to insert with */ 005757 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert ); 005758 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 ); 005759 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 ); 005760 assert( pOp[1].p5 & OPFLAG_PREFORMAT ); 005761 pDest = p->apCsr[pOp->p1]; 005762 pSrc = p->apCsr[pOp->p2]; 005763 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0; 005764 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey); 005765 if( rc!=SQLITE_OK ) goto abort_due_to_error; 005766 break; 005767 }; 005768 005769 /* Opcode: Delete P1 P2 P3 P4 P5 005770 ** 005771 ** Delete the record at which the P1 cursor is currently pointing. 005772 ** 005773 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then 005774 ** the cursor will be left pointing at either the next or the previous 005775 ** record in the table. If it is left pointing at the next record, then 005776 ** the next Next instruction will be a no-op. As a result, in this case 005777 ** it is ok to delete a record from within a Next loop. If 005778 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be 005779 ** left in an undefined state. 005780 ** 005781 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this 005782 ** delete is one of several associated with deleting a table row and 005783 ** all its associated index entries. Exactly one of those deletes is 005784 ** the "primary" delete. The others are all on OPFLAG_FORDELETE 005785 ** cursors or else are marked with the AUXDELETE flag. 005786 ** 005787 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then 005788 ** the row change count is incremented (otherwise not). 005789 ** 005790 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the 005791 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged. 005792 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert 005793 ** with the same key, causing the btree entry to be overwritten. 005794 ** 005795 ** P1 must not be pseudo-table. It has to be a real table with 005796 ** multiple rows. 005797 ** 005798 ** If P4 is not NULL then it points to a Table object. In this case either 005799 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must 005800 ** have been positioned using OP_NotFound prior to invoking this opcode in 005801 ** this case. Specifically, if one is configured, the pre-update hook is 005802 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 005803 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2. 005804 ** 005805 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address 005806 ** of the memory cell that contains the value that the rowid of the row will 005807 ** be set to by the update. 005808 */ 005809 case OP_Delete: { 005810 VdbeCursor *pC; 005811 const char *zDb; 005812 Table *pTab; 005813 int opflags; 005814 005815 opflags = pOp->p2; 005816 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005817 pC = p->apCsr[pOp->p1]; 005818 assert( pC!=0 ); 005819 assert( pC->eCurType==CURTYPE_BTREE ); 005820 assert( pC->uc.pCursor!=0 ); 005821 assert( pC->deferredMoveto==0 ); 005822 sqlite3VdbeIncrWriteCounter(p, pC); 005823 005824 #ifdef SQLITE_DEBUG 005825 if( pOp->p4type==P4_TABLE 005826 && HasRowid(pOp->p4.pTab) 005827 && pOp->p5==0 005828 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) 005829 ){ 005830 /* If p5 is zero, the seek operation that positioned the cursor prior to 005831 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of 005832 ** the row that is being deleted */ 005833 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005834 assert( CORRUPT_DB || pC->movetoTarget==iKey ); 005835 } 005836 #endif 005837 005838 /* If the update-hook or pre-update-hook will be invoked, set zDb to 005839 ** the name of the db to pass as to it. Also set local pTab to a copy 005840 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was 005841 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 005842 ** VdbeCursor.movetoTarget to the current rowid. */ 005843 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){ 005844 assert( pC->iDb>=0 ); 005845 assert( pOp->p4.pTab!=0 ); 005846 zDb = db->aDb[pC->iDb].zDbSName; 005847 pTab = pOp->p4.pTab; 005848 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){ 005849 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor); 005850 } 005851 }else{ 005852 zDb = 0; 005853 pTab = 0; 005854 } 005855 005856 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 005857 /* Invoke the pre-update-hook if required. */ 005858 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab ); 005859 if( db->xPreUpdateCallback && pTab ){ 005860 assert( !(opflags & OPFLAG_ISUPDATE) 005861 || HasRowid(pTab)==0 005862 || (aMem[pOp->p3].flags & MEM_Int) 005863 ); 005864 sqlite3VdbePreUpdateHook(p, pC, 005865 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 005866 zDb, pTab, pC->movetoTarget, 005867 pOp->p3, -1 005868 ); 005869 } 005870 if( opflags & OPFLAG_ISNOOP ) break; 005871 #endif 005872 005873 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 005874 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 ); 005875 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION ); 005876 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE ); 005877 005878 #ifdef SQLITE_DEBUG 005879 if( p->pFrame==0 ){ 005880 if( pC->isEphemeral==0 005881 && (pOp->p5 & OPFLAG_AUXDELETE)==0 005882 && (pC->wrFlag & OPFLAG_FORDELETE)==0 005883 ){ 005884 nExtraDelete++; 005885 } 005886 if( pOp->p2 & OPFLAG_NCHANGE ){ 005887 nExtraDelete--; 005888 } 005889 } 005890 #endif 005891 005892 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5); 005893 pC->cacheStatus = CACHE_STALE; 005894 colCacheCtr++; 005895 pC->seekResult = 0; 005896 if( rc ) goto abort_due_to_error; 005897 005898 /* Invoke the update-hook if required. */ 005899 if( opflags & OPFLAG_NCHANGE ){ 005900 p->nChange++; 005901 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){ 005902 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName, 005903 pC->movetoTarget); 005904 assert( pC->iDb>=0 ); 005905 } 005906 } 005907 005908 break; 005909 } 005910 /* Opcode: ResetCount * * * * * 005911 ** 005912 ** The value of the change counter is copied to the database handle 005913 ** change counter (returned by subsequent calls to sqlite3_changes()). 005914 ** Then the VMs internal change counter resets to 0. 005915 ** This is used by trigger programs. 005916 */ 005917 case OP_ResetCount: { 005918 sqlite3VdbeSetChanges(db, p->nChange); 005919 p->nChange = 0; 005920 break; 005921 } 005922 005923 /* Opcode: SorterCompare P1 P2 P3 P4 005924 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2 005925 ** 005926 ** P1 is a sorter cursor. This instruction compares a prefix of the 005927 ** record blob in register P3 against a prefix of the entry that 005928 ** the sorter cursor currently points to. Only the first P4 fields 005929 ** of r[P3] and the sorter record are compared. 005930 ** 005931 ** If either P3 or the sorter contains a NULL in one of their significant 005932 ** fields (not counting the P4 fields at the end which are ignored) then 005933 ** the comparison is assumed to be equal. 005934 ** 005935 ** Fall through to next instruction if the two records compare equal to 005936 ** each other. Jump to P2 if they are different. 005937 */ 005938 case OP_SorterCompare: { 005939 VdbeCursor *pC; 005940 int res; 005941 int nKeyCol; 005942 005943 pC = p->apCsr[pOp->p1]; 005944 assert( isSorter(pC) ); 005945 assert( pOp->p4type==P4_INT32 ); 005946 pIn3 = &aMem[pOp->p3]; 005947 nKeyCol = pOp->p4.i; 005948 res = 0; 005949 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res); 005950 VdbeBranchTaken(res!=0,2); 005951 if( rc ) goto abort_due_to_error; 005952 if( res ) goto jump_to_p2; 005953 break; 005954 }; 005955 005956 /* Opcode: SorterData P1 P2 P3 * * 005957 ** Synopsis: r[P2]=data 005958 ** 005959 ** Write into register P2 the current sorter data for sorter cursor P1. 005960 ** Then clear the column header cache on cursor P3. 005961 ** 005962 ** This opcode is normally used to move a record out of the sorter and into 005963 ** a register that is the source for a pseudo-table cursor created using 005964 ** OpenPseudo. That pseudo-table cursor is the one that is identified by 005965 ** parameter P3. Clearing the P3 column cache as part of this opcode saves 005966 ** us from having to issue a separate NullRow instruction to clear that cache. 005967 */ 005968 case OP_SorterData: { /* ncycle */ 005969 VdbeCursor *pC; 005970 005971 pOut = &aMem[pOp->p2]; 005972 pC = p->apCsr[pOp->p1]; 005973 assert( isSorter(pC) ); 005974 rc = sqlite3VdbeSorterRowkey(pC, pOut); 005975 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) ); 005976 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 005977 if( rc ) goto abort_due_to_error; 005978 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE; 005979 break; 005980 } 005981 005982 /* Opcode: RowData P1 P2 P3 * * 005983 ** Synopsis: r[P2]=data 005984 ** 005985 ** Write into register P2 the complete row content for the row at 005986 ** which cursor P1 is currently pointing. 005987 ** There is no interpretation of the data. 005988 ** It is just copied onto the P2 register exactly as 005989 ** it is found in the database file. 005990 ** 005991 ** If cursor P1 is an index, then the content is the key of the row. 005992 ** If cursor P2 is a table, then the content extracted is the data. 005993 ** 005994 ** If the P1 cursor must be pointing to a valid row (not a NULL row) 005995 ** of a real table, not a pseudo-table. 005996 ** 005997 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer 005998 ** into the database page. That means that the content of the output 005999 ** register will be invalidated as soon as the cursor moves - including 006000 ** moves caused by other cursors that "save" the current cursors 006001 ** position in order that they can write to the same table. If P3==0 006002 ** then a copy of the data is made into memory. P3!=0 is faster, but 006003 ** P3==0 is safer. 006004 ** 006005 ** If P3!=0 then the content of the P2 register is unsuitable for use 006006 ** in OP_Result and any OP_Result will invalidate the P2 register content. 006007 ** The P2 register content is invalidated by opcodes like OP_Function or 006008 ** by any use of another cursor pointing to the same table. 006009 */ 006010 case OP_RowData: { 006011 VdbeCursor *pC; 006012 BtCursor *pCrsr; 006013 u32 n; 006014 006015 pOut = out2Prerelease(p, pOp); 006016 006017 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006018 pC = p->apCsr[pOp->p1]; 006019 assert( pC!=0 ); 006020 assert( pC->eCurType==CURTYPE_BTREE ); 006021 assert( isSorter(pC)==0 ); 006022 assert( pC->nullRow==0 ); 006023 assert( pC->uc.pCursor!=0 ); 006024 pCrsr = pC->uc.pCursor; 006025 006026 /* The OP_RowData opcodes always follow OP_NotExists or 006027 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions 006028 ** that might invalidate the cursor. 006029 ** If this where not the case, on of the following assert()s 006030 ** would fail. Should this ever change (because of changes in the code 006031 ** generator) then the fix would be to insert a call to 006032 ** sqlite3VdbeCursorMoveto(). 006033 */ 006034 assert( pC->deferredMoveto==0 ); 006035 assert( sqlite3BtreeCursorIsValid(pCrsr) ); 006036 006037 n = sqlite3BtreePayloadSize(pCrsr); 006038 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){ 006039 goto too_big; 006040 } 006041 testcase( n==0 ); 006042 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut); 006043 if( rc ) goto abort_due_to_error; 006044 if( !pOp->p3 ) Deephemeralize(pOut); 006045 UPDATE_MAX_BLOBSIZE(pOut); 006046 REGISTER_TRACE(pOp->p2, pOut); 006047 break; 006048 } 006049 006050 /* Opcode: Rowid P1 P2 * * * 006051 ** Synopsis: r[P2]=PX rowid of P1 006052 ** 006053 ** Store in register P2 an integer which is the key of the table entry that 006054 ** P1 is currently point to. 006055 ** 006056 ** P1 can be either an ordinary table or a virtual table. There used to 006057 ** be a separate OP_VRowid opcode for use with virtual tables, but this 006058 ** one opcode now works for both table types. 006059 */ 006060 case OP_Rowid: { /* out2, ncycle */ 006061 VdbeCursor *pC; 006062 i64 v; 006063 sqlite3_vtab *pVtab; 006064 const sqlite3_module *pModule; 006065 006066 pOut = out2Prerelease(p, pOp); 006067 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006068 pC = p->apCsr[pOp->p1]; 006069 assert( pC!=0 ); 006070 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow ); 006071 if( pC->nullRow ){ 006072 pOut->flags = MEM_Null; 006073 break; 006074 }else if( pC->deferredMoveto ){ 006075 v = pC->movetoTarget; 006076 #ifndef SQLITE_OMIT_VIRTUALTABLE 006077 }else if( pC->eCurType==CURTYPE_VTAB ){ 006078 assert( pC->uc.pVCur!=0 ); 006079 pVtab = pC->uc.pVCur->pVtab; 006080 pModule = pVtab->pModule; 006081 assert( pModule->xRowid ); 006082 rc = pModule->xRowid(pC->uc.pVCur, &v); 006083 sqlite3VtabImportErrmsg(p, pVtab); 006084 if( rc ) goto abort_due_to_error; 006085 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 006086 }else{ 006087 assert( pC->eCurType==CURTYPE_BTREE ); 006088 assert( pC->uc.pCursor!=0 ); 006089 rc = sqlite3VdbeCursorRestore(pC); 006090 if( rc ) goto abort_due_to_error; 006091 if( pC->nullRow ){ 006092 pOut->flags = MEM_Null; 006093 break; 006094 } 006095 v = sqlite3BtreeIntegerKey(pC->uc.pCursor); 006096 } 006097 pOut->u.i = v; 006098 break; 006099 } 006100 006101 /* Opcode: NullRow P1 * * * * 006102 ** 006103 ** Move the cursor P1 to a null row. Any OP_Column operations 006104 ** that occur while the cursor is on the null row will always 006105 ** write a NULL. 006106 ** 006107 ** If cursor P1 is not previously opened, open it now to a special 006108 ** pseudo-cursor that always returns NULL for every column. 006109 */ 006110 case OP_NullRow: { 006111 VdbeCursor *pC; 006112 006113 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006114 pC = p->apCsr[pOp->p1]; 006115 if( pC==0 ){ 006116 /* If the cursor is not already open, create a special kind of 006117 ** pseudo-cursor that always gives null rows. */ 006118 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO); 006119 if( pC==0 ) goto no_mem; 006120 pC->seekResult = 0; 006121 pC->isTable = 1; 006122 pC->noReuse = 1; 006123 pC->uc.pCursor = sqlite3BtreeFakeValidCursor(); 006124 } 006125 pC->nullRow = 1; 006126 pC->cacheStatus = CACHE_STALE; 006127 if( pC->eCurType==CURTYPE_BTREE ){ 006128 assert( pC->uc.pCursor!=0 ); 006129 sqlite3BtreeClearCursor(pC->uc.pCursor); 006130 } 006131 #ifdef SQLITE_DEBUG 006132 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow; 006133 #endif 006134 break; 006135 } 006136 006137 /* Opcode: SeekEnd P1 * * * * 006138 ** 006139 ** Position cursor P1 at the end of the btree for the purpose of 006140 ** appending a new entry onto the btree. 006141 ** 006142 ** It is assumed that the cursor is used only for appending and so 006143 ** if the cursor is valid, then the cursor must already be pointing 006144 ** at the end of the btree and so no changes are made to 006145 ** the cursor. 006146 */ 006147 /* Opcode: Last P1 P2 * * * 006148 ** 006149 ** The next use of the Rowid or Column or Prev instruction for P1 006150 ** will refer to the last entry in the database table or index. 006151 ** If the table or index is empty and P2>0, then jump immediately to P2. 006152 ** If P2 is 0 or if the table or index is not empty, fall through 006153 ** to the following instruction. 006154 ** 006155 ** This opcode leaves the cursor configured to move in reverse order, 006156 ** from the end toward the beginning. In other words, the cursor is 006157 ** configured to use Prev, not Next. 006158 */ 006159 case OP_SeekEnd: /* ncycle */ 006160 case OP_Last: { /* jump0, ncycle */ 006161 VdbeCursor *pC; 006162 BtCursor *pCrsr; 006163 int res; 006164 006165 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006166 pC = p->apCsr[pOp->p1]; 006167 assert( pC!=0 ); 006168 assert( pC->eCurType==CURTYPE_BTREE ); 006169 pCrsr = pC->uc.pCursor; 006170 res = 0; 006171 assert( pCrsr!=0 ); 006172 #ifdef SQLITE_DEBUG 006173 pC->seekOp = pOp->opcode; 006174 #endif 006175 if( pOp->opcode==OP_SeekEnd ){ 006176 assert( pOp->p2==0 ); 006177 pC->seekResult = -1; 006178 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){ 006179 break; 006180 } 006181 } 006182 rc = sqlite3BtreeLast(pCrsr, &res); 006183 pC->nullRow = (u8)res; 006184 pC->deferredMoveto = 0; 006185 pC->cacheStatus = CACHE_STALE; 006186 if( rc ) goto abort_due_to_error; 006187 if( pOp->p2>0 ){ 006188 VdbeBranchTaken(res!=0,2); 006189 if( res ) goto jump_to_p2; 006190 } 006191 break; 006192 } 006193 006194 /* Opcode: IfSizeBetween P1 P2 P3 P4 * 006195 ** 006196 ** Let N be the approximate number of rows in the table or index 006197 ** with cursor P1 and let X be 10*log2(N) if N is positive or -1 006198 ** if N is zero. 006199 ** 006200 ** Jump to P2 if X is in between P3 and P4, inclusive. 006201 */ 006202 case OP_IfSizeBetween: { /* jump */ 006203 VdbeCursor *pC; 006204 BtCursor *pCrsr; 006205 int res; 006206 i64 sz; 006207 006208 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006209 assert( pOp->p4type==P4_INT32 ); 006210 assert( pOp->p3>=-1 && pOp->p3<=640*2 ); 006211 assert( pOp->p4.i>=-1 && pOp->p4.i<=640*2 ); 006212 pC = p->apCsr[pOp->p1]; 006213 assert( pC!=0 ); 006214 pCrsr = pC->uc.pCursor; 006215 assert( pCrsr ); 006216 rc = sqlite3BtreeFirst(pCrsr, &res); 006217 if( rc ) goto abort_due_to_error; 006218 if( res!=0 ){ 006219 sz = -1; /* -Infinity encoding */ 006220 }else{ 006221 sz = sqlite3BtreeRowCountEst(pCrsr); 006222 assert( sz>0 ); 006223 sz = sqlite3LogEst((u64)sz); 006224 } 006225 res = sz>=pOp->p3 && sz<=pOp->p4.i; 006226 VdbeBranchTaken(res!=0,2); 006227 if( res ) goto jump_to_p2; 006228 break; 006229 } 006230 006231 006232 /* Opcode: SorterSort P1 P2 * * * 006233 ** 006234 ** After all records have been inserted into the Sorter object 006235 ** identified by P1, invoke this opcode to actually do the sorting. 006236 ** Jump to P2 if there are no records to be sorted. 006237 ** 006238 ** This opcode is an alias for OP_Sort and OP_Rewind that is used 006239 ** for Sorter objects. 006240 */ 006241 /* Opcode: Sort P1 P2 * * * 006242 ** 006243 ** This opcode does exactly the same thing as OP_Rewind except that 006244 ** it increments an undocumented global variable used for testing. 006245 ** 006246 ** Sorting is accomplished by writing records into a sorting index, 006247 ** then rewinding that index and playing it back from beginning to 006248 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the 006249 ** rewinding so that the global variable will be incremented and 006250 ** regression tests can determine whether or not the optimizer is 006251 ** correctly optimizing out sorts. 006252 */ 006253 case OP_SorterSort: /* jump ncycle */ 006254 case OP_Sort: { /* jump ncycle */ 006255 #ifdef SQLITE_TEST 006256 sqlite3_sort_count++; 006257 sqlite3_search_count--; 006258 #endif 006259 p->aCounter[SQLITE_STMTSTATUS_SORT]++; 006260 /* Fall through into OP_Rewind */ 006261 /* no break */ deliberate_fall_through 006262 } 006263 /* Opcode: Rewind P1 P2 * * * 006264 ** 006265 ** The next use of the Rowid or Column or Next instruction for P1 006266 ** will refer to the first entry in the database table or index. 006267 ** If the table or index is empty, jump immediately to P2. 006268 ** If the table or index is not empty, fall through to the following 006269 ** instruction. 006270 ** 006271 ** If P2 is zero, that is an assertion that the P1 table is never 006272 ** empty and hence the jump will never be taken. 006273 ** 006274 ** This opcode leaves the cursor configured to move in forward order, 006275 ** from the beginning toward the end. In other words, the cursor is 006276 ** configured to use Next, not Prev. 006277 */ 006278 case OP_Rewind: { /* jump0, ncycle */ 006279 VdbeCursor *pC; 006280 BtCursor *pCrsr; 006281 int res; 006282 006283 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006284 assert( pOp->p5==0 ); 006285 assert( pOp->p2>=0 && pOp->p2<p->nOp ); 006286 006287 pC = p->apCsr[pOp->p1]; 006288 assert( pC!=0 ); 006289 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) ); 006290 res = 1; 006291 #ifdef SQLITE_DEBUG 006292 pC->seekOp = OP_Rewind; 006293 #endif 006294 if( isSorter(pC) ){ 006295 rc = sqlite3VdbeSorterRewind(pC, &res); 006296 }else{ 006297 assert( pC->eCurType==CURTYPE_BTREE ); 006298 pCrsr = pC->uc.pCursor; 006299 assert( pCrsr ); 006300 rc = sqlite3BtreeFirst(pCrsr, &res); 006301 pC->deferredMoveto = 0; 006302 pC->cacheStatus = CACHE_STALE; 006303 } 006304 if( rc ) goto abort_due_to_error; 006305 pC->nullRow = (u8)res; 006306 if( pOp->p2>0 ){ 006307 VdbeBranchTaken(res!=0,2); 006308 if( res ) goto jump_to_p2; 006309 } 006310 break; 006311 } 006312 006313 /* Opcode: Next P1 P2 P3 * P5 006314 ** 006315 ** Advance cursor P1 so that it points to the next key/data pair in its 006316 ** table or index. If there are no more key/value pairs then fall through 006317 ** to the following instruction. But if the cursor advance was successful, 006318 ** jump immediately to P2. 006319 ** 006320 ** The Next opcode is only valid following an SeekGT, SeekGE, or 006321 ** OP_Rewind opcode used to position the cursor. Next is not allowed 006322 ** to follow SeekLT, SeekLE, or OP_Last. 006323 ** 006324 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have 006325 ** been opened prior to this opcode or the program will segfault. 006326 ** 006327 ** The P3 value is a hint to the btree implementation. If P3==1, that 006328 ** means P1 is an SQL index and that this instruction could have been 006329 ** omitted if that index had been unique. P3 is usually 0. P3 is 006330 ** always either 0 or 1. 006331 ** 006332 ** If P5 is positive and the jump is taken, then event counter 006333 ** number P5-1 in the prepared statement is incremented. 006334 ** 006335 ** See also: Prev 006336 */ 006337 /* Opcode: Prev P1 P2 P3 * P5 006338 ** 006339 ** Back up cursor P1 so that it points to the previous key/data pair in its 006340 ** table or index. If there is no previous key/value pairs then fall through 006341 ** to the following instruction. But if the cursor backup was successful, 006342 ** jump immediately to P2. 006343 ** 006344 ** 006345 ** The Prev opcode is only valid following an SeekLT, SeekLE, or 006346 ** OP_Last opcode used to position the cursor. Prev is not allowed 006347 ** to follow SeekGT, SeekGE, or OP_Rewind. 006348 ** 006349 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is 006350 ** not open then the behavior is undefined. 006351 ** 006352 ** The P3 value is a hint to the btree implementation. If P3==1, that 006353 ** means P1 is an SQL index and that this instruction could have been 006354 ** omitted if that index had been unique. P3 is usually 0. P3 is 006355 ** always either 0 or 1. 006356 ** 006357 ** If P5 is positive and the jump is taken, then event counter 006358 ** number P5-1 in the prepared statement is incremented. 006359 */ 006360 /* Opcode: SorterNext P1 P2 * * P5 006361 ** 006362 ** This opcode works just like OP_Next except that P1 must be a 006363 ** sorter object for which the OP_SorterSort opcode has been 006364 ** invoked. This opcode advances the cursor to the next sorted 006365 ** record, or jumps to P2 if there are no more sorted records. 006366 */ 006367 case OP_SorterNext: { /* jump */ 006368 VdbeCursor *pC; 006369 006370 pC = p->apCsr[pOp->p1]; 006371 assert( isSorter(pC) ); 006372 rc = sqlite3VdbeSorterNext(db, pC); 006373 goto next_tail; 006374 006375 case OP_Prev: /* jump, ncycle */ 006376 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006377 assert( pOp->p5==0 006378 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006379 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006380 pC = p->apCsr[pOp->p1]; 006381 assert( pC!=0 ); 006382 assert( pC->deferredMoveto==0 ); 006383 assert( pC->eCurType==CURTYPE_BTREE ); 006384 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE 006385 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope 006386 || pC->seekOp==OP_NullRow); 006387 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3); 006388 goto next_tail; 006389 006390 case OP_Next: /* jump, ncycle */ 006391 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006392 assert( pOp->p5==0 006393 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP 006394 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX); 006395 pC = p->apCsr[pOp->p1]; 006396 assert( pC!=0 ); 006397 assert( pC->deferredMoveto==0 ); 006398 assert( pC->eCurType==CURTYPE_BTREE ); 006399 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE 006400 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found 006401 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid 006402 || pC->seekOp==OP_IfNoHope); 006403 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3); 006404 006405 next_tail: 006406 pC->cacheStatus = CACHE_STALE; 006407 VdbeBranchTaken(rc==SQLITE_OK,2); 006408 if( rc==SQLITE_OK ){ 006409 pC->nullRow = 0; 006410 p->aCounter[pOp->p5]++; 006411 #ifdef SQLITE_TEST 006412 sqlite3_search_count++; 006413 #endif 006414 goto jump_to_p2_and_check_for_interrupt; 006415 } 006416 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 006417 rc = SQLITE_OK; 006418 pC->nullRow = 1; 006419 goto check_for_interrupt; 006420 } 006421 006422 /* Opcode: IdxInsert P1 P2 P3 P4 P5 006423 ** Synopsis: key=r[P2] 006424 ** 006425 ** Register P2 holds an SQL index key made using the 006426 ** MakeRecord instructions. This opcode writes that key 006427 ** into the index P1. Data for the entry is nil. 006428 ** 006429 ** If P4 is not zero, then it is the number of values in the unpacked 006430 ** key of reg(P2). In that case, P3 is the index of the first register 006431 ** for the unpacked key. The availability of the unpacked key can sometimes 006432 ** be an optimization. 006433 ** 006434 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer 006435 ** that this insert is likely to be an append. 006436 ** 006437 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is 006438 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear, 006439 ** then the change counter is unchanged. 006440 ** 006441 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might 006442 ** run faster by avoiding an unnecessary seek on cursor P1. However, 006443 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior 006444 ** seeks on the cursor or if the most recent seek used a key equivalent 006445 ** to P2. 006446 ** 006447 ** This instruction only works for indices. The equivalent instruction 006448 ** for tables is OP_Insert. 006449 */ 006450 case OP_IdxInsert: { /* in2 */ 006451 VdbeCursor *pC; 006452 BtreePayload x; 006453 006454 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006455 pC = p->apCsr[pOp->p1]; 006456 sqlite3VdbeIncrWriteCounter(p, pC); 006457 assert( pC!=0 ); 006458 assert( !isSorter(pC) ); 006459 pIn2 = &aMem[pOp->p2]; 006460 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) ); 006461 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++; 006462 assert( pC->eCurType==CURTYPE_BTREE ); 006463 assert( pC->isTable==0 ); 006464 rc = ExpandBlob(pIn2); 006465 if( rc ) goto abort_due_to_error; 006466 x.nKey = pIn2->n; 006467 x.pKey = pIn2->z; 006468 x.aMem = aMem + pOp->p3; 006469 x.nMem = (u16)pOp->p4.i; 006470 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x, 006471 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)), 006472 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0) 006473 ); 006474 assert( pC->deferredMoveto==0 ); 006475 pC->cacheStatus = CACHE_STALE; 006476 if( rc) goto abort_due_to_error; 006477 break; 006478 } 006479 006480 /* Opcode: SorterInsert P1 P2 * * * 006481 ** Synopsis: key=r[P2] 006482 ** 006483 ** Register P2 holds an SQL index key made using the 006484 ** MakeRecord instructions. This opcode writes that key 006485 ** into the sorter P1. Data for the entry is nil. 006486 */ 006487 case OP_SorterInsert: { /* in2 */ 006488 VdbeCursor *pC; 006489 006490 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006491 pC = p->apCsr[pOp->p1]; 006492 sqlite3VdbeIncrWriteCounter(p, pC); 006493 assert( pC!=0 ); 006494 assert( isSorter(pC) ); 006495 pIn2 = &aMem[pOp->p2]; 006496 assert( pIn2->flags & MEM_Blob ); 006497 assert( pC->isTable==0 ); 006498 rc = ExpandBlob(pIn2); 006499 if( rc ) goto abort_due_to_error; 006500 rc = sqlite3VdbeSorterWrite(pC, pIn2); 006501 if( rc) goto abort_due_to_error; 006502 break; 006503 } 006504 006505 /* Opcode: IdxDelete P1 P2 P3 * P5 006506 ** Synopsis: key=r[P2@P3] 006507 ** 006508 ** The content of P3 registers starting at register P2 form 006509 ** an unpacked index key. This opcode removes that entry from the 006510 ** index opened by cursor P1. 006511 ** 006512 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error 006513 ** if no matching index entry is found. This happens when running 006514 ** an UPDATE or DELETE statement and the index entry to be updated 006515 ** or deleted is not found. For some uses of IdxDelete 006516 ** (example: the EXCEPT operator) it does not matter that no matching 006517 ** entry is found. For those cases, P5 is zero. Also, do not raise 006518 ** this (self-correcting and non-critical) error if in writable_schema mode. 006519 */ 006520 case OP_IdxDelete: { 006521 VdbeCursor *pC; 006522 BtCursor *pCrsr; 006523 int res; 006524 UnpackedRecord r; 006525 006526 assert( pOp->p3>0 ); 006527 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 ); 006528 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006529 pC = p->apCsr[pOp->p1]; 006530 assert( pC!=0 ); 006531 assert( pC->eCurType==CURTYPE_BTREE ); 006532 sqlite3VdbeIncrWriteCounter(p, pC); 006533 pCrsr = pC->uc.pCursor; 006534 assert( pCrsr!=0 ); 006535 r.pKeyInfo = pC->pKeyInfo; 006536 r.nField = (u16)pOp->p3; 006537 r.default_rc = 0; 006538 r.aMem = &aMem[pOp->p2]; 006539 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res); 006540 if( rc ) goto abort_due_to_error; 006541 if( res==0 ){ 006542 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE); 006543 if( rc ) goto abort_due_to_error; 006544 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){ 006545 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption"); 006546 goto abort_due_to_error; 006547 } 006548 assert( pC->deferredMoveto==0 ); 006549 pC->cacheStatus = CACHE_STALE; 006550 pC->seekResult = 0; 006551 break; 006552 } 006553 006554 /* Opcode: DeferredSeek P1 * P3 P4 * 006555 ** Synopsis: Move P3 to P1.rowid if needed 006556 ** 006557 ** P1 is an open index cursor and P3 is a cursor on the corresponding 006558 ** table. This opcode does a deferred seek of the P3 table cursor 006559 ** to the row that corresponds to the current row of P1. 006560 ** 006561 ** This is a deferred seek. Nothing actually happens until 006562 ** the cursor is used to read a record. That way, if no reads 006563 ** occur, no unnecessary I/O happens. 006564 ** 006565 ** P4 may be an array of integers (type P4_INTARRAY) containing 006566 ** one entry for each column in the P3 table. If array entry a(i) 006567 ** is non-zero, then reading column a(i)-1 from cursor P3 is 006568 ** equivalent to performing the deferred seek and then reading column i 006569 ** from P1. This information is stored in P3 and used to redirect 006570 ** reads against P3 over to P1, thus possibly avoiding the need to 006571 ** seek and read cursor P3. 006572 */ 006573 /* Opcode: IdxRowid P1 P2 * * * 006574 ** Synopsis: r[P2]=rowid 006575 ** 006576 ** Write into register P2 an integer which is the last entry in the record at 006577 ** the end of the index key pointed to by cursor P1. This integer should be 006578 ** the rowid of the table entry to which this index entry points. 006579 ** 006580 ** See also: Rowid, MakeRecord. 006581 */ 006582 case OP_DeferredSeek: /* ncycle */ 006583 case OP_IdxRowid: { /* out2, ncycle */ 006584 VdbeCursor *pC; /* The P1 index cursor */ 006585 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ 006586 i64 rowid; /* Rowid that P1 current points to */ 006587 006588 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006589 pC = p->apCsr[pOp->p1]; 006590 assert( pC!=0 ); 006591 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) ); 006592 assert( pC->uc.pCursor!=0 ); 006593 assert( pC->isTable==0 || IsNullCursor(pC) ); 006594 assert( pC->deferredMoveto==0 ); 006595 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid ); 006596 006597 /* The IdxRowid and Seek opcodes are combined because of the commonality 006598 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */ 006599 rc = sqlite3VdbeCursorRestore(pC); 006600 006601 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed 006602 ** since it was last positioned and an error (e.g. OOM or an IO error) 006603 ** occurs while trying to reposition it. */ 006604 if( rc!=SQLITE_OK ) goto abort_due_to_error; 006605 006606 if( !pC->nullRow ){ 006607 rowid = 0; /* Not needed. Only used to silence a warning. */ 006608 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); 006609 if( rc!=SQLITE_OK ){ 006610 goto abort_due_to_error; 006611 } 006612 if( pOp->opcode==OP_DeferredSeek ){ 006613 assert( pOp->p3>=0 && pOp->p3<p->nCursor ); 006614 pTabCur = p->apCsr[pOp->p3]; 006615 assert( pTabCur!=0 ); 006616 assert( pTabCur->eCurType==CURTYPE_BTREE ); 006617 assert( pTabCur->uc.pCursor!=0 ); 006618 assert( pTabCur->isTable ); 006619 pTabCur->nullRow = 0; 006620 pTabCur->movetoTarget = rowid; 006621 pTabCur->deferredMoveto = 1; 006622 pTabCur->cacheStatus = CACHE_STALE; 006623 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 ); 006624 assert( !pTabCur->isEphemeral ); 006625 pTabCur->ub.aAltMap = pOp->p4.ai; 006626 assert( !pC->isEphemeral ); 006627 pTabCur->pAltCursor = pC; 006628 }else{ 006629 pOut = out2Prerelease(p, pOp); 006630 pOut->u.i = rowid; 006631 } 006632 }else{ 006633 assert( pOp->opcode==OP_IdxRowid ); 006634 sqlite3VdbeMemSetNull(&aMem[pOp->p2]); 006635 } 006636 break; 006637 } 006638 006639 /* Opcode: FinishSeek P1 * * * * 006640 ** 006641 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that 006642 ** seek operation now, without further delay. If the cursor seek has 006643 ** already occurred, this instruction is a no-op. 006644 */ 006645 case OP_FinishSeek: { /* ncycle */ 006646 VdbeCursor *pC; /* The P1 index cursor */ 006647 006648 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006649 pC = p->apCsr[pOp->p1]; 006650 if( pC->deferredMoveto ){ 006651 rc = sqlite3VdbeFinishMoveto(pC); 006652 if( rc ) goto abort_due_to_error; 006653 } 006654 break; 006655 } 006656 006657 /* Opcode: IdxGE P1 P2 P3 P4 * 006658 ** Synopsis: key=r[P3@P4] 006659 ** 006660 ** The P4 register values beginning with P3 form an unpacked index 006661 ** key that omits the PRIMARY KEY. Compare this key value against the index 006662 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006663 ** fields at the end. 006664 ** 006665 ** If the P1 index entry is greater than or equal to the key value 006666 ** then jump to P2. Otherwise fall through to the next instruction. 006667 */ 006668 /* Opcode: IdxGT P1 P2 P3 P4 * 006669 ** Synopsis: key=r[P3@P4] 006670 ** 006671 ** The P4 register values beginning with P3 form an unpacked index 006672 ** key that omits the PRIMARY KEY. Compare this key value against the index 006673 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 006674 ** fields at the end. 006675 ** 006676 ** If the P1 index entry is greater than the key value 006677 ** then jump to P2. Otherwise fall through to the next instruction. 006678 */ 006679 /* Opcode: IdxLT P1 P2 P3 P4 * 006680 ** Synopsis: key=r[P3@P4] 006681 ** 006682 ** The P4 register values beginning with P3 form an unpacked index 006683 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006684 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006685 ** ROWID on the P1 index. 006686 ** 006687 ** If the P1 index entry is less than the key value then jump to P2. 006688 ** Otherwise fall through to the next instruction. 006689 */ 006690 /* Opcode: IdxLE P1 P2 P3 P4 * 006691 ** Synopsis: key=r[P3@P4] 006692 ** 006693 ** The P4 register values beginning with P3 form an unpacked index 006694 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against 006695 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or 006696 ** ROWID on the P1 index. 006697 ** 006698 ** If the P1 index entry is less than or equal to the key value then jump 006699 ** to P2. Otherwise fall through to the next instruction. 006700 */ 006701 case OP_IdxLE: /* jump, ncycle */ 006702 case OP_IdxGT: /* jump, ncycle */ 006703 case OP_IdxLT: /* jump, ncycle */ 006704 case OP_IdxGE: { /* jump, ncycle */ 006705 VdbeCursor *pC; 006706 int res; 006707 UnpackedRecord r; 006708 006709 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006710 pC = p->apCsr[pOp->p1]; 006711 assert( pC!=0 ); 006712 assert( pC->isOrdered ); 006713 assert( pC->eCurType==CURTYPE_BTREE ); 006714 assert( pC->uc.pCursor!=0); 006715 assert( pC->deferredMoveto==0 ); 006716 assert( pOp->p4type==P4_INT32 ); 006717 r.pKeyInfo = pC->pKeyInfo; 006718 r.nField = (u16)pOp->p4.i; 006719 if( pOp->opcode<OP_IdxLT ){ 006720 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT ); 006721 r.default_rc = -1; 006722 }else{ 006723 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT ); 006724 r.default_rc = 0; 006725 } 006726 r.aMem = &aMem[pOp->p3]; 006727 #ifdef SQLITE_DEBUG 006728 { 006729 int i; 006730 for(i=0; i<r.nField; i++){ 006731 assert( memIsValid(&r.aMem[i]) ); 006732 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]); 006733 } 006734 } 006735 #endif 006736 006737 /* Inlined version of sqlite3VdbeIdxKeyCompare() */ 006738 { 006739 i64 nCellKey = 0; 006740 BtCursor *pCur; 006741 Mem m; 006742 006743 assert( pC->eCurType==CURTYPE_BTREE ); 006744 pCur = pC->uc.pCursor; 006745 assert( sqlite3BtreeCursorIsValid(pCur) ); 006746 nCellKey = sqlite3BtreePayloadSize(pCur); 006747 /* nCellKey will always be between 0 and 0xffffffff because of the way 006748 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ 006749 if( nCellKey<=0 || nCellKey>0x7fffffff ){ 006750 rc = SQLITE_CORRUPT_BKPT; 006751 goto abort_due_to_error; 006752 } 006753 sqlite3VdbeMemInit(&m, db, 0); 006754 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m); 006755 if( rc ) goto abort_due_to_error; 006756 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0); 006757 sqlite3VdbeMemReleaseMalloc(&m); 006758 } 006759 /* End of inlined sqlite3VdbeIdxKeyCompare() */ 006760 006761 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) ); 006762 if( (pOp->opcode&1)==(OP_IdxLT&1) ){ 006763 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT ); 006764 res = -res; 006765 }else{ 006766 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT ); 006767 res++; 006768 } 006769 VdbeBranchTaken(res>0,2); 006770 assert( rc==SQLITE_OK ); 006771 if( res>0 ) goto jump_to_p2; 006772 break; 006773 } 006774 006775 /* Opcode: Destroy P1 P2 P3 * * 006776 ** 006777 ** Delete an entire database table or index whose root page in the database 006778 ** file is given by P1. 006779 ** 006780 ** The table being destroyed is in the main database file if P3==0. If 006781 ** P3==1 then the table to be destroyed is in the auxiliary database file 006782 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006783 ** 006784 ** If AUTOVACUUM is enabled then it is possible that another root page 006785 ** might be moved into the newly deleted root page in order to keep all 006786 ** root pages contiguous at the beginning of the database. The former 006787 ** value of the root page that moved - its value before the move occurred - 006788 ** is stored in register P2. If no page movement was required (because the 006789 ** table being dropped was already the last one in the database) then a 006790 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero 006791 ** is stored in register P2. 006792 ** 006793 ** This opcode throws an error if there are any active reader VMs when 006794 ** it is invoked. This is done to avoid the difficulty associated with 006795 ** updating existing cursors when a root page is moved in an AUTOVACUUM 006796 ** database. This error is thrown even if the database is not an AUTOVACUUM 006797 ** db in order to avoid introducing an incompatibility between autovacuum 006798 ** and non-autovacuum modes. 006799 ** 006800 ** See also: Clear 006801 */ 006802 case OP_Destroy: { /* out2 */ 006803 int iMoved; 006804 int iDb; 006805 006806 sqlite3VdbeIncrWriteCounter(p, 0); 006807 assert( p->readOnly==0 ); 006808 assert( pOp->p1>1 ); 006809 pOut = out2Prerelease(p, pOp); 006810 pOut->flags = MEM_Null; 006811 if( db->nVdbeRead > db->nVDestroy+1 ){ 006812 rc = SQLITE_LOCKED; 006813 p->errorAction = OE_Abort; 006814 goto abort_due_to_error; 006815 }else{ 006816 iDb = pOp->p3; 006817 assert( DbMaskTest(p->btreeMask, iDb) ); 006818 iMoved = 0; /* Not needed. Only to silence a warning. */ 006819 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved); 006820 pOut->flags = MEM_Int; 006821 pOut->u.i = iMoved; 006822 if( rc ) goto abort_due_to_error; 006823 #ifndef SQLITE_OMIT_AUTOVACUUM 006824 if( iMoved!=0 ){ 006825 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1); 006826 /* All OP_Destroy operations occur on the same btree */ 006827 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 ); 006828 resetSchemaOnFault = iDb+1; 006829 } 006830 #endif 006831 } 006832 break; 006833 } 006834 006835 /* Opcode: Clear P1 P2 P3 006836 ** 006837 ** Delete all contents of the database table or index whose root page 006838 ** in the database file is given by P1. But, unlike Destroy, do not 006839 ** remove the table or index from the database file. 006840 ** 006841 ** The table being cleared is in the main database file if P2==0. If 006842 ** P2==1 then the table to be cleared is in the auxiliary database file 006843 ** that is used to store tables create using CREATE TEMPORARY TABLE. 006844 ** 006845 ** If the P3 value is non-zero, then the row change count is incremented 006846 ** by the number of rows in the table being cleared. If P3 is greater 006847 ** than zero, then the value stored in register P3 is also incremented 006848 ** by the number of rows in the table being cleared. 006849 ** 006850 ** See also: Destroy 006851 */ 006852 case OP_Clear: { 006853 i64 nChange; 006854 006855 sqlite3VdbeIncrWriteCounter(p, 0); 006856 nChange = 0; 006857 assert( p->readOnly==0 ); 006858 assert( DbMaskTest(p->btreeMask, pOp->p2) ); 006859 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange); 006860 if( pOp->p3 ){ 006861 p->nChange += nChange; 006862 if( pOp->p3>0 ){ 006863 assert( memIsValid(&aMem[pOp->p3]) ); 006864 memAboutToChange(p, &aMem[pOp->p3]); 006865 aMem[pOp->p3].u.i += nChange; 006866 } 006867 } 006868 if( rc ) goto abort_due_to_error; 006869 break; 006870 } 006871 006872 /* Opcode: ResetSorter P1 * * * * 006873 ** 006874 ** Delete all contents from the ephemeral table or sorter 006875 ** that is open on cursor P1. 006876 ** 006877 ** This opcode only works for cursors used for sorting and 006878 ** opened with OP_OpenEphemeral or OP_SorterOpen. 006879 */ 006880 case OP_ResetSorter: { 006881 VdbeCursor *pC; 006882 006883 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 006884 pC = p->apCsr[pOp->p1]; 006885 assert( pC!=0 ); 006886 if( isSorter(pC) ){ 006887 sqlite3VdbeSorterReset(db, pC->uc.pSorter); 006888 }else{ 006889 assert( pC->eCurType==CURTYPE_BTREE ); 006890 assert( pC->isEphemeral ); 006891 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor); 006892 if( rc ) goto abort_due_to_error; 006893 } 006894 break; 006895 } 006896 006897 /* Opcode: CreateBtree P1 P2 P3 * * 006898 ** Synopsis: r[P2]=root iDb=P1 flags=P3 006899 ** 006900 ** Allocate a new b-tree in the main database file if P1==0 or in the 006901 ** TEMP database file if P1==1 or in an attached database if 006902 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table 006903 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table. 006904 ** The root page number of the new b-tree is stored in register P2. 006905 */ 006906 case OP_CreateBtree: { /* out2 */ 006907 Pgno pgno; 006908 Db *pDb; 006909 006910 sqlite3VdbeIncrWriteCounter(p, 0); 006911 pOut = out2Prerelease(p, pOp); 006912 pgno = 0; 006913 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY ); 006914 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 006915 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 006916 assert( p->readOnly==0 ); 006917 pDb = &db->aDb[pOp->p1]; 006918 assert( pDb->pBt!=0 ); 006919 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3); 006920 if( rc ) goto abort_due_to_error; 006921 pOut->u.i = pgno; 006922 break; 006923 } 006924 006925 /* Opcode: SqlExec P1 P2 * P4 * 006926 ** 006927 ** Run the SQL statement or statements specified in the P4 string. 006928 ** 006929 ** The P1 parameter is a bitmask of options: 006930 ** 006931 ** 0x0001 Disable Auth and Trace callbacks while the statements 006932 ** in P4 are running. 006933 ** 006934 ** 0x0002 Set db->nAnalysisLimit to P2 while the statements in 006935 ** P4 are running. 006936 ** 006937 */ 006938 case OP_SqlExec: { 006939 char *zErr; 006940 #ifndef SQLITE_OMIT_AUTHORIZATION 006941 sqlite3_xauth xAuth; 006942 #endif 006943 u8 mTrace; 006944 int savedAnalysisLimit; 006945 006946 sqlite3VdbeIncrWriteCounter(p, 0); 006947 db->nSqlExec++; 006948 zErr = 0; 006949 #ifndef SQLITE_OMIT_AUTHORIZATION 006950 xAuth = db->xAuth; 006951 #endif 006952 mTrace = db->mTrace; 006953 savedAnalysisLimit = db->nAnalysisLimit; 006954 if( pOp->p1 & 0x0001 ){ 006955 #ifndef SQLITE_OMIT_AUTHORIZATION 006956 db->xAuth = 0; 006957 #endif 006958 db->mTrace = 0; 006959 } 006960 if( pOp->p1 & 0x0002 ){ 006961 db->nAnalysisLimit = pOp->p2; 006962 } 006963 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr); 006964 db->nSqlExec--; 006965 #ifndef SQLITE_OMIT_AUTHORIZATION 006966 db->xAuth = xAuth; 006967 #endif 006968 db->mTrace = mTrace; 006969 db->nAnalysisLimit = savedAnalysisLimit; 006970 if( zErr || rc ){ 006971 sqlite3VdbeError(p, "%s", zErr); 006972 sqlite3_free(zErr); 006973 if( rc==SQLITE_NOMEM ) goto no_mem; 006974 goto abort_due_to_error; 006975 } 006976 break; 006977 } 006978 006979 /* Opcode: ParseSchema P1 * * P4 * 006980 ** 006981 ** Read and parse all entries from the schema table of database P1 006982 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the 006983 ** entire schema for P1 is reparsed. 006984 ** 006985 ** This opcode invokes the parser to create a new virtual machine, 006986 ** then runs the new virtual machine. It is thus a re-entrant opcode. 006987 */ 006988 case OP_ParseSchema: { 006989 int iDb; 006990 const char *zSchema; 006991 char *zSql; 006992 InitData initData; 006993 006994 /* Any prepared statement that invokes this opcode will hold mutexes 006995 ** on every btree. This is a prerequisite for invoking 006996 ** sqlite3InitCallback(). 006997 */ 006998 #ifdef SQLITE_DEBUG 006999 for(iDb=0; iDb<db->nDb; iDb++){ 007000 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) ); 007001 } 007002 #endif 007003 007004 iDb = pOp->p1; 007005 assert( iDb>=0 && iDb<db->nDb ); 007006 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) 007007 || db->mallocFailed 007008 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) ); 007009 007010 #ifndef SQLITE_OMIT_ALTERTABLE 007011 if( pOp->p4.z==0 ){ 007012 sqlite3SchemaClear(db->aDb[iDb].pSchema); 007013 db->mDbFlags &= ~DBFLAG_SchemaKnownOk; 007014 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5); 007015 db->mDbFlags |= DBFLAG_SchemaChange; 007016 p->expired = 0; 007017 }else 007018 #endif 007019 { 007020 zSchema = LEGACY_SCHEMA_TABLE; 007021 initData.db = db; 007022 initData.iDb = iDb; 007023 initData.pzErrMsg = &p->zErrMsg; 007024 initData.mInitFlags = 0; 007025 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt); 007026 zSql = sqlite3MPrintf(db, 007027 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid", 007028 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z); 007029 if( zSql==0 ){ 007030 rc = SQLITE_NOMEM_BKPT; 007031 }else{ 007032 assert( db->init.busy==0 ); 007033 db->init.busy = 1; 007034 initData.rc = SQLITE_OK; 007035 initData.nInitRow = 0; 007036 assert( !db->mallocFailed ); 007037 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0); 007038 if( rc==SQLITE_OK ) rc = initData.rc; 007039 if( rc==SQLITE_OK && initData.nInitRow==0 ){ 007040 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse 007041 ** at least one SQL statement. Any less than that indicates that 007042 ** the sqlite_schema table is corrupt. */ 007043 rc = SQLITE_CORRUPT_BKPT; 007044 } 007045 sqlite3DbFreeNN(db, zSql); 007046 db->init.busy = 0; 007047 } 007048 } 007049 if( rc ){ 007050 sqlite3ResetAllSchemasOfConnection(db); 007051 if( rc==SQLITE_NOMEM ){ 007052 goto no_mem; 007053 } 007054 goto abort_due_to_error; 007055 } 007056 break; 007057 } 007058 007059 #if !defined(SQLITE_OMIT_ANALYZE) 007060 /* Opcode: LoadAnalysis P1 * * * * 007061 ** 007062 ** Read the sqlite_stat1 table for database P1 and load the content 007063 ** of that table into the internal index hash table. This will cause 007064 ** the analysis to be used when preparing all subsequent queries. 007065 */ 007066 case OP_LoadAnalysis: { 007067 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007068 rc = sqlite3AnalysisLoad(db, pOp->p1); 007069 if( rc ) goto abort_due_to_error; 007070 break; 007071 } 007072 #endif /* !defined(SQLITE_OMIT_ANALYZE) */ 007073 007074 /* Opcode: DropTable P1 * * P4 * 007075 ** 007076 ** Remove the internal (in-memory) data structures that describe 007077 ** the table named P4 in database P1. This is called after a table 007078 ** is dropped from disk (using the Destroy opcode) in order to keep 007079 ** the internal representation of the 007080 ** schema consistent with what is on disk. 007081 */ 007082 case OP_DropTable: { 007083 sqlite3VdbeIncrWriteCounter(p, 0); 007084 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z); 007085 break; 007086 } 007087 007088 /* Opcode: DropIndex P1 * * P4 * 007089 ** 007090 ** Remove the internal (in-memory) data structures that describe 007091 ** the index named P4 in database P1. This is called after an index 007092 ** is dropped from disk (using the Destroy opcode) 007093 ** in order to keep the internal representation of the 007094 ** schema consistent with what is on disk. 007095 */ 007096 case OP_DropIndex: { 007097 sqlite3VdbeIncrWriteCounter(p, 0); 007098 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z); 007099 break; 007100 } 007101 007102 /* Opcode: DropTrigger P1 * * P4 * 007103 ** 007104 ** Remove the internal (in-memory) data structures that describe 007105 ** the trigger named P4 in database P1. This is called after a trigger 007106 ** is dropped from disk (using the Destroy opcode) in order to keep 007107 ** the internal representation of the 007108 ** schema consistent with what is on disk. 007109 */ 007110 case OP_DropTrigger: { 007111 sqlite3VdbeIncrWriteCounter(p, 0); 007112 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z); 007113 break; 007114 } 007115 007116 007117 #ifndef SQLITE_OMIT_INTEGRITY_CHECK 007118 /* Opcode: IntegrityCk P1 P2 P3 P4 P5 007119 ** 007120 ** Do an analysis of the currently open database. Store in 007121 ** register (P1+1) the text of an error message describing any problems. 007122 ** If no problems are found, store a NULL in register (P1+1). 007123 ** 007124 ** The register (P1) contains one less than the maximum number of allowed 007125 ** errors. At most reg(P1) errors will be reported. 007126 ** In other words, the analysis stops as soon as reg(P1) errors are 007127 ** seen. Reg(P1) is updated with the number of errors remaining. 007128 ** 007129 ** The root page numbers of all tables in the database are integers 007130 ** stored in P4_INTARRAY argument. 007131 ** 007132 ** If P5 is not zero, the check is done on the auxiliary database 007133 ** file, not the main database file. 007134 ** 007135 ** This opcode is used to implement the integrity_check pragma. 007136 */ 007137 case OP_IntegrityCk: { 007138 int nRoot; /* Number of tables to check. (Number of root pages.) */ 007139 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */ 007140 int nErr; /* Number of errors reported */ 007141 char *z; /* Text of the error report */ 007142 Mem *pnErr; /* Register keeping track of errors remaining */ 007143 007144 assert( p->bIsReader ); 007145 assert( pOp->p4type==P4_INTARRAY ); 007146 nRoot = pOp->p2; 007147 aRoot = pOp->p4.ai; 007148 assert( nRoot>0 ); 007149 assert( aRoot!=0 ); 007150 assert( aRoot[0]==(Pgno)nRoot ); 007151 assert( pOp->p1>0 && (pOp->p1+1)<=(p->nMem+1 - p->nCursor) ); 007152 pnErr = &aMem[pOp->p1]; 007153 assert( (pnErr->flags & MEM_Int)!=0 ); 007154 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 ); 007155 pIn1 = &aMem[pOp->p1+1]; 007156 assert( pOp->p5<db->nDb ); 007157 assert( DbMaskTest(p->btreeMask, pOp->p5) ); 007158 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], 007159 &aMem[pOp->p3], nRoot, (int)pnErr->u.i+1, &nErr, &z); 007160 sqlite3VdbeMemSetNull(pIn1); 007161 if( nErr==0 ){ 007162 assert( z==0 ); 007163 }else if( rc ){ 007164 sqlite3_free(z); 007165 goto abort_due_to_error; 007166 }else{ 007167 pnErr->u.i -= nErr-1; 007168 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free); 007169 } 007170 UPDATE_MAX_BLOBSIZE(pIn1); 007171 sqlite3VdbeChangeEncoding(pIn1, encoding); 007172 goto check_for_interrupt; 007173 } 007174 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ 007175 007176 /* Opcode: RowSetAdd P1 P2 * * * 007177 ** Synopsis: rowset(P1)=r[P2] 007178 ** 007179 ** Insert the integer value held by register P2 into a RowSet object 007180 ** held in register P1. 007181 ** 007182 ** An assertion fails if P2 is not an integer. 007183 */ 007184 case OP_RowSetAdd: { /* in1, in2 */ 007185 pIn1 = &aMem[pOp->p1]; 007186 pIn2 = &aMem[pOp->p2]; 007187 assert( (pIn2->flags & MEM_Int)!=0 ); 007188 if( (pIn1->flags & MEM_Blob)==0 ){ 007189 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007190 } 007191 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007192 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i); 007193 break; 007194 } 007195 007196 /* Opcode: RowSetRead P1 P2 P3 * * 007197 ** Synopsis: r[P3]=rowset(P1) 007198 ** 007199 ** Extract the smallest value from the RowSet object in P1 007200 ** and put that value into register P3. 007201 ** Or, if RowSet object P1 is initially empty, leave P3 007202 ** unchanged and jump to instruction P2. 007203 */ 007204 case OP_RowSetRead: { /* jump, in1, out3 */ 007205 i64 val; 007206 007207 pIn1 = &aMem[pOp->p1]; 007208 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) ); 007209 if( (pIn1->flags & MEM_Blob)==0 007210 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0 007211 ){ 007212 /* The boolean index is empty */ 007213 sqlite3VdbeMemSetNull(pIn1); 007214 VdbeBranchTaken(1,2); 007215 goto jump_to_p2_and_check_for_interrupt; 007216 }else{ 007217 /* A value was pulled from the index */ 007218 VdbeBranchTaken(0,2); 007219 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val); 007220 } 007221 goto check_for_interrupt; 007222 } 007223 007224 /* Opcode: RowSetTest P1 P2 P3 P4 007225 ** Synopsis: if r[P3] in rowset(P1) goto P2 007226 ** 007227 ** Register P3 is assumed to hold a 64-bit integer value. If register P1 007228 ** contains a RowSet object and that RowSet object contains 007229 ** the value held in P3, jump to register P2. Otherwise, insert the 007230 ** integer in P3 into the RowSet and continue on to the 007231 ** next opcode. 007232 ** 007233 ** The RowSet object is optimized for the case where sets of integers 007234 ** are inserted in distinct phases, which each set contains no duplicates. 007235 ** Each set is identified by a unique P4 value. The first set 007236 ** must have P4==0, the final set must have P4==-1, and for all other sets 007237 ** must have P4>0. 007238 ** 007239 ** This allows optimizations: (a) when P4==0 there is no need to test 007240 ** the RowSet object for P3, as it is guaranteed not to contain it, 007241 ** (b) when P4==-1 there is no need to insert the value, as it will 007242 ** never be tested for, and (c) when a value that is part of set X is 007243 ** inserted, there is no need to search to see if the same value was 007244 ** previously inserted as part of set X (only if it was previously 007245 ** inserted as part of some other set). 007246 */ 007247 case OP_RowSetTest: { /* jump, in1, in3 */ 007248 int iSet; 007249 int exists; 007250 007251 pIn1 = &aMem[pOp->p1]; 007252 pIn3 = &aMem[pOp->p3]; 007253 iSet = pOp->p4.i; 007254 assert( pIn3->flags&MEM_Int ); 007255 007256 /* If there is anything other than a rowset object in memory cell P1, 007257 ** delete it now and initialize P1 with an empty rowset 007258 */ 007259 if( (pIn1->flags & MEM_Blob)==0 ){ 007260 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem; 007261 } 007262 assert( sqlite3VdbeMemIsRowSet(pIn1) ); 007263 assert( pOp->p4type==P4_INT32 ); 007264 assert( iSet==-1 || iSet>=0 ); 007265 if( iSet ){ 007266 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i); 007267 VdbeBranchTaken(exists!=0,2); 007268 if( exists ) goto jump_to_p2; 007269 } 007270 if( iSet>=0 ){ 007271 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i); 007272 } 007273 break; 007274 } 007275 007276 007277 #ifndef SQLITE_OMIT_TRIGGER 007278 007279 /* Opcode: Program P1 P2 P3 P4 P5 007280 ** 007281 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 007282 ** 007283 ** P1 contains the address of the memory cell that contains the first memory 007284 ** cell in an array of values used as arguments to the sub-program. P2 007285 ** contains the address to jump to if the sub-program throws an IGNORE 007286 ** exception using the RAISE() function. P2 might be zero, if there is 007287 ** no possibility that an IGNORE exception will be raised. 007288 ** Register P3 contains the address 007289 ** of a memory cell in this (the parent) VM that is used to allocate the 007290 ** memory required by the sub-vdbe at runtime. 007291 ** 007292 ** P4 is a pointer to the VM containing the trigger program. 007293 ** 007294 ** If P5 is non-zero, then recursive program invocation is enabled. 007295 */ 007296 case OP_Program: { /* jump0 */ 007297 int nMem; /* Number of memory registers for sub-program */ 007298 int nByte; /* Bytes of runtime space required for sub-program */ 007299 Mem *pRt; /* Register to allocate runtime space */ 007300 Mem *pMem; /* Used to iterate through memory cells */ 007301 Mem *pEnd; /* Last memory cell in new array */ 007302 VdbeFrame *pFrame; /* New vdbe frame to execute in */ 007303 SubProgram *pProgram; /* Sub-program to execute */ 007304 void *t; /* Token identifying trigger */ 007305 007306 pProgram = pOp->p4.pProgram; 007307 pRt = &aMem[pOp->p3]; 007308 assert( pProgram->nOp>0 ); 007309 007310 /* If the p5 flag is clear, then recursive invocation of triggers is 007311 ** disabled for backwards compatibility (p5 is set if this sub-program 007312 ** is really a trigger, not a foreign key action, and the flag set 007313 ** and cleared by the "PRAGMA recursive_triggers" command is clear). 007314 ** 007315 ** It is recursive invocation of triggers, at the SQL level, that is 007316 ** disabled. In some cases a single trigger may generate more than one 007317 ** SubProgram (if the trigger may be executed with more than one different 007318 ** ON CONFLICT algorithm). SubProgram structures associated with a 007319 ** single trigger all have the same value for the SubProgram.token 007320 ** variable. */ 007321 if( pOp->p5 ){ 007322 t = pProgram->token; 007323 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent); 007324 if( pFrame ) break; 007325 } 007326 007327 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){ 007328 rc = SQLITE_ERROR; 007329 sqlite3VdbeError(p, "too many levels of trigger recursion"); 007330 goto abort_due_to_error; 007331 } 007332 007333 /* Register pRt is used to store the memory required to save the state 007334 ** of the current program, and the memory required at runtime to execute 007335 ** the trigger program. If this trigger has been fired before, then pRt 007336 ** is already allocated. Otherwise, it must be initialized. */ 007337 if( (pRt->flags&MEM_Blob)==0 ){ 007338 /* SubProgram.nMem is set to the number of memory cells used by the 007339 ** program stored in SubProgram.aOp. As well as these, one memory 007340 ** cell is required for each cursor used by the program. Set local 007341 ** variable nMem (and later, VdbeFrame.nChildMem) to this value. 007342 */ 007343 nMem = pProgram->nMem + pProgram->nCsr; 007344 assert( nMem>0 ); 007345 if( pProgram->nCsr==0 ) nMem++; 007346 nByte = ROUND8(sizeof(VdbeFrame)) 007347 + nMem * sizeof(Mem) 007348 + pProgram->nCsr * sizeof(VdbeCursor*) 007349 + (pProgram->nOp + 7)/8; 007350 pFrame = sqlite3DbMallocZero(db, nByte); 007351 if( !pFrame ){ 007352 goto no_mem; 007353 } 007354 sqlite3VdbeMemRelease(pRt); 007355 pRt->flags = MEM_Blob|MEM_Dyn; 007356 pRt->z = (char*)pFrame; 007357 pRt->n = nByte; 007358 pRt->xDel = sqlite3VdbeFrameMemDel; 007359 007360 pFrame->v = p; 007361 pFrame->nChildMem = nMem; 007362 pFrame->nChildCsr = pProgram->nCsr; 007363 pFrame->pc = (int)(pOp - aOp); 007364 pFrame->aMem = p->aMem; 007365 pFrame->nMem = p->nMem; 007366 pFrame->apCsr = p->apCsr; 007367 pFrame->nCursor = p->nCursor; 007368 pFrame->aOp = p->aOp; 007369 pFrame->nOp = p->nOp; 007370 pFrame->token = pProgram->token; 007371 #ifdef SQLITE_DEBUG 007372 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC; 007373 #endif 007374 007375 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem]; 007376 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){ 007377 pMem->flags = MEM_Undefined; 007378 pMem->db = db; 007379 } 007380 }else{ 007381 pFrame = (VdbeFrame*)pRt->z; 007382 assert( pRt->xDel==sqlite3VdbeFrameMemDel ); 007383 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 007384 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) ); 007385 assert( pProgram->nCsr==pFrame->nChildCsr ); 007386 assert( (int)(pOp - aOp)==pFrame->pc ); 007387 } 007388 007389 p->nFrame++; 007390 pFrame->pParent = p->pFrame; 007391 pFrame->lastRowid = db->lastRowid; 007392 pFrame->nChange = p->nChange; 007393 pFrame->nDbChange = p->db->nChange; 007394 assert( pFrame->pAuxData==0 ); 007395 pFrame->pAuxData = p->pAuxData; 007396 p->pAuxData = 0; 007397 p->nChange = 0; 007398 p->pFrame = pFrame; 007399 p->aMem = aMem = VdbeFrameMem(pFrame); 007400 p->nMem = pFrame->nChildMem; 007401 p->nCursor = (u16)pFrame->nChildCsr; 007402 p->apCsr = (VdbeCursor **)&aMem[p->nMem]; 007403 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr]; 007404 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8); 007405 p->aOp = aOp = pProgram->aOp; 007406 p->nOp = pProgram->nOp; 007407 #ifdef SQLITE_DEBUG 007408 /* Verify that second and subsequent executions of the same trigger do not 007409 ** try to reuse register values from the first use. */ 007410 { 007411 int i; 007412 for(i=0; i<p->nMem; i++){ 007413 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */ 007414 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */ 007415 } 007416 } 007417 #endif 007418 pOp = &aOp[-1]; 007419 goto check_for_interrupt; 007420 } 007421 007422 /* Opcode: Param P1 P2 * * * 007423 ** 007424 ** This opcode is only ever present in sub-programs called via the 007425 ** OP_Program instruction. Copy a value currently stored in a memory 007426 ** cell of the calling (parent) frame to cell P2 in the current frames 007427 ** address space. This is used by trigger programs to access the new.* 007428 ** and old.* values. 007429 ** 007430 ** The address of the cell in the parent frame is determined by adding 007431 ** the value of the P1 argument to the value of the P1 argument to the 007432 ** calling OP_Program instruction. 007433 */ 007434 case OP_Param: { /* out2 */ 007435 VdbeFrame *pFrame; 007436 Mem *pIn; 007437 pOut = out2Prerelease(p, pOp); 007438 pFrame = p->pFrame; 007439 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1]; 007440 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem); 007441 break; 007442 } 007443 007444 #endif /* #ifndef SQLITE_OMIT_TRIGGER */ 007445 007446 #ifndef SQLITE_OMIT_FOREIGN_KEY 007447 /* Opcode: FkCounter P1 P2 * * * 007448 ** Synopsis: fkctr[P1]+=P2 007449 ** 007450 ** Increment a "constraint counter" by P2 (P2 may be negative or positive). 007451 ** If P1 is non-zero, the database constraint counter is incremented 007452 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 007453 ** statement counter is incremented (immediate foreign key constraints). 007454 */ 007455 case OP_FkCounter: { 007456 if( db->flags & SQLITE_DeferFKs ){ 007457 db->nDeferredImmCons += pOp->p2; 007458 }else if( pOp->p1 ){ 007459 db->nDeferredCons += pOp->p2; 007460 }else{ 007461 p->nFkConstraint += pOp->p2; 007462 } 007463 break; 007464 } 007465 007466 /* Opcode: FkIfZero P1 P2 * * * 007467 ** Synopsis: if fkctr[P1]==0 goto P2 007468 ** 007469 ** This opcode tests if a foreign key constraint-counter is currently zero. 007470 ** If so, jump to instruction P2. Otherwise, fall through to the next 007471 ** instruction. 007472 ** 007473 ** If P1 is non-zero, then the jump is taken if the database constraint-counter 007474 ** is zero (the one that counts deferred constraint violations). If P1 is 007475 ** zero, the jump is taken if the statement constraint-counter is zero 007476 ** (immediate foreign key constraint violations). 007477 */ 007478 case OP_FkIfZero: { /* jump */ 007479 if( pOp->p1 ){ 007480 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2); 007481 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007482 }else{ 007483 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2); 007484 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2; 007485 } 007486 break; 007487 } 007488 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ 007489 007490 #ifndef SQLITE_OMIT_AUTOINCREMENT 007491 /* Opcode: MemMax P1 P2 * * * 007492 ** Synopsis: r[P1]=max(r[P1],r[P2]) 007493 ** 007494 ** P1 is a register in the root frame of this VM (the root frame is 007495 ** different from the current frame if this instruction is being executed 007496 ** within a sub-program). Set the value of register P1 to the maximum of 007497 ** its current value and the value in register P2. 007498 ** 007499 ** This instruction throws an error if the memory cell is not initially 007500 ** an integer. 007501 */ 007502 case OP_MemMax: { /* in2 */ 007503 VdbeFrame *pFrame; 007504 if( p->pFrame ){ 007505 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); 007506 pIn1 = &pFrame->aMem[pOp->p1]; 007507 }else{ 007508 pIn1 = &aMem[pOp->p1]; 007509 } 007510 assert( memIsValid(pIn1) ); 007511 sqlite3VdbeMemIntegerify(pIn1); 007512 pIn2 = &aMem[pOp->p2]; 007513 sqlite3VdbeMemIntegerify(pIn2); 007514 if( pIn1->u.i<pIn2->u.i){ 007515 pIn1->u.i = pIn2->u.i; 007516 } 007517 break; 007518 } 007519 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 007520 007521 /* Opcode: IfPos P1 P2 P3 * * 007522 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 007523 ** 007524 ** Register P1 must contain an integer. 007525 ** If the value of register P1 is 1 or greater, subtract P3 from the 007526 ** value in P1 and jump to P2. 007527 ** 007528 ** If the initial value of register P1 is less than 1, then the 007529 ** value is unchanged and control passes through to the next instruction. 007530 */ 007531 case OP_IfPos: { /* jump, in1 */ 007532 pIn1 = &aMem[pOp->p1]; 007533 assert( pIn1->flags&MEM_Int ); 007534 VdbeBranchTaken( pIn1->u.i>0, 2); 007535 if( pIn1->u.i>0 ){ 007536 pIn1->u.i -= pOp->p3; 007537 goto jump_to_p2; 007538 } 007539 break; 007540 } 007541 007542 /* Opcode: OffsetLimit P1 P2 P3 * * 007543 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1) 007544 ** 007545 ** This opcode performs a commonly used computation associated with 007546 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3] 007547 ** holds the offset counter. The opcode computes the combined value 007548 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2] 007549 ** value computed is the total number of rows that will need to be 007550 ** visited in order to complete the query. 007551 ** 007552 ** If r[P3] is zero or negative, that means there is no OFFSET 007553 ** and r[P2] is set to be the value of the LIMIT, r[P1]. 007554 ** 007555 ** if r[P1] is zero or negative, that means there is no LIMIT 007556 ** and r[P2] is set to -1. 007557 ** 007558 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3]. 007559 */ 007560 case OP_OffsetLimit: { /* in1, out2, in3 */ 007561 i64 x; 007562 pIn1 = &aMem[pOp->p1]; 007563 pIn3 = &aMem[pOp->p3]; 007564 pOut = out2Prerelease(p, pOp); 007565 assert( pIn1->flags & MEM_Int ); 007566 assert( pIn3->flags & MEM_Int ); 007567 x = pIn1->u.i; 007568 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){ 007569 /* If the LIMIT is less than or equal to zero, loop forever. This 007570 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then 007571 ** also loop forever. This is undocumented. In fact, one could argue 007572 ** that the loop should terminate. But assuming 1 billion iterations 007573 ** per second (far exceeding the capabilities of any current hardware) 007574 ** it would take nearly 300 years to actually reach the limit. So 007575 ** looping forever is a reasonable approximation. */ 007576 pOut->u.i = -1; 007577 }else{ 007578 pOut->u.i = x; 007579 } 007580 break; 007581 } 007582 007583 /* Opcode: IfNotZero P1 P2 * * * 007584 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2 007585 ** 007586 ** Register P1 must contain an integer. If the content of register P1 is 007587 ** initially greater than zero, then decrement the value in register P1. 007588 ** If it is non-zero (negative or positive) and then also jump to P2. 007589 ** If register P1 is initially zero, leave it unchanged and fall through. 007590 */ 007591 case OP_IfNotZero: { /* jump, in1 */ 007592 pIn1 = &aMem[pOp->p1]; 007593 assert( pIn1->flags&MEM_Int ); 007594 VdbeBranchTaken(pIn1->u.i<0, 2); 007595 if( pIn1->u.i ){ 007596 if( pIn1->u.i>0 ) pIn1->u.i--; 007597 goto jump_to_p2; 007598 } 007599 break; 007600 } 007601 007602 /* Opcode: DecrJumpZero P1 P2 * * * 007603 ** Synopsis: if (--r[P1])==0 goto P2 007604 ** 007605 ** Register P1 must hold an integer. Decrement the value in P1 007606 ** and jump to P2 if the new value is exactly zero. 007607 */ 007608 case OP_DecrJumpZero: { /* jump, in1 */ 007609 pIn1 = &aMem[pOp->p1]; 007610 assert( pIn1->flags&MEM_Int ); 007611 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--; 007612 VdbeBranchTaken(pIn1->u.i==0, 2); 007613 if( pIn1->u.i==0 ) goto jump_to_p2; 007614 break; 007615 } 007616 007617 007618 /* Opcode: AggStep * P2 P3 P4 P5 007619 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007620 ** 007621 ** Execute the xStep function for an aggregate. 007622 ** The function has P5 arguments. P4 is a pointer to the 007623 ** FuncDef structure that specifies the function. Register P3 is the 007624 ** accumulator. 007625 ** 007626 ** The P5 arguments are taken from register P2 and its 007627 ** successors. 007628 */ 007629 /* Opcode: AggInverse * P2 P3 P4 P5 007630 ** Synopsis: accum=r[P3] inverse(r[P2@P5]) 007631 ** 007632 ** Execute the xInverse function for an aggregate. 007633 ** The function has P5 arguments. P4 is a pointer to the 007634 ** FuncDef structure that specifies the function. Register P3 is the 007635 ** accumulator. 007636 ** 007637 ** The P5 arguments are taken from register P2 and its 007638 ** successors. 007639 */ 007640 /* Opcode: AggStep1 P1 P2 P3 P4 P5 007641 ** Synopsis: accum=r[P3] step(r[P2@P5]) 007642 ** 007643 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an 007644 ** aggregate. The function has P5 arguments. P4 is a pointer to the 007645 ** FuncDef structure that specifies the function. Register P3 is the 007646 ** accumulator. 007647 ** 007648 ** The P5 arguments are taken from register P2 and its 007649 ** successors. 007650 ** 007651 ** This opcode is initially coded as OP_AggStep0. On first evaluation, 007652 ** the FuncDef stored in P4 is converted into an sqlite3_context and 007653 ** the opcode is changed. In this way, the initialization of the 007654 ** sqlite3_context only happens once, instead of on each call to the 007655 ** step function. 007656 */ 007657 case OP_AggInverse: 007658 case OP_AggStep: { 007659 int n; 007660 sqlite3_context *pCtx; 007661 007662 assert( pOp->p4type==P4_FUNCDEF ); 007663 n = pOp->p5; 007664 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 007665 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) ); 007666 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n ); 007667 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) + 007668 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*))); 007669 if( pCtx==0 ) goto no_mem; 007670 pCtx->pMem = 0; 007671 pCtx->pOut = (Mem*)&(pCtx->argv[n]); 007672 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null); 007673 pCtx->pFunc = pOp->p4.pFunc; 007674 pCtx->iOp = (int)(pOp - aOp); 007675 pCtx->pVdbe = p; 007676 pCtx->skipFlag = 0; 007677 pCtx->isError = 0; 007678 pCtx->enc = encoding; 007679 pCtx->argc = n; 007680 pOp->p4type = P4_FUNCCTX; 007681 pOp->p4.pCtx = pCtx; 007682 007683 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */ 007684 assert( pOp->p1==(pOp->opcode==OP_AggInverse) ); 007685 007686 pOp->opcode = OP_AggStep1; 007687 /* Fall through into OP_AggStep */ 007688 /* no break */ deliberate_fall_through 007689 } 007690 case OP_AggStep1: { 007691 int i; 007692 sqlite3_context *pCtx; 007693 Mem *pMem; 007694 007695 assert( pOp->p4type==P4_FUNCCTX ); 007696 pCtx = pOp->p4.pCtx; 007697 pMem = &aMem[pOp->p3]; 007698 007699 #ifdef SQLITE_DEBUG 007700 if( pOp->p1 ){ 007701 /* This is an OP_AggInverse call. Verify that xStep has always 007702 ** been called at least once prior to any xInverse call. */ 007703 assert( pMem->uTemp==0x1122e0e3 ); 007704 }else{ 007705 /* This is an OP_AggStep call. Mark it as such. */ 007706 pMem->uTemp = 0x1122e0e3; 007707 } 007708 #endif 007709 007710 /* If this function is inside of a trigger, the register array in aMem[] 007711 ** might change from one evaluation to the next. The next block of code 007712 ** checks to see if the register array has changed, and if so it 007713 ** reinitializes the relevant parts of the sqlite3_context object */ 007714 if( pCtx->pMem != pMem ){ 007715 pCtx->pMem = pMem; 007716 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 007717 } 007718 007719 #ifdef SQLITE_DEBUG 007720 for(i=0; i<pCtx->argc; i++){ 007721 assert( memIsValid(pCtx->argv[i]) ); 007722 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 007723 } 007724 #endif 007725 007726 pMem->n++; 007727 assert( pCtx->pOut->flags==MEM_Null ); 007728 assert( pCtx->isError==0 ); 007729 assert( pCtx->skipFlag==0 ); 007730 #ifndef SQLITE_OMIT_WINDOWFUNC 007731 if( pOp->p1 ){ 007732 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv); 007733 }else 007734 #endif 007735 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */ 007736 007737 if( pCtx->isError ){ 007738 if( pCtx->isError>0 ){ 007739 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut)); 007740 rc = pCtx->isError; 007741 } 007742 if( pCtx->skipFlag ){ 007743 assert( pOp[-1].opcode==OP_CollSeq ); 007744 i = pOp[-1].p1; 007745 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1); 007746 pCtx->skipFlag = 0; 007747 } 007748 sqlite3VdbeMemRelease(pCtx->pOut); 007749 pCtx->pOut->flags = MEM_Null; 007750 pCtx->isError = 0; 007751 if( rc ) goto abort_due_to_error; 007752 } 007753 assert( pCtx->pOut->flags==MEM_Null ); 007754 assert( pCtx->skipFlag==0 ); 007755 break; 007756 } 007757 007758 /* Opcode: AggFinal P1 P2 * P4 * 007759 ** Synopsis: accum=r[P1] N=P2 007760 ** 007761 ** P1 is the memory location that is the accumulator for an aggregate 007762 ** or window function. Execute the finalizer function 007763 ** for an aggregate and store the result in P1. 007764 ** 007765 ** P2 is the number of arguments that the step function takes and 007766 ** P4 is a pointer to the FuncDef for this function. The P2 007767 ** argument is not used by this opcode. It is only there to disambiguate 007768 ** functions that can take varying numbers of arguments. The 007769 ** P4 argument is only needed for the case where 007770 ** the step function was not previously called. 007771 */ 007772 /* Opcode: AggValue * P2 P3 P4 * 007773 ** Synopsis: r[P3]=value N=P2 007774 ** 007775 ** Invoke the xValue() function and store the result in register P3. 007776 ** 007777 ** P2 is the number of arguments that the step function takes and 007778 ** P4 is a pointer to the FuncDef for this function. The P2 007779 ** argument is not used by this opcode. It is only there to disambiguate 007780 ** functions that can take varying numbers of arguments. The 007781 ** P4 argument is only needed for the case where 007782 ** the step function was not previously called. 007783 */ 007784 case OP_AggValue: 007785 case OP_AggFinal: { 007786 Mem *pMem; 007787 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 007788 assert( pOp->p3==0 || pOp->opcode==OP_AggValue ); 007789 pMem = &aMem[pOp->p1]; 007790 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 ); 007791 #ifndef SQLITE_OMIT_WINDOWFUNC 007792 if( pOp->p3 ){ 007793 memAboutToChange(p, &aMem[pOp->p3]); 007794 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc); 007795 pMem = &aMem[pOp->p3]; 007796 }else 007797 #endif 007798 { 007799 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc); 007800 } 007801 007802 if( rc ){ 007803 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem)); 007804 goto abort_due_to_error; 007805 } 007806 sqlite3VdbeChangeEncoding(pMem, encoding); 007807 UPDATE_MAX_BLOBSIZE(pMem); 007808 REGISTER_TRACE((int)(pMem-aMem), pMem); 007809 break; 007810 } 007811 007812 #ifndef SQLITE_OMIT_WAL 007813 /* Opcode: Checkpoint P1 P2 P3 * * 007814 ** 007815 ** Checkpoint database P1. This is a no-op if P1 is not currently in 007816 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL, 007817 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns 007818 ** SQLITE_BUSY or not, respectively. Write the number of pages in the 007819 ** WAL after the checkpoint into mem[P3+1] and the number of pages 007820 ** in the WAL that have been checkpointed after the checkpoint 007821 ** completes into mem[P3+2]. However on an error, mem[P3+1] and 007822 ** mem[P3+2] are initialized to -1. 007823 */ 007824 case OP_Checkpoint: { 007825 int i; /* Loop counter */ 007826 int aRes[3]; /* Results */ 007827 Mem *pMem; /* Write results here */ 007828 007829 assert( p->readOnly==0 ); 007830 aRes[0] = 0; 007831 aRes[1] = aRes[2] = -1; 007832 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE 007833 || pOp->p2==SQLITE_CHECKPOINT_FULL 007834 || pOp->p2==SQLITE_CHECKPOINT_RESTART 007835 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE 007836 ); 007837 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]); 007838 if( rc ){ 007839 if( rc!=SQLITE_BUSY ) goto abort_due_to_error; 007840 rc = SQLITE_OK; 007841 aRes[0] = 1; 007842 } 007843 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){ 007844 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]); 007845 } 007846 break; 007847 }; 007848 #endif 007849 007850 #ifndef SQLITE_OMIT_PRAGMA 007851 /* Opcode: JournalMode P1 P2 P3 * * 007852 ** 007853 ** Change the journal mode of database P1 to P3. P3 must be one of the 007854 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback 007855 ** modes (delete, truncate, persist, off and memory), this is a simple 007856 ** operation. No IO is required. 007857 ** 007858 ** If changing into or out of WAL mode the procedure is more complicated. 007859 ** 007860 ** Write a string containing the final journal-mode to register P2. 007861 */ 007862 case OP_JournalMode: { /* out2 */ 007863 Btree *pBt; /* Btree to change journal mode of */ 007864 Pager *pPager; /* Pager associated with pBt */ 007865 int eNew; /* New journal mode */ 007866 int eOld; /* The old journal mode */ 007867 #ifndef SQLITE_OMIT_WAL 007868 const char *zFilename; /* Name of database file for pPager */ 007869 #endif 007870 007871 pOut = out2Prerelease(p, pOp); 007872 eNew = pOp->p3; 007873 assert( eNew==PAGER_JOURNALMODE_DELETE 007874 || eNew==PAGER_JOURNALMODE_TRUNCATE 007875 || eNew==PAGER_JOURNALMODE_PERSIST 007876 || eNew==PAGER_JOURNALMODE_OFF 007877 || eNew==PAGER_JOURNALMODE_MEMORY 007878 || eNew==PAGER_JOURNALMODE_WAL 007879 || eNew==PAGER_JOURNALMODE_QUERY 007880 ); 007881 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007882 assert( p->readOnly==0 ); 007883 007884 pBt = db->aDb[pOp->p1].pBt; 007885 pPager = sqlite3BtreePager(pBt); 007886 eOld = sqlite3PagerGetJournalMode(pPager); 007887 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld; 007888 assert( sqlite3BtreeHoldsMutex(pBt) ); 007889 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld; 007890 007891 #ifndef SQLITE_OMIT_WAL 007892 zFilename = sqlite3PagerFilename(pPager, 1); 007893 007894 /* Do not allow a transition to journal_mode=WAL for a database 007895 ** in temporary storage or if the VFS does not support shared memory 007896 */ 007897 if( eNew==PAGER_JOURNALMODE_WAL 007898 && (sqlite3Strlen30(zFilename)==0 /* Temp file */ 007899 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */ 007900 ){ 007901 eNew = eOld; 007902 } 007903 007904 if( (eNew!=eOld) 007905 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL) 007906 ){ 007907 if( !db->autoCommit || db->nVdbeRead>1 ){ 007908 rc = SQLITE_ERROR; 007909 sqlite3VdbeError(p, 007910 "cannot change %s wal mode from within a transaction", 007911 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") 007912 ); 007913 goto abort_due_to_error; 007914 }else{ 007915 007916 if( eOld==PAGER_JOURNALMODE_WAL ){ 007917 /* If leaving WAL mode, close the log file. If successful, the call 007918 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 007919 ** file. An EXCLUSIVE lock may still be held on the database file 007920 ** after a successful return. 007921 */ 007922 rc = sqlite3PagerCloseWal(pPager, db); 007923 if( rc==SQLITE_OK ){ 007924 sqlite3PagerSetJournalMode(pPager, eNew); 007925 } 007926 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){ 007927 /* Cannot transition directly from MEMORY to WAL. Use mode OFF 007928 ** as an intermediate */ 007929 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF); 007930 } 007931 007932 /* Open a transaction on the database file. Regardless of the journal 007933 ** mode, this transaction always uses a rollback journal. 007934 */ 007935 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ); 007936 if( rc==SQLITE_OK ){ 007937 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1)); 007938 } 007939 } 007940 } 007941 #endif /* ifndef SQLITE_OMIT_WAL */ 007942 007943 if( rc ) eNew = eOld; 007944 eNew = sqlite3PagerSetJournalMode(pPager, eNew); 007945 007946 pOut->flags = MEM_Str|MEM_Static|MEM_Term; 007947 pOut->z = (char *)sqlite3JournalModename(eNew); 007948 pOut->n = sqlite3Strlen30(pOut->z); 007949 pOut->enc = SQLITE_UTF8; 007950 sqlite3VdbeChangeEncoding(pOut, encoding); 007951 if( rc ) goto abort_due_to_error; 007952 break; 007953 }; 007954 #endif /* SQLITE_OMIT_PRAGMA */ 007955 007956 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) 007957 /* Opcode: Vacuum P1 P2 * * * 007958 ** 007959 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more 007960 ** for an attached database. The "temp" database may not be vacuumed. 007961 ** 007962 ** If P2 is not zero, then it is a register holding a string which is 007963 ** the file into which the result of vacuum should be written. When 007964 ** P2 is zero, the vacuum overwrites the original database. 007965 */ 007966 case OP_Vacuum: { 007967 assert( p->readOnly==0 ); 007968 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1, 007969 pOp->p2 ? &aMem[pOp->p2] : 0); 007970 if( rc ) goto abort_due_to_error; 007971 break; 007972 } 007973 #endif 007974 007975 #if !defined(SQLITE_OMIT_AUTOVACUUM) 007976 /* Opcode: IncrVacuum P1 P2 * * * 007977 ** 007978 ** Perform a single step of the incremental vacuum procedure on 007979 ** the P1 database. If the vacuum has finished, jump to instruction 007980 ** P2. Otherwise, fall through to the next instruction. 007981 */ 007982 case OP_IncrVacuum: { /* jump */ 007983 Btree *pBt; 007984 007985 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 007986 assert( DbMaskTest(p->btreeMask, pOp->p1) ); 007987 assert( p->readOnly==0 ); 007988 pBt = db->aDb[pOp->p1].pBt; 007989 rc = sqlite3BtreeIncrVacuum(pBt); 007990 VdbeBranchTaken(rc==SQLITE_DONE,2); 007991 if( rc ){ 007992 if( rc!=SQLITE_DONE ) goto abort_due_to_error; 007993 rc = SQLITE_OK; 007994 goto jump_to_p2; 007995 } 007996 break; 007997 } 007998 #endif 007999 008000 /* Opcode: Expire P1 P2 * * * 008001 ** 008002 ** Cause precompiled statements to expire. When an expired statement 008003 ** is executed using sqlite3_step() it will either automatically 008004 ** reprepare itself (if it was originally created using sqlite3_prepare_v2()) 008005 ** or it will fail with SQLITE_SCHEMA. 008006 ** 008007 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero, 008008 ** then only the currently executing statement is expired. 008009 ** 008010 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1, 008011 ** then running SQL statements are allowed to continue to run to completion. 008012 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens 008013 ** that might help the statement run faster but which does not affect the 008014 ** correctness of operation. 008015 */ 008016 case OP_Expire: { 008017 assert( pOp->p2==0 || pOp->p2==1 ); 008018 if( !pOp->p1 ){ 008019 sqlite3ExpirePreparedStatements(db, pOp->p2); 008020 }else{ 008021 p->expired = pOp->p2+1; 008022 } 008023 break; 008024 } 008025 008026 /* Opcode: CursorLock P1 * * * * 008027 ** 008028 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be 008029 ** written by an other cursor. 008030 */ 008031 case OP_CursorLock: { 008032 VdbeCursor *pC; 008033 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008034 pC = p->apCsr[pOp->p1]; 008035 assert( pC!=0 ); 008036 assert( pC->eCurType==CURTYPE_BTREE ); 008037 sqlite3BtreeCursorPin(pC->uc.pCursor); 008038 break; 008039 } 008040 008041 /* Opcode: CursorUnlock P1 * * * * 008042 ** 008043 ** Unlock the btree to which cursor P1 is pointing so that it can be 008044 ** written by other cursors. 008045 */ 008046 case OP_CursorUnlock: { 008047 VdbeCursor *pC; 008048 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008049 pC = p->apCsr[pOp->p1]; 008050 assert( pC!=0 ); 008051 assert( pC->eCurType==CURTYPE_BTREE ); 008052 sqlite3BtreeCursorUnpin(pC->uc.pCursor); 008053 break; 008054 } 008055 008056 #ifndef SQLITE_OMIT_SHARED_CACHE 008057 /* Opcode: TableLock P1 P2 P3 P4 * 008058 ** Synopsis: iDb=P1 root=P2 write=P3 008059 ** 008060 ** Obtain a lock on a particular table. This instruction is only used when 008061 ** the shared-cache feature is enabled. 008062 ** 008063 ** P1 is the index of the database in sqlite3.aDb[] of the database 008064 ** on which the lock is acquired. A readlock is obtained if P3==0 or 008065 ** a write lock if P3==1. 008066 ** 008067 ** P2 contains the root-page of the table to lock. 008068 ** 008069 ** P4 contains a pointer to the name of the table being locked. This is only 008070 ** used to generate an error message if the lock cannot be obtained. 008071 */ 008072 case OP_TableLock: { 008073 u8 isWriteLock = (u8)pOp->p3; 008074 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){ 008075 int p1 = pOp->p1; 008076 assert( p1>=0 && p1<db->nDb ); 008077 assert( DbMaskTest(p->btreeMask, p1) ); 008078 assert( isWriteLock==0 || isWriteLock==1 ); 008079 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock); 008080 if( rc ){ 008081 if( (rc&0xFF)==SQLITE_LOCKED ){ 008082 const char *z = pOp->p4.z; 008083 sqlite3VdbeError(p, "database table is locked: %s", z); 008084 } 008085 goto abort_due_to_error; 008086 } 008087 } 008088 break; 008089 } 008090 #endif /* SQLITE_OMIT_SHARED_CACHE */ 008091 008092 #ifndef SQLITE_OMIT_VIRTUALTABLE 008093 /* Opcode: VBegin * * * P4 * 008094 ** 008095 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 008096 ** xBegin method for that table. 008097 ** 008098 ** Also, whether or not P4 is set, check that this is not being called from 008099 ** within a callback to a virtual table xSync() method. If it is, the error 008100 ** code will be set to SQLITE_LOCKED. 008101 */ 008102 case OP_VBegin: { 008103 VTable *pVTab; 008104 pVTab = pOp->p4.pVtab; 008105 rc = sqlite3VtabBegin(db, pVTab); 008106 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab); 008107 if( rc ) goto abort_due_to_error; 008108 break; 008109 } 008110 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008111 008112 #ifndef SQLITE_OMIT_VIRTUALTABLE 008113 /* Opcode: VCreate P1 P2 * * * 008114 ** 008115 ** P2 is a register that holds the name of a virtual table in database 008116 ** P1. Call the xCreate method for that table. 008117 */ 008118 case OP_VCreate: { 008119 Mem sMem; /* For storing the record being decoded */ 008120 const char *zTab; /* Name of the virtual table */ 008121 008122 memset(&sMem, 0, sizeof(sMem)); 008123 sMem.db = db; 008124 /* Because P2 is always a static string, it is impossible for the 008125 ** sqlite3VdbeMemCopy() to fail */ 008126 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 ); 008127 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 ); 008128 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]); 008129 assert( rc==SQLITE_OK ); 008130 zTab = (const char*)sqlite3_value_text(&sMem); 008131 assert( zTab || db->mallocFailed ); 008132 if( zTab ){ 008133 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg); 008134 } 008135 sqlite3VdbeMemRelease(&sMem); 008136 if( rc ) goto abort_due_to_error; 008137 break; 008138 } 008139 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008140 008141 #ifndef SQLITE_OMIT_VIRTUALTABLE 008142 /* Opcode: VDestroy P1 * * P4 * 008143 ** 008144 ** P4 is the name of a virtual table in database P1. Call the xDestroy method 008145 ** of that table. 008146 */ 008147 case OP_VDestroy: { 008148 db->nVDestroy++; 008149 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z); 008150 db->nVDestroy--; 008151 assert( p->errorAction==OE_Abort && p->usesStmtJournal ); 008152 if( rc ) goto abort_due_to_error; 008153 break; 008154 } 008155 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008156 008157 #ifndef SQLITE_OMIT_VIRTUALTABLE 008158 /* Opcode: VOpen P1 * * P4 * 008159 ** 008160 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008161 ** P1 is a cursor number. This opcode opens a cursor to the virtual 008162 ** table and stores that cursor in P1. 008163 */ 008164 case OP_VOpen: { /* ncycle */ 008165 VdbeCursor *pCur; 008166 sqlite3_vtab_cursor *pVCur; 008167 sqlite3_vtab *pVtab; 008168 const sqlite3_module *pModule; 008169 008170 assert( p->bIsReader ); 008171 pCur = 0; 008172 pVCur = 0; 008173 pVtab = pOp->p4.pVtab->pVtab; 008174 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008175 rc = SQLITE_LOCKED; 008176 goto abort_due_to_error; 008177 } 008178 pModule = pVtab->pModule; 008179 rc = pModule->xOpen(pVtab, &pVCur); 008180 sqlite3VtabImportErrmsg(p, pVtab); 008181 if( rc ) goto abort_due_to_error; 008182 008183 /* Initialize sqlite3_vtab_cursor base class */ 008184 pVCur->pVtab = pVtab; 008185 008186 /* Initialize vdbe cursor object */ 008187 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB); 008188 if( pCur ){ 008189 pCur->uc.pVCur = pVCur; 008190 pVtab->nRef++; 008191 }else{ 008192 assert( db->mallocFailed ); 008193 pModule->xClose(pVCur); 008194 goto no_mem; 008195 } 008196 break; 008197 } 008198 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008199 008200 #ifndef SQLITE_OMIT_VIRTUALTABLE 008201 /* Opcode: VCheck P1 P2 P3 P4 * 008202 ** 008203 ** P4 is a pointer to a Table object that is a virtual table in schema P1 008204 ** that supports the xIntegrity() method. This opcode runs the xIntegrity() 008205 ** method for that virtual table, using P3 as the integer argument. If 008206 ** an error is reported back, the table name is prepended to the error 008207 ** message and that message is stored in P2. If no errors are seen, 008208 ** register P2 is set to NULL. 008209 */ 008210 case OP_VCheck: { /* out2 */ 008211 Table *pTab; 008212 sqlite3_vtab *pVtab; 008213 const sqlite3_module *pModule; 008214 char *zErr = 0; 008215 008216 pOut = &aMem[pOp->p2]; 008217 sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */ 008218 assert( pOp->p4type==P4_TABLEREF ); 008219 pTab = pOp->p4.pTab; 008220 assert( pTab!=0 ); 008221 assert( pTab->nTabRef>0 ); 008222 assert( IsVirtual(pTab) ); 008223 if( pTab->u.vtab.p==0 ) break; 008224 pVtab = pTab->u.vtab.p->pVtab; 008225 assert( pVtab!=0 ); 008226 pModule = pVtab->pModule; 008227 assert( pModule!=0 ); 008228 assert( pModule->iVersion>=4 ); 008229 assert( pModule->xIntegrity!=0 ); 008230 sqlite3VtabLock(pTab->u.vtab.p); 008231 assert( pOp->p1>=0 && pOp->p1<db->nDb ); 008232 rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName, 008233 pOp->p3, &zErr); 008234 sqlite3VtabUnlock(pTab->u.vtab.p); 008235 if( rc ){ 008236 sqlite3_free(zErr); 008237 goto abort_due_to_error; 008238 } 008239 if( zErr ){ 008240 sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free); 008241 } 008242 break; 008243 } 008244 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008245 008246 #ifndef SQLITE_OMIT_VIRTUALTABLE 008247 /* Opcode: VInitIn P1 P2 P3 * * 008248 ** Synopsis: r[P2]=ValueList(P1,P3) 008249 ** 008250 ** Set register P2 to be a pointer to a ValueList object for cursor P1 008251 ** with cache register P3 and output register P3+1. This ValueList object 008252 ** can be used as the first argument to sqlite3_vtab_in_first() and 008253 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1 008254 ** cursor. Register P3 is used to hold the values returned by 008255 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next(). 008256 */ 008257 case OP_VInitIn: { /* out2, ncycle */ 008258 VdbeCursor *pC; /* The cursor containing the RHS values */ 008259 ValueList *pRhs; /* New ValueList object to put in reg[P2] */ 008260 008261 pC = p->apCsr[pOp->p1]; 008262 pRhs = sqlite3_malloc64( sizeof(*pRhs) ); 008263 if( pRhs==0 ) goto no_mem; 008264 pRhs->pCsr = pC->uc.pCursor; 008265 pRhs->pOut = &aMem[pOp->p3]; 008266 pOut = out2Prerelease(p, pOp); 008267 pOut->flags = MEM_Null; 008268 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree); 008269 break; 008270 } 008271 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008272 008273 008274 #ifndef SQLITE_OMIT_VIRTUALTABLE 008275 /* Opcode: VFilter P1 P2 P3 P4 * 008276 ** Synopsis: iplan=r[P3] zplan='P4' 008277 ** 008278 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if 008279 ** the filtered result set is empty. 008280 ** 008281 ** P4 is either NULL or a string that was generated by the xBestIndex 008282 ** method of the module. The interpretation of the P4 string is left 008283 ** to the module implementation. 008284 ** 008285 ** This opcode invokes the xFilter method on the virtual table specified 008286 ** by P1. The integer query plan parameter to xFilter is stored in register 008287 ** P3. Register P3+1 stores the argc parameter to be passed to the 008288 ** xFilter method. Registers P3+2..P3+1+argc are the argc 008289 ** additional parameters which are passed to 008290 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter. 008291 ** 008292 ** A jump is made to P2 if the result set after filtering would be empty. 008293 */ 008294 case OP_VFilter: { /* jump, ncycle */ 008295 int nArg; 008296 int iQuery; 008297 const sqlite3_module *pModule; 008298 Mem *pQuery; 008299 Mem *pArgc; 008300 sqlite3_vtab_cursor *pVCur; 008301 sqlite3_vtab *pVtab; 008302 VdbeCursor *pCur; 008303 int res; 008304 int i; 008305 Mem **apArg; 008306 008307 pQuery = &aMem[pOp->p3]; 008308 pArgc = &pQuery[1]; 008309 pCur = p->apCsr[pOp->p1]; 008310 assert( memIsValid(pQuery) ); 008311 REGISTER_TRACE(pOp->p3, pQuery); 008312 assert( pCur!=0 ); 008313 assert( pCur->eCurType==CURTYPE_VTAB ); 008314 pVCur = pCur->uc.pVCur; 008315 pVtab = pVCur->pVtab; 008316 pModule = pVtab->pModule; 008317 008318 /* Grab the index number and argc parameters */ 008319 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int ); 008320 nArg = (int)pArgc->u.i; 008321 iQuery = (int)pQuery->u.i; 008322 008323 /* Invoke the xFilter method */ 008324 apArg = p->apArg; 008325 for(i = 0; i<nArg; i++){ 008326 apArg[i] = &pArgc[i+1]; 008327 } 008328 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg); 008329 sqlite3VtabImportErrmsg(p, pVtab); 008330 if( rc ) goto abort_due_to_error; 008331 res = pModule->xEof(pVCur); 008332 pCur->nullRow = 0; 008333 VdbeBranchTaken(res!=0,2); 008334 if( res ) goto jump_to_p2; 008335 break; 008336 } 008337 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008338 008339 #ifndef SQLITE_OMIT_VIRTUALTABLE 008340 /* Opcode: VColumn P1 P2 P3 * P5 008341 ** Synopsis: r[P3]=vcolumn(P2) 008342 ** 008343 ** Store in register P3 the value of the P2-th column of 008344 ** the current row of the virtual-table of cursor P1. 008345 ** 008346 ** If the VColumn opcode is being used to fetch the value of 008347 ** an unchanging column during an UPDATE operation, then the P5 008348 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() 008349 ** function to return true inside the xColumn method of the virtual 008350 ** table implementation. The P5 column might also contain other 008351 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are 008352 ** unused by OP_VColumn. 008353 */ 008354 case OP_VColumn: { /* ncycle */ 008355 sqlite3_vtab *pVtab; 008356 const sqlite3_module *pModule; 008357 Mem *pDest; 008358 sqlite3_context sContext; 008359 FuncDef nullFunc; 008360 008361 VdbeCursor *pCur = p->apCsr[pOp->p1]; 008362 assert( pCur!=0 ); 008363 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); 008364 pDest = &aMem[pOp->p3]; 008365 memAboutToChange(p, pDest); 008366 if( pCur->nullRow ){ 008367 sqlite3VdbeMemSetNull(pDest); 008368 break; 008369 } 008370 assert( pCur->eCurType==CURTYPE_VTAB ); 008371 pVtab = pCur->uc.pVCur->pVtab; 008372 pModule = pVtab->pModule; 008373 assert( pModule->xColumn ); 008374 memset(&sContext, 0, sizeof(sContext)); 008375 sContext.pOut = pDest; 008376 sContext.enc = encoding; 008377 nullFunc.pUserData = 0; 008378 nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE; 008379 sContext.pFunc = &nullFunc; 008380 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 ); 008381 if( pOp->p5 & OPFLAG_NOCHNG ){ 008382 sqlite3VdbeMemSetNull(pDest); 008383 pDest->flags = MEM_Null|MEM_Zero; 008384 pDest->u.nZero = 0; 008385 }else{ 008386 MemSetTypeFlag(pDest, MEM_Null); 008387 } 008388 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); 008389 sqlite3VtabImportErrmsg(p, pVtab); 008390 if( sContext.isError>0 ){ 008391 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest)); 008392 rc = sContext.isError; 008393 } 008394 sqlite3VdbeChangeEncoding(pDest, encoding); 008395 REGISTER_TRACE(pOp->p3, pDest); 008396 UPDATE_MAX_BLOBSIZE(pDest); 008397 008398 if( rc ) goto abort_due_to_error; 008399 break; 008400 } 008401 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008402 008403 #ifndef SQLITE_OMIT_VIRTUALTABLE 008404 /* Opcode: VNext P1 P2 * * * 008405 ** 008406 ** Advance virtual table P1 to the next row in its result set and 008407 ** jump to instruction P2. Or, if the virtual table has reached 008408 ** the end of its result set, then fall through to the next instruction. 008409 */ 008410 case OP_VNext: { /* jump, ncycle */ 008411 sqlite3_vtab *pVtab; 008412 const sqlite3_module *pModule; 008413 int res; 008414 VdbeCursor *pCur; 008415 008416 pCur = p->apCsr[pOp->p1]; 008417 assert( pCur!=0 ); 008418 assert( pCur->eCurType==CURTYPE_VTAB ); 008419 if( pCur->nullRow ){ 008420 break; 008421 } 008422 pVtab = pCur->uc.pVCur->pVtab; 008423 pModule = pVtab->pModule; 008424 assert( pModule->xNext ); 008425 008426 /* Invoke the xNext() method of the module. There is no way for the 008427 ** underlying implementation to return an error if one occurs during 008428 ** xNext(). Instead, if an error occurs, true is returned (indicating that 008429 ** data is available) and the error code returned when xColumn or 008430 ** some other method is next invoked on the save virtual table cursor. 008431 */ 008432 rc = pModule->xNext(pCur->uc.pVCur); 008433 sqlite3VtabImportErrmsg(p, pVtab); 008434 if( rc ) goto abort_due_to_error; 008435 res = pModule->xEof(pCur->uc.pVCur); 008436 VdbeBranchTaken(!res,2); 008437 if( !res ){ 008438 /* If there is data, jump to P2 */ 008439 goto jump_to_p2_and_check_for_interrupt; 008440 } 008441 goto check_for_interrupt; 008442 } 008443 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008444 008445 #ifndef SQLITE_OMIT_VIRTUALTABLE 008446 /* Opcode: VRename P1 * * P4 * 008447 ** 008448 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008449 ** This opcode invokes the corresponding xRename method. The value 008450 ** in register P1 is passed as the zName argument to the xRename method. 008451 */ 008452 case OP_VRename: { 008453 sqlite3_vtab *pVtab; 008454 Mem *pName; 008455 int isLegacy; 008456 008457 isLegacy = (db->flags & SQLITE_LegacyAlter); 008458 db->flags |= SQLITE_LegacyAlter; 008459 pVtab = pOp->p4.pVtab->pVtab; 008460 pName = &aMem[pOp->p1]; 008461 assert( pVtab->pModule->xRename ); 008462 assert( memIsValid(pName) ); 008463 assert( p->readOnly==0 ); 008464 REGISTER_TRACE(pOp->p1, pName); 008465 assert( pName->flags & MEM_Str ); 008466 testcase( pName->enc==SQLITE_UTF8 ); 008467 testcase( pName->enc==SQLITE_UTF16BE ); 008468 testcase( pName->enc==SQLITE_UTF16LE ); 008469 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); 008470 if( rc ) goto abort_due_to_error; 008471 rc = pVtab->pModule->xRename(pVtab, pName->z); 008472 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter; 008473 sqlite3VtabImportErrmsg(p, pVtab); 008474 p->expired = 0; 008475 if( rc ) goto abort_due_to_error; 008476 break; 008477 } 008478 #endif 008479 008480 #ifndef SQLITE_OMIT_VIRTUALTABLE 008481 /* Opcode: VUpdate P1 P2 P3 P4 P5 008482 ** Synopsis: data=r[P3@P2] 008483 ** 008484 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. 008485 ** This opcode invokes the corresponding xUpdate method. P2 values 008486 ** are contiguous memory cells starting at P3 to pass to the xUpdate 008487 ** invocation. The value in register (P3+P2-1) corresponds to the 008488 ** p2th element of the argv array passed to xUpdate. 008489 ** 008490 ** The xUpdate method will do a DELETE or an INSERT or both. 008491 ** The argv[0] element (which corresponds to memory cell P3) 008492 ** is the rowid of a row to delete. If argv[0] is NULL then no 008493 ** deletion occurs. The argv[1] element is the rowid of the new 008494 ** row. This can be NULL to have the virtual table select the new 008495 ** rowid for itself. The subsequent elements in the array are 008496 ** the values of columns in the new row. 008497 ** 008498 ** If P2==1 then no insert is performed. argv[0] is the rowid of 008499 ** a row to delete. 008500 ** 008501 ** P1 is a boolean flag. If it is set to true and the xUpdate call 008502 ** is successful, then the value returned by sqlite3_last_insert_rowid() 008503 ** is set to the value of the rowid for the row just inserted. 008504 ** 008505 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to 008506 ** apply in the case of a constraint failure on an insert or update. 008507 */ 008508 case OP_VUpdate: { 008509 sqlite3_vtab *pVtab; 008510 const sqlite3_module *pModule; 008511 int nArg; 008512 int i; 008513 sqlite_int64 rowid = 0; 008514 Mem **apArg; 008515 Mem *pX; 008516 008517 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback 008518 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace 008519 ); 008520 assert( p->readOnly==0 ); 008521 if( db->mallocFailed ) goto no_mem; 008522 sqlite3VdbeIncrWriteCounter(p, 0); 008523 pVtab = pOp->p4.pVtab->pVtab; 008524 if( pVtab==0 || NEVER(pVtab->pModule==0) ){ 008525 rc = SQLITE_LOCKED; 008526 goto abort_due_to_error; 008527 } 008528 pModule = pVtab->pModule; 008529 nArg = pOp->p2; 008530 assert( pOp->p4type==P4_VTAB ); 008531 if( ALWAYS(pModule->xUpdate) ){ 008532 u8 vtabOnConflict = db->vtabOnConflict; 008533 apArg = p->apArg; 008534 pX = &aMem[pOp->p3]; 008535 for(i=0; i<nArg; i++){ 008536 assert( memIsValid(pX) ); 008537 memAboutToChange(p, pX); 008538 apArg[i] = pX; 008539 pX++; 008540 } 008541 db->vtabOnConflict = pOp->p5; 008542 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid); 008543 db->vtabOnConflict = vtabOnConflict; 008544 sqlite3VtabImportErrmsg(p, pVtab); 008545 if( rc==SQLITE_OK && pOp->p1 ){ 008546 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) ); 008547 db->lastRowid = rowid; 008548 } 008549 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){ 008550 if( pOp->p5==OE_Ignore ){ 008551 rc = SQLITE_OK; 008552 }else{ 008553 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5); 008554 } 008555 }else{ 008556 p->nChange++; 008557 } 008558 if( rc ) goto abort_due_to_error; 008559 } 008560 break; 008561 } 008562 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 008563 008564 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008565 /* Opcode: Pagecount P1 P2 * * * 008566 ** 008567 ** Write the current number of pages in database P1 to memory cell P2. 008568 */ 008569 case OP_Pagecount: { /* out2 */ 008570 pOut = out2Prerelease(p, pOp); 008571 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt); 008572 break; 008573 } 008574 #endif 008575 008576 008577 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 008578 /* Opcode: MaxPgcnt P1 P2 P3 * * 008579 ** 008580 ** Try to set the maximum page count for database P1 to the value in P3. 008581 ** Do not let the maximum page count fall below the current page count and 008582 ** do not change the maximum page count value if P3==0. 008583 ** 008584 ** Store the maximum page count after the change in register P2. 008585 */ 008586 case OP_MaxPgcnt: { /* out2 */ 008587 unsigned int newMax; 008588 Btree *pBt; 008589 008590 pOut = out2Prerelease(p, pOp); 008591 pBt = db->aDb[pOp->p1].pBt; 008592 newMax = 0; 008593 if( pOp->p3 ){ 008594 newMax = sqlite3BtreeLastPage(pBt); 008595 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3; 008596 } 008597 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax); 008598 break; 008599 } 008600 #endif 008601 008602 /* Opcode: Function P1 P2 P3 P4 * 008603 ** Synopsis: r[P3]=func(r[P2@NP]) 008604 ** 008605 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008606 ** contains a pointer to the function to be run) with arguments taken 008607 ** from register P2 and successors. The number of arguments is in 008608 ** the sqlite3_context object that P4 points to. 008609 ** The result of the function is stored 008610 ** in register P3. Register P3 must not be one of the function inputs. 008611 ** 008612 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008613 ** function was determined to be constant at compile time. If the first 008614 ** argument was constant then bit 0 of P1 is set. This is used to determine 008615 ** whether meta data associated with a user function argument using the 008616 ** sqlite3_set_auxdata() API may be safely retained until the next 008617 ** invocation of this opcode. 008618 ** 008619 ** See also: AggStep, AggFinal, PureFunc 008620 */ 008621 /* Opcode: PureFunc P1 P2 P3 P4 * 008622 ** Synopsis: r[P3]=func(r[P2@NP]) 008623 ** 008624 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that 008625 ** contains a pointer to the function to be run) with arguments taken 008626 ** from register P2 and successors. The number of arguments is in 008627 ** the sqlite3_context object that P4 points to. 008628 ** The result of the function is stored 008629 ** in register P3. Register P3 must not be one of the function inputs. 008630 ** 008631 ** P1 is a 32-bit bitmask indicating whether or not each argument to the 008632 ** function was determined to be constant at compile time. If the first 008633 ** argument was constant then bit 0 of P1 is set. This is used to determine 008634 ** whether meta data associated with a user function argument using the 008635 ** sqlite3_set_auxdata() API may be safely retained until the next 008636 ** invocation of this opcode. 008637 ** 008638 ** This opcode works exactly like OP_Function. The only difference is in 008639 ** its name. This opcode is used in places where the function must be 008640 ** purely non-deterministic. Some built-in date/time functions can be 008641 ** either deterministic of non-deterministic, depending on their arguments. 008642 ** When those function are used in a non-deterministic way, they will check 008643 ** to see if they were called using OP_PureFunc instead of OP_Function, and 008644 ** if they were, they throw an error. 008645 ** 008646 ** See also: AggStep, AggFinal, Function 008647 */ 008648 case OP_PureFunc: /* group */ 008649 case OP_Function: { /* group */ 008650 int i; 008651 sqlite3_context *pCtx; 008652 008653 assert( pOp->p4type==P4_FUNCCTX ); 008654 pCtx = pOp->p4.pCtx; 008655 008656 /* If this function is inside of a trigger, the register array in aMem[] 008657 ** might change from one evaluation to the next. The next block of code 008658 ** checks to see if the register array has changed, and if so it 008659 ** reinitializes the relevant parts of the sqlite3_context object */ 008660 pOut = &aMem[pOp->p3]; 008661 if( pCtx->pOut != pOut ){ 008662 pCtx->pVdbe = p; 008663 pCtx->pOut = pOut; 008664 pCtx->enc = encoding; 008665 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i]; 008666 } 008667 assert( pCtx->pVdbe==p ); 008668 008669 memAboutToChange(p, pOut); 008670 #ifdef SQLITE_DEBUG 008671 for(i=0; i<pCtx->argc; i++){ 008672 assert( memIsValid(pCtx->argv[i]) ); 008673 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]); 008674 } 008675 #endif 008676 MemSetTypeFlag(pOut, MEM_Null); 008677 assert( pCtx->isError==0 ); 008678 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */ 008679 008680 /* If the function returned an error, throw an exception */ 008681 if( pCtx->isError ){ 008682 if( pCtx->isError>0 ){ 008683 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut)); 008684 rc = pCtx->isError; 008685 } 008686 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1); 008687 pCtx->isError = 0; 008688 if( rc ) goto abort_due_to_error; 008689 } 008690 008691 assert( (pOut->flags&MEM_Str)==0 008692 || pOut->enc==encoding 008693 || db->mallocFailed ); 008694 assert( !sqlite3VdbeMemTooBig(pOut) ); 008695 008696 REGISTER_TRACE(pOp->p3, pOut); 008697 UPDATE_MAX_BLOBSIZE(pOut); 008698 break; 008699 } 008700 008701 /* Opcode: ClrSubtype P1 * * * * 008702 ** Synopsis: r[P1].subtype = 0 008703 ** 008704 ** Clear the subtype from register P1. 008705 */ 008706 case OP_ClrSubtype: { /* in1 */ 008707 pIn1 = &aMem[pOp->p1]; 008708 pIn1->flags &= ~MEM_Subtype; 008709 break; 008710 } 008711 008712 /* Opcode: GetSubtype P1 P2 * * * 008713 ** Synopsis: r[P2] = r[P1].subtype 008714 ** 008715 ** Extract the subtype value from register P1 and write that subtype 008716 ** into register P2. If P1 has no subtype, then P1 gets a NULL. 008717 */ 008718 case OP_GetSubtype: { /* in1 out2 */ 008719 pIn1 = &aMem[pOp->p1]; 008720 pOut = &aMem[pOp->p2]; 008721 if( pIn1->flags & MEM_Subtype ){ 008722 sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype); 008723 }else{ 008724 sqlite3VdbeMemSetNull(pOut); 008725 } 008726 break; 008727 } 008728 008729 /* Opcode: SetSubtype P1 P2 * * * 008730 ** Synopsis: r[P2].subtype = r[P1] 008731 ** 008732 ** Set the subtype value of register P2 to the integer from register P1. 008733 ** If P1 is NULL, clear the subtype from p2. 008734 */ 008735 case OP_SetSubtype: { /* in1 out2 */ 008736 pIn1 = &aMem[pOp->p1]; 008737 pOut = &aMem[pOp->p2]; 008738 if( pIn1->flags & MEM_Null ){ 008739 pOut->flags &= ~MEM_Subtype; 008740 }else{ 008741 assert( pIn1->flags & MEM_Int ); 008742 pOut->flags |= MEM_Subtype; 008743 pOut->eSubtype = (u8)(pIn1->u.i & 0xff); 008744 } 008745 break; 008746 } 008747 008748 /* Opcode: FilterAdd P1 * P3 P4 * 008749 ** Synopsis: filter(P1) += key(P3@P4) 008750 ** 008751 ** Compute a hash on the P4 registers starting with r[P3] and 008752 ** add that hash to the bloom filter contained in r[P1]. 008753 */ 008754 case OP_FilterAdd: { 008755 u64 h; 008756 008757 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008758 pIn1 = &aMem[pOp->p1]; 008759 assert( pIn1->flags & MEM_Blob ); 008760 assert( pIn1->n>0 ); 008761 h = filterHash(aMem, pOp); 008762 #ifdef SQLITE_DEBUG 008763 if( db->flags&SQLITE_VdbeTrace ){ 008764 int ii; 008765 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008766 registerTrace(ii, &aMem[ii]); 008767 } 008768 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008769 } 008770 #endif 008771 h %= (pIn1->n*8); 008772 pIn1->z[h/8] |= 1<<(h&7); 008773 break; 008774 } 008775 008776 /* Opcode: Filter P1 P2 P3 P4 * 008777 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2 008778 ** 008779 ** Compute a hash on the key contained in the P4 registers starting 008780 ** with r[P3]. Check to see if that hash is found in the 008781 ** bloom filter hosted by register P1. If it is not present then 008782 ** maybe jump to P2. Otherwise fall through. 008783 ** 008784 ** False negatives are harmless. It is always safe to fall through, 008785 ** even if the value is in the bloom filter. A false negative causes 008786 ** more CPU cycles to be used, but it should still yield the correct 008787 ** answer. However, an incorrect answer may well arise from a 008788 ** false positive - if the jump is taken when it should fall through. 008789 */ 008790 case OP_Filter: { /* jump */ 008791 u64 h; 008792 008793 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) ); 008794 pIn1 = &aMem[pOp->p1]; 008795 assert( (pIn1->flags & MEM_Blob)!=0 ); 008796 assert( pIn1->n >= 1 ); 008797 h = filterHash(aMem, pOp); 008798 #ifdef SQLITE_DEBUG 008799 if( db->flags&SQLITE_VdbeTrace ){ 008800 int ii; 008801 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){ 008802 registerTrace(ii, &aMem[ii]); 008803 } 008804 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n)); 008805 } 008806 #endif 008807 h %= (pIn1->n*8); 008808 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){ 008809 VdbeBranchTaken(1, 2); 008810 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++; 008811 goto jump_to_p2; 008812 }else{ 008813 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++; 008814 VdbeBranchTaken(0, 2); 008815 } 008816 break; 008817 } 008818 008819 /* Opcode: Trace P1 P2 * P4 * 008820 ** 008821 ** Write P4 on the statement trace output if statement tracing is 008822 ** enabled. 008823 ** 008824 ** Operand P1 must be 0x7fffffff and P2 must positive. 008825 */ 008826 /* Opcode: Init P1 P2 P3 P4 * 008827 ** Synopsis: Start at P2 008828 ** 008829 ** Programs contain a single instance of this opcode as the very first 008830 ** opcode. 008831 ** 008832 ** If tracing is enabled (by the sqlite3_trace()) interface, then 008833 ** the UTF-8 string contained in P4 is emitted on the trace callback. 008834 ** Or if P4 is blank, use the string returned by sqlite3_sql(). 008835 ** 008836 ** If P2 is not zero, jump to instruction P2. 008837 ** 008838 ** Increment the value of P1 so that OP_Once opcodes will jump the 008839 ** first time they are evaluated for this run. 008840 ** 008841 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT 008842 ** error is encountered. 008843 */ 008844 case OP_Trace: 008845 case OP_Init: { /* jump0 */ 008846 int i; 008847 #ifndef SQLITE_OMIT_TRACE 008848 char *zTrace; 008849 #endif 008850 008851 /* If the P4 argument is not NULL, then it must be an SQL comment string. 008852 ** The "--" string is broken up to prevent false-positives with srcck1.c. 008853 ** 008854 ** This assert() provides evidence for: 008855 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that 008856 ** would have been returned by the legacy sqlite3_trace() interface by 008857 ** using the X argument when X begins with "--" and invoking 008858 ** sqlite3_expanded_sql(P) otherwise. 008859 */ 008860 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 ); 008861 008862 /* OP_Init is always instruction 0 */ 008863 assert( pOp==p->aOp || pOp->opcode==OP_Trace ); 008864 008865 #ifndef SQLITE_OMIT_TRACE 008866 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0 008867 && p->minWriteFileFormat!=254 /* tag-20220401a */ 008868 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008869 ){ 008870 #ifndef SQLITE_OMIT_DEPRECATED 008871 if( db->mTrace & SQLITE_TRACE_LEGACY ){ 008872 char *z = sqlite3VdbeExpandSql(p, zTrace); 008873 db->trace.xLegacy(db->pTraceArg, z); 008874 sqlite3_free(z); 008875 }else 008876 #endif 008877 if( db->nVdbeExec>1 ){ 008878 char *z = sqlite3MPrintf(db, "-- %s", zTrace); 008879 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z); 008880 sqlite3DbFree(db, z); 008881 }else{ 008882 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace); 008883 } 008884 } 008885 #ifdef SQLITE_USE_FCNTL_TRACE 008886 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); 008887 if( zTrace ){ 008888 int j; 008889 for(j=0; j<db->nDb; j++){ 008890 if( DbMaskTest(p->btreeMask, j)==0 ) continue; 008891 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace); 008892 } 008893 } 008894 #endif /* SQLITE_USE_FCNTL_TRACE */ 008895 #ifdef SQLITE_DEBUG 008896 if( (db->flags & SQLITE_SqlTrace)!=0 008897 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 008898 ){ 008899 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace); 008900 } 008901 #endif /* SQLITE_DEBUG */ 008902 #endif /* SQLITE_OMIT_TRACE */ 008903 assert( pOp->p2>0 ); 008904 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){ 008905 if( pOp->opcode==OP_Trace ) break; 008906 for(i=1; i<p->nOp; i++){ 008907 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0; 008908 } 008909 pOp->p1 = 0; 008910 } 008911 pOp->p1++; 008912 p->aCounter[SQLITE_STMTSTATUS_RUN]++; 008913 goto jump_to_p2; 008914 } 008915 008916 #ifdef SQLITE_ENABLE_CURSOR_HINTS 008917 /* Opcode: CursorHint P1 * * P4 * 008918 ** 008919 ** Provide a hint to cursor P1 that it only needs to return rows that 008920 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer 008921 ** to values currently held in registers. TK_COLUMN terms in the P4 008922 ** expression refer to columns in the b-tree to which cursor P1 is pointing. 008923 */ 008924 case OP_CursorHint: { 008925 VdbeCursor *pC; 008926 008927 assert( pOp->p1>=0 && pOp->p1<p->nCursor ); 008928 assert( pOp->p4type==P4_EXPR ); 008929 pC = p->apCsr[pOp->p1]; 008930 if( pC ){ 008931 assert( pC->eCurType==CURTYPE_BTREE ); 008932 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE, 008933 pOp->p4.pExpr, aMem); 008934 } 008935 break; 008936 } 008937 #endif /* SQLITE_ENABLE_CURSOR_HINTS */ 008938 008939 #ifdef SQLITE_DEBUG 008940 /* Opcode: Abortable * * * * * 008941 ** 008942 ** Verify that an Abort can happen. Assert if an Abort at this point 008943 ** might cause database corruption. This opcode only appears in debugging 008944 ** builds. 008945 ** 008946 ** An Abort is safe if either there have been no writes, or if there is 008947 ** an active statement journal. 008948 */ 008949 case OP_Abortable: { 008950 sqlite3VdbeAssertAbortable(p); 008951 break; 008952 } 008953 #endif 008954 008955 #ifdef SQLITE_DEBUG 008956 /* Opcode: ReleaseReg P1 P2 P3 * P5 008957 ** Synopsis: release r[P1@P2] mask P3 008958 ** 008959 ** Release registers from service. Any content that was in the 008960 ** the registers is unreliable after this opcode completes. 008961 ** 008962 ** The registers released will be the P2 registers starting at P1, 008963 ** except if bit ii of P3 set, then do not release register P1+ii. 008964 ** In other words, P3 is a mask of registers to preserve. 008965 ** 008966 ** Releasing a register clears the Mem.pScopyFrom pointer. That means 008967 ** that if the content of the released register was set using OP_SCopy, 008968 ** a change to the value of the source register for the OP_SCopy will no longer 008969 ** generate an assertion fault in sqlite3VdbeMemAboutToChange(). 008970 ** 008971 ** If P5 is set, then all released registers have their type set 008972 ** to MEM_Undefined so that any subsequent attempt to read the released 008973 ** register (before it is reinitialized) will generate an assertion fault. 008974 ** 008975 ** P5 ought to be set on every call to this opcode. 008976 ** However, there are places in the code generator will release registers 008977 ** before their are used, under the (valid) assumption that the registers 008978 ** will not be reallocated for some other purpose before they are used and 008979 ** hence are safe to release. 008980 ** 008981 ** This opcode is only available in testing and debugging builds. It is 008982 ** not generated for release builds. The purpose of this opcode is to help 008983 ** validate the generated bytecode. This opcode does not actually contribute 008984 ** to computing an answer. 008985 */ 008986 case OP_ReleaseReg: { 008987 Mem *pMem; 008988 int i; 008989 u32 constMask; 008990 assert( pOp->p1>0 ); 008991 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 ); 008992 pMem = &aMem[pOp->p1]; 008993 constMask = pOp->p3; 008994 for(i=0; i<pOp->p2; i++, pMem++){ 008995 if( i>=32 || (constMask & MASKBIT32(i))==0 ){ 008996 pMem->pScopyFrom = 0; 008997 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined); 008998 } 008999 } 009000 break; 009001 } 009002 #endif 009003 009004 /* Opcode: Noop * * * * * 009005 ** 009006 ** Do nothing. This instruction is often useful as a jump 009007 ** destination. 009008 */ 009009 /* 009010 ** The magic Explain opcode are only inserted when explain==2 (which 009011 ** is to say when the EXPLAIN QUERY PLAN syntax is used.) 009012 ** This opcode records information from the optimizer. It is the 009013 ** the same as a no-op. This opcodesnever appears in a real VM program. 009014 */ 009015 default: { /* This is really OP_Noop, OP_Explain */ 009016 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain ); 009017 009018 break; 009019 } 009020 009021 /***************************************************************************** 009022 ** The cases of the switch statement above this line should all be indented 009023 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the 009024 ** readability. From this point on down, the normal indentation rules are 009025 ** restored. 009026 *****************************************************************************/ 009027 } 009028 009029 #if defined(VDBE_PROFILE) 009030 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009031 pnCycle = 0; 009032 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009033 if( pnCycle ){ 009034 *pnCycle += sqlite3Hwtime(); 009035 pnCycle = 0; 009036 } 009037 #endif 009038 009039 /* The following code adds nothing to the actual functionality 009040 ** of the program. It is only here for testing and debugging. 009041 ** On the other hand, it does burn CPU cycles every time through 009042 ** the evaluator loop. So we can leave it out when NDEBUG is defined. 009043 */ 009044 #ifndef NDEBUG 009045 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] ); 009046 009047 #ifdef SQLITE_DEBUG 009048 if( db->flags & SQLITE_VdbeTrace ){ 009049 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode]; 009050 if( rc!=0 ) printf("rc=%d\n",rc); 009051 if( opProperty & (OPFLG_OUT2) ){ 009052 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]); 009053 } 009054 if( opProperty & OPFLG_OUT3 ){ 009055 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]); 009056 } 009057 if( opProperty==0xff ){ 009058 /* Never happens. This code exists to avoid a harmless linkage 009059 ** warning about sqlite3VdbeRegisterDump() being defined but not 009060 ** used. */ 009061 sqlite3VdbeRegisterDump(p); 009062 } 009063 } 009064 #endif /* SQLITE_DEBUG */ 009065 #endif /* NDEBUG */ 009066 } /* The end of the for(;;) loop the loops through opcodes */ 009067 009068 /* If we reach this point, it means that execution is finished with 009069 ** an error of some kind. 009070 */ 009071 abort_due_to_error: 009072 if( db->mallocFailed ){ 009073 rc = SQLITE_NOMEM_BKPT; 009074 }else if( rc==SQLITE_IOERR_CORRUPTFS ){ 009075 rc = SQLITE_CORRUPT_BKPT; 009076 } 009077 assert( rc ); 009078 #ifdef SQLITE_DEBUG 009079 if( db->flags & SQLITE_VdbeTrace ){ 009080 const char *zTrace = p->zSql; 009081 if( zTrace==0 ){ 009082 if( aOp[0].opcode==OP_Trace ){ 009083 zTrace = aOp[0].p4.z; 009084 } 009085 if( zTrace==0 ) zTrace = "???"; 009086 } 009087 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace); 009088 } 009089 #endif 009090 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){ 009091 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc)); 009092 } 009093 p->rc = rc; 009094 sqlite3SystemError(db, rc); 009095 testcase( sqlite3GlobalConfig.xLog!=0 ); 009096 sqlite3_log(rc, "statement aborts at %d: [%s] %s", 009097 (int)(pOp - aOp), p->zSql, p->zErrMsg); 009098 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p); 009099 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db); 009100 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){ 009101 db->flags |= SQLITE_CorruptRdOnly; 009102 } 009103 rc = SQLITE_ERROR; 009104 if( resetSchemaOnFault>0 ){ 009105 sqlite3ResetOneSchema(db, resetSchemaOnFault-1); 009106 } 009107 009108 /* This is the only way out of this procedure. We have to 009109 ** release the mutexes on btrees that were acquired at the 009110 ** top. */ 009111 vdbe_return: 009112 #if defined(VDBE_PROFILE) 009113 if( pnCycle ){ 009114 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime(); 009115 pnCycle = 0; 009116 } 009117 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS) 009118 if( pnCycle ){ 009119 *pnCycle += sqlite3Hwtime(); 009120 pnCycle = 0; 009121 } 009122 #endif 009123 009124 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 009125 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){ 009126 nProgressLimit += db->nProgressOps; 009127 if( db->xProgress(db->pProgressArg) ){ 009128 nProgressLimit = LARGEST_UINT64; 009129 rc = SQLITE_INTERRUPT; 009130 goto abort_due_to_error; 009131 } 009132 } 009133 #endif 009134 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep; 009135 if( DbMaskNonZero(p->lockMask) ){ 009136 sqlite3VdbeLeave(p); 009137 } 009138 assert( rc!=SQLITE_OK || nExtraDelete==0 009139 || sqlite3_strlike("DELETE%",p->zSql,0)!=0 009140 ); 009141 return rc; 009142 009143 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH 009144 ** is encountered. 009145 */ 009146 too_big: 009147 sqlite3VdbeError(p, "string or blob too big"); 009148 rc = SQLITE_TOOBIG; 009149 goto abort_due_to_error; 009150 009151 /* Jump to here if a malloc() fails. 009152 */ 009153 no_mem: 009154 sqlite3OomFault(db); 009155 sqlite3VdbeError(p, "out of memory"); 009156 rc = SQLITE_NOMEM_BKPT; 009157 goto abort_due_to_error; 009158 009159 /* Jump to here if the sqlite3_interrupt() API sets the interrupt 009160 ** flag. 009161 */ 009162 abort_due_to_interrupt: 009163 assert( AtomicLoad(&db->u1.isInterrupted) ); 009164 rc = SQLITE_INTERRUPT; 009165 goto abort_due_to_error; 009166 }