000001 /* 000002 ** 2008 August 05 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file implements that page cache. 000013 */ 000014 #include "sqliteInt.h" 000015 000016 /* 000017 ** A complete page cache is an instance of this structure. Every 000018 ** entry in the cache holds a single page of the database file. The 000019 ** btree layer only operates on the cached copy of the database pages. 000020 ** 000021 ** A page cache entry is "clean" if it exactly matches what is currently 000022 ** on disk. A page is "dirty" if it has been modified and needs to be 000023 ** persisted to disk. 000024 ** 000025 ** pDirty, pDirtyTail, pSynced: 000026 ** All dirty pages are linked into the doubly linked list using 000027 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order 000028 ** such that p was added to the list more recently than p->pDirtyNext. 000029 ** PCache.pDirty points to the first (newest) element in the list and 000030 ** pDirtyTail to the last (oldest). 000031 ** 000032 ** The PCache.pSynced variable is used to optimize searching for a dirty 000033 ** page to eject from the cache mid-transaction. It is better to eject 000034 ** a page that does not require a journal sync than one that does. 000035 ** Therefore, pSynced is maintained so that it *almost* always points 000036 ** to either the oldest page in the pDirty/pDirtyTail list that has a 000037 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one 000038 ** (so that the right page to eject can be found by following pDirtyPrev 000039 ** pointers). 000040 */ 000041 struct PCache { 000042 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ 000043 PgHdr *pSynced; /* Last synced page in dirty page list */ 000044 i64 nRefSum; /* Sum of ref counts over all pages */ 000045 int szCache; /* Configured cache size */ 000046 int szSpill; /* Size before spilling occurs */ 000047 int szPage; /* Size of every page in this cache */ 000048 int szExtra; /* Size of extra space for each page */ 000049 u8 bPurgeable; /* True if pages are on backing store */ 000050 u8 eCreate; /* eCreate value for for xFetch() */ 000051 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ 000052 void *pStress; /* Argument to xStress */ 000053 sqlite3_pcache *pCache; /* Pluggable cache module */ 000054 }; 000055 000056 /********************************** Test and Debug Logic **********************/ 000057 /* 000058 ** Debug tracing macros. Enable by by changing the "0" to "1" and 000059 ** recompiling. 000060 ** 000061 ** When sqlite3PcacheTrace is 1, single line trace messages are issued. 000062 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries 000063 ** is displayed for many operations, resulting in a lot of output. 000064 */ 000065 #if defined(SQLITE_DEBUG) && 0 000066 int sqlite3PcacheTrace = 2; /* 0: off 1: simple 2: cache dumps */ 000067 int sqlite3PcacheMxDump = 9999; /* Max cache entries for pcacheDump() */ 000068 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;} 000069 static void pcachePageTrace(int i, sqlite3_pcache_page *pLower){ 000070 PgHdr *pPg; 000071 unsigned char *a; 000072 int j; 000073 if( pLower==0 ){ 000074 printf("%3d: NULL\n", i); 000075 }else{ 000076 pPg = (PgHdr*)pLower->pExtra; 000077 printf("%3d: nRef %2lld flgs %02x data ", i, pPg->nRef, pPg->flags); 000078 a = (unsigned char *)pLower->pBuf; 000079 for(j=0; j<12; j++) printf("%02x", a[j]); 000080 printf(" ptr %p\n", pPg); 000081 } 000082 } 000083 static void pcacheDump(PCache *pCache){ 000084 int N; 000085 int i; 000086 sqlite3_pcache_page *pLower; 000087 000088 if( sqlite3PcacheTrace<2 ) return; 000089 if( pCache->pCache==0 ) return; 000090 N = sqlite3PcachePagecount(pCache); 000091 if( N>sqlite3PcacheMxDump ) N = sqlite3PcacheMxDump; 000092 for(i=1; i<=N; i++){ 000093 pLower = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, i, 0); 000094 pcachePageTrace(i, pLower); 000095 if( pLower && ((PgHdr*)pLower)->pPage==0 ){ 000096 sqlite3GlobalConfig.pcache2.xUnpin(pCache->pCache, pLower, 0); 000097 } 000098 } 000099 } 000100 #else 000101 # define pcacheTrace(X) 000102 # define pcachePageTrace(PGNO, X) 000103 # define pcacheDump(X) 000104 #endif 000105 000106 /* 000107 ** Return 1 if pPg is on the dirty list for pCache. Return 0 if not. 000108 ** This routine runs inside of assert() statements only. 000109 */ 000110 #if defined(SQLITE_ENABLE_EXPENSIVE_ASSERT) 000111 static int pageOnDirtyList(PCache *pCache, PgHdr *pPg){ 000112 PgHdr *p; 000113 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000114 if( p==pPg ) return 1; 000115 } 000116 return 0; 000117 } 000118 static int pageNotOnDirtyList(PCache *pCache, PgHdr *pPg){ 000119 PgHdr *p; 000120 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000121 if( p==pPg ) return 0; 000122 } 000123 return 1; 000124 } 000125 #else 000126 # define pageOnDirtyList(A,B) 1 000127 # define pageNotOnDirtyList(A,B) 1 000128 #endif 000129 000130 /* 000131 ** Check invariants on a PgHdr entry. Return true if everything is OK. 000132 ** Return false if any invariant is violated. 000133 ** 000134 ** This routine is for use inside of assert() statements only. For 000135 ** example: 000136 ** 000137 ** assert( sqlite3PcachePageSanity(pPg) ); 000138 */ 000139 #ifdef SQLITE_DEBUG 000140 int sqlite3PcachePageSanity(PgHdr *pPg){ 000141 PCache *pCache; 000142 assert( pPg!=0 ); 000143 assert( pPg->pgno>0 || pPg->pPager==0 ); /* Page number is 1 or more */ 000144 pCache = pPg->pCache; 000145 assert( pCache!=0 ); /* Every page has an associated PCache */ 000146 if( pPg->flags & PGHDR_CLEAN ){ 000147 assert( (pPg->flags & PGHDR_DIRTY)==0 );/* Cannot be both CLEAN and DIRTY */ 000148 assert( pageNotOnDirtyList(pCache, pPg) );/* CLEAN pages not on dirtylist */ 000149 }else{ 000150 assert( (pPg->flags & PGHDR_DIRTY)!=0 );/* If not CLEAN must be DIRTY */ 000151 assert( pPg->pDirtyNext==0 || pPg->pDirtyNext->pDirtyPrev==pPg ); 000152 assert( pPg->pDirtyPrev==0 || pPg->pDirtyPrev->pDirtyNext==pPg ); 000153 assert( pPg->pDirtyPrev!=0 || pCache->pDirty==pPg ); 000154 assert( pageOnDirtyList(pCache, pPg) ); 000155 } 000156 /* WRITEABLE pages must also be DIRTY */ 000157 if( pPg->flags & PGHDR_WRITEABLE ){ 000158 assert( pPg->flags & PGHDR_DIRTY ); /* WRITEABLE implies DIRTY */ 000159 } 000160 /* NEED_SYNC can be set independently of WRITEABLE. This can happen, 000161 ** for example, when using the sqlite3PagerDontWrite() optimization: 000162 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK. 000163 ** (2) Page X moved to freelist, WRITEABLE is cleared 000164 ** (3) Page X reused, WRITEABLE is set again 000165 ** If NEED_SYNC had been cleared in step 2, then it would not be reset 000166 ** in step 3, and page might be written into the database without first 000167 ** syncing the rollback journal, which might cause corruption on a power 000168 ** loss. 000169 ** 000170 ** Another example is when the database page size is smaller than the 000171 ** disk sector size. When any page of a sector is journalled, all pages 000172 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just 000173 ** in case they are later modified, since all pages in the same sector 000174 ** must be journalled and synced before any of those pages can be safely 000175 ** written. 000176 */ 000177 return 1; 000178 } 000179 #endif /* SQLITE_DEBUG */ 000180 000181 000182 /********************************** Linked List Management ********************/ 000183 000184 /* Allowed values for second argument to pcacheManageDirtyList() */ 000185 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ 000186 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ 000187 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ 000188 000189 /* 000190 ** Manage pPage's participation on the dirty list. Bits of the addRemove 000191 ** argument determines what operation to do. The 0x01 bit means first 000192 ** remove pPage from the dirty list. The 0x02 means add pPage back to 000193 ** the dirty list. Doing both moves pPage to the front of the dirty list. 000194 */ 000195 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ 000196 PCache *p = pPage->pCache; 000197 000198 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p, 000199 addRemove==1 ? "REMOVE" : addRemove==2 ? "ADD" : "FRONT", 000200 pPage->pgno)); 000201 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ 000202 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); 000203 assert( pPage->pDirtyPrev || pPage==p->pDirty ); 000204 000205 /* Update the PCache1.pSynced variable if necessary. */ 000206 if( p->pSynced==pPage ){ 000207 p->pSynced = pPage->pDirtyPrev; 000208 } 000209 000210 if( pPage->pDirtyNext ){ 000211 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; 000212 }else{ 000213 assert( pPage==p->pDirtyTail ); 000214 p->pDirtyTail = pPage->pDirtyPrev; 000215 } 000216 if( pPage->pDirtyPrev ){ 000217 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; 000218 }else{ 000219 /* If there are now no dirty pages in the cache, set eCreate to 2. 000220 ** This is an optimization that allows sqlite3PcacheFetch() to skip 000221 ** searching for a dirty page to eject from the cache when it might 000222 ** otherwise have to. */ 000223 assert( pPage==p->pDirty ); 000224 p->pDirty = pPage->pDirtyNext; 000225 assert( p->bPurgeable || p->eCreate==2 ); 000226 if( p->pDirty==0 ){ /*OPTIMIZATION-IF-TRUE*/ 000227 assert( p->bPurgeable==0 || p->eCreate==1 ); 000228 p->eCreate = 2; 000229 } 000230 } 000231 } 000232 if( addRemove & PCACHE_DIRTYLIST_ADD ){ 000233 pPage->pDirtyPrev = 0; 000234 pPage->pDirtyNext = p->pDirty; 000235 if( pPage->pDirtyNext ){ 000236 assert( pPage->pDirtyNext->pDirtyPrev==0 ); 000237 pPage->pDirtyNext->pDirtyPrev = pPage; 000238 }else{ 000239 p->pDirtyTail = pPage; 000240 if( p->bPurgeable ){ 000241 assert( p->eCreate==2 ); 000242 p->eCreate = 1; 000243 } 000244 } 000245 p->pDirty = pPage; 000246 000247 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set 000248 ** pSynced to point to it. Checking the NEED_SYNC flag is an 000249 ** optimization, as if pSynced points to a page with the NEED_SYNC 000250 ** flag set sqlite3PcacheFetchStress() searches through all newer 000251 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */ 000252 if( !p->pSynced 000253 && 0==(pPage->flags&PGHDR_NEED_SYNC) /*OPTIMIZATION-IF-FALSE*/ 000254 ){ 000255 p->pSynced = pPage; 000256 } 000257 } 000258 pcacheDump(p); 000259 } 000260 000261 /* 000262 ** Wrapper around the pluggable caches xUnpin method. If the cache is 000263 ** being used for an in-memory database, this function is a no-op. 000264 */ 000265 static void pcacheUnpin(PgHdr *p){ 000266 if( p->pCache->bPurgeable ){ 000267 pcacheTrace(("%p.UNPIN %d\n", p->pCache, p->pgno)); 000268 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); 000269 pcacheDump(p->pCache); 000270 } 000271 } 000272 000273 /* 000274 ** Compute the number of pages of cache requested. p->szCache is the 000275 ** cache size requested by the "PRAGMA cache_size" statement. 000276 */ 000277 static int numberOfCachePages(PCache *p){ 000278 if( p->szCache>=0 ){ 000279 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the 000280 ** suggested cache size is set to N. */ 000281 return p->szCache; 000282 }else{ 000283 i64 n; 000284 /* IMPLEMENTATION-OF: R-59858-46238 If the argument N is negative, then the 000285 ** number of cache pages is adjusted to be a number of pages that would 000286 ** use approximately abs(N*1024) bytes of memory based on the current 000287 ** page size. */ 000288 n = ((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); 000289 if( n>1000000000 ) n = 1000000000; 000290 return (int)n; 000291 } 000292 } 000293 000294 /*************************************************** General Interfaces ****** 000295 ** 000296 ** Initialize and shutdown the page cache subsystem. Neither of these 000297 ** functions are threadsafe. 000298 */ 000299 int sqlite3PcacheInitialize(void){ 000300 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 000301 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the 000302 ** built-in default page cache is used instead of the application defined 000303 ** page cache. */ 000304 sqlite3PCacheSetDefault(); 000305 assert( sqlite3GlobalConfig.pcache2.xInit!=0 ); 000306 } 000307 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); 000308 } 000309 void sqlite3PcacheShutdown(void){ 000310 if( sqlite3GlobalConfig.pcache2.xShutdown ){ 000311 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ 000312 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); 000313 } 000314 } 000315 000316 /* 000317 ** Return the size in bytes of a PCache object. 000318 */ 000319 int sqlite3PcacheSize(void){ return sizeof(PCache); } 000320 000321 /* 000322 ** Create a new PCache object. Storage space to hold the object 000323 ** has already been allocated and is passed in as the p pointer. 000324 ** The caller discovers how much space needs to be allocated by 000325 ** calling sqlite3PcacheSize(). 000326 ** 000327 ** szExtra is some extra space allocated for each page. The first 000328 ** 8 bytes of the extra space will be zeroed as the page is allocated, 000329 ** but remaining content will be uninitialized. Though it is opaque 000330 ** to this module, the extra space really ends up being the MemPage 000331 ** structure in the pager. 000332 */ 000333 int sqlite3PcacheOpen( 000334 int szPage, /* Size of every page */ 000335 int szExtra, /* Extra space associated with each page */ 000336 int bPurgeable, /* True if pages are on backing store */ 000337 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ 000338 void *pStress, /* Argument to xStress */ 000339 PCache *p /* Preallocated space for the PCache */ 000340 ){ 000341 memset(p, 0, sizeof(PCache)); 000342 p->szPage = 1; 000343 p->szExtra = szExtra; 000344 assert( szExtra>=8 ); /* First 8 bytes will be zeroed */ 000345 p->bPurgeable = bPurgeable; 000346 p->eCreate = 2; 000347 p->xStress = xStress; 000348 p->pStress = pStress; 000349 p->szCache = 100; 000350 p->szSpill = 1; 000351 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p,szPage,bPurgeable)); 000352 return sqlite3PcacheSetPageSize(p, szPage); 000353 } 000354 000355 /* 000356 ** Change the page size for PCache object. The caller must ensure that there 000357 ** are no outstanding page references when this function is called. 000358 */ 000359 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ 000360 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); 000361 if( pCache->szPage ){ 000362 sqlite3_pcache *pNew; 000363 pNew = sqlite3GlobalConfig.pcache2.xCreate( 000364 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), 000365 pCache->bPurgeable 000366 ); 000367 if( pNew==0 ) return SQLITE_NOMEM_BKPT; 000368 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); 000369 if( pCache->pCache ){ 000370 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 000371 } 000372 pCache->pCache = pNew; 000373 pCache->szPage = szPage; 000374 pcacheTrace(("%p.PAGESIZE %d\n",pCache,szPage)); 000375 } 000376 return SQLITE_OK; 000377 } 000378 000379 /* 000380 ** Try to obtain a page from the cache. 000381 ** 000382 ** This routine returns a pointer to an sqlite3_pcache_page object if 000383 ** such an object is already in cache, or if a new one is created. 000384 ** This routine returns a NULL pointer if the object was not in cache 000385 ** and could not be created. 000386 ** 000387 ** The createFlags should be 0 to check for existing pages and should 000388 ** be 3 (not 1, but 3) to try to create a new page. 000389 ** 000390 ** If the createFlag is 0, then NULL is always returned if the page 000391 ** is not already in the cache. If createFlag is 1, then a new page 000392 ** is created only if that can be done without spilling dirty pages 000393 ** and without exceeding the cache size limit. 000394 ** 000395 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly 000396 ** initialize the sqlite3_pcache_page object and convert it into a 000397 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() 000398 ** routines are split this way for performance reasons. When separated 000399 ** they can both (usually) operate without having to push values to 000400 ** the stack on entry and pop them back off on exit, which saves a 000401 ** lot of pushing and popping. 000402 */ 000403 sqlite3_pcache_page *sqlite3PcacheFetch( 000404 PCache *pCache, /* Obtain the page from this cache */ 000405 Pgno pgno, /* Page number to obtain */ 000406 int createFlag /* If true, create page if it does not exist already */ 000407 ){ 000408 int eCreate; 000409 sqlite3_pcache_page *pRes; 000410 000411 assert( pCache!=0 ); 000412 assert( pCache->pCache!=0 ); 000413 assert( createFlag==3 || createFlag==0 ); 000414 assert( pCache->eCreate==((pCache->bPurgeable && pCache->pDirty) ? 1 : 2) ); 000415 000416 /* eCreate defines what to do if the page does not exist. 000417 ** 0 Do not allocate a new page. (createFlag==0) 000418 ** 1 Allocate a new page if doing so is inexpensive. 000419 ** (createFlag==1 AND bPurgeable AND pDirty) 000420 ** 2 Allocate a new page even it doing so is difficult. 000421 ** (createFlag==1 AND !(bPurgeable AND pDirty) 000422 */ 000423 eCreate = createFlag & pCache->eCreate; 000424 assert( eCreate==0 || eCreate==1 || eCreate==2 ); 000425 assert( createFlag==0 || pCache->eCreate==eCreate ); 000426 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); 000427 pRes = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); 000428 pcacheTrace(("%p.FETCH %d%s (result: %p) ",pCache,pgno, 000429 createFlag?" create":"",pRes)); 000430 pcachePageTrace(pgno, pRes); 000431 return pRes; 000432 } 000433 000434 /* 000435 ** If the sqlite3PcacheFetch() routine is unable to allocate a new 000436 ** page because no clean pages are available for reuse and the cache 000437 ** size limit has been reached, then this routine can be invoked to 000438 ** try harder to allocate a page. This routine might invoke the stress 000439 ** callback to spill dirty pages to the journal. It will then try to 000440 ** allocate the new page and will only fail to allocate a new page on 000441 ** an OOM error. 000442 ** 000443 ** This routine should be invoked only after sqlite3PcacheFetch() fails. 000444 */ 000445 int sqlite3PcacheFetchStress( 000446 PCache *pCache, /* Obtain the page from this cache */ 000447 Pgno pgno, /* Page number to obtain */ 000448 sqlite3_pcache_page **ppPage /* Write result here */ 000449 ){ 000450 PgHdr *pPg; 000451 if( pCache->eCreate==2 ) return 0; 000452 000453 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ 000454 /* Find a dirty page to write-out and recycle. First try to find a 000455 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC 000456 ** cleared), but if that is not possible settle for any other 000457 ** unreferenced dirty page. 000458 ** 000459 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC 000460 ** flag is currently referenced, then the following may leave pSynced 000461 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC 000462 ** cleared). This is Ok, as pSynced is just an optimization. */ 000463 for(pPg=pCache->pSynced; 000464 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 000465 pPg=pPg->pDirtyPrev 000466 ); 000467 pCache->pSynced = pPg; 000468 if( !pPg ){ 000469 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); 000470 } 000471 if( pPg ){ 000472 int rc; 000473 #ifdef SQLITE_LOG_CACHE_SPILL 000474 sqlite3_log(SQLITE_FULL, 000475 "spill page %d making room for %d - cache used: %d/%d", 000476 pPg->pgno, pgno, 000477 sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache), 000478 numberOfCachePages(pCache)); 000479 #endif 000480 pcacheTrace(("%p.SPILL %d\n",pCache,pPg->pgno)); 000481 rc = pCache->xStress(pCache->pStress, pPg); 000482 pcacheDump(pCache); 000483 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ 000484 return rc; 000485 } 000486 } 000487 } 000488 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); 000489 return *ppPage==0 ? SQLITE_NOMEM_BKPT : SQLITE_OK; 000490 } 000491 000492 /* 000493 ** This is a helper routine for sqlite3PcacheFetchFinish() 000494 ** 000495 ** In the uncommon case where the page being fetched has not been 000496 ** initialized, this routine is invoked to do the initialization. 000497 ** This routine is broken out into a separate function since it 000498 ** requires extra stack manipulation that can be avoided in the common 000499 ** case. 000500 */ 000501 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( 000502 PCache *pCache, /* Obtain the page from this cache */ 000503 Pgno pgno, /* Page number obtained */ 000504 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 000505 ){ 000506 PgHdr *pPgHdr; 000507 assert( pPage!=0 ); 000508 pPgHdr = (PgHdr*)pPage->pExtra; 000509 assert( pPgHdr->pPage==0 ); 000510 memset(&pPgHdr->pDirty, 0, sizeof(PgHdr) - offsetof(PgHdr,pDirty)); 000511 pPgHdr->pPage = pPage; 000512 pPgHdr->pData = pPage->pBuf; 000513 pPgHdr->pExtra = (void *)&pPgHdr[1]; 000514 memset(pPgHdr->pExtra, 0, 8); 000515 pPgHdr->pCache = pCache; 000516 pPgHdr->pgno = pgno; 000517 pPgHdr->flags = PGHDR_CLEAN; 000518 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); 000519 } 000520 000521 /* 000522 ** This routine converts the sqlite3_pcache_page object returned by 000523 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine 000524 ** must be called after sqlite3PcacheFetch() in order to get a usable 000525 ** result. 000526 */ 000527 PgHdr *sqlite3PcacheFetchFinish( 000528 PCache *pCache, /* Obtain the page from this cache */ 000529 Pgno pgno, /* Page number obtained */ 000530 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ 000531 ){ 000532 PgHdr *pPgHdr; 000533 000534 assert( pPage!=0 ); 000535 pPgHdr = (PgHdr *)pPage->pExtra; 000536 000537 if( !pPgHdr->pPage ){ 000538 return pcacheFetchFinishWithInit(pCache, pgno, pPage); 000539 } 000540 pCache->nRefSum++; 000541 pPgHdr->nRef++; 000542 assert( sqlite3PcachePageSanity(pPgHdr) ); 000543 return pPgHdr; 000544 } 000545 000546 /* 000547 ** Decrement the reference count on a page. If the page is clean and the 000548 ** reference count drops to 0, then it is made eligible for recycling. 000549 */ 000550 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ 000551 assert( p->nRef>0 ); 000552 p->pCache->nRefSum--; 000553 if( (--p->nRef)==0 ){ 000554 if( p->flags&PGHDR_CLEAN ){ 000555 pcacheUnpin(p); 000556 }else{ 000557 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 000558 assert( sqlite3PcachePageSanity(p) ); 000559 } 000560 } 000561 } 000562 000563 /* 000564 ** Increase the reference count of a supplied page by 1. 000565 */ 000566 void sqlite3PcacheRef(PgHdr *p){ 000567 assert(p->nRef>0); 000568 assert( sqlite3PcachePageSanity(p) ); 000569 p->nRef++; 000570 p->pCache->nRefSum++; 000571 } 000572 000573 /* 000574 ** Drop a page from the cache. There must be exactly one reference to the 000575 ** page. This function deletes that reference, so after it returns the 000576 ** page pointed to by p is invalid. 000577 */ 000578 void sqlite3PcacheDrop(PgHdr *p){ 000579 assert( p->nRef==1 ); 000580 assert( sqlite3PcachePageSanity(p) ); 000581 if( p->flags&PGHDR_DIRTY ){ 000582 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 000583 } 000584 p->pCache->nRefSum--; 000585 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); 000586 } 000587 000588 /* 000589 ** Make sure the page is marked as dirty. If it isn't dirty already, 000590 ** make it so. 000591 */ 000592 void sqlite3PcacheMakeDirty(PgHdr *p){ 000593 assert( p->nRef>0 ); 000594 assert( sqlite3PcachePageSanity(p) ); 000595 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ /*OPTIMIZATION-IF-FALSE*/ 000596 p->flags &= ~PGHDR_DONT_WRITE; 000597 if( p->flags & PGHDR_CLEAN ){ 000598 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); 000599 pcacheTrace(("%p.DIRTY %d\n",p->pCache,p->pgno)); 000600 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); 000601 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); 000602 assert( sqlite3PcachePageSanity(p) ); 000603 } 000604 assert( sqlite3PcachePageSanity(p) ); 000605 } 000606 } 000607 000608 /* 000609 ** Make sure the page is marked as clean. If it isn't clean already, 000610 ** make it so. 000611 */ 000612 void sqlite3PcacheMakeClean(PgHdr *p){ 000613 assert( sqlite3PcachePageSanity(p) ); 000614 assert( (p->flags & PGHDR_DIRTY)!=0 ); 000615 assert( (p->flags & PGHDR_CLEAN)==0 ); 000616 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); 000617 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 000618 p->flags |= PGHDR_CLEAN; 000619 pcacheTrace(("%p.CLEAN %d\n",p->pCache,p->pgno)); 000620 assert( sqlite3PcachePageSanity(p) ); 000621 if( p->nRef==0 ){ 000622 pcacheUnpin(p); 000623 } 000624 } 000625 000626 /* 000627 ** Make every page in the cache clean. 000628 */ 000629 void sqlite3PcacheCleanAll(PCache *pCache){ 000630 PgHdr *p; 000631 pcacheTrace(("%p.CLEAN-ALL\n",pCache)); 000632 while( (p = pCache->pDirty)!=0 ){ 000633 sqlite3PcacheMakeClean(p); 000634 } 000635 } 000636 000637 /* 000638 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages. 000639 */ 000640 void sqlite3PcacheClearWritable(PCache *pCache){ 000641 PgHdr *p; 000642 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache)); 000643 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000644 p->flags &= ~(PGHDR_NEED_SYNC|PGHDR_WRITEABLE); 000645 } 000646 pCache->pSynced = pCache->pDirtyTail; 000647 } 000648 000649 /* 000650 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. 000651 */ 000652 void sqlite3PcacheClearSyncFlags(PCache *pCache){ 000653 PgHdr *p; 000654 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000655 p->flags &= ~PGHDR_NEED_SYNC; 000656 } 000657 pCache->pSynced = pCache->pDirtyTail; 000658 } 000659 000660 /* 000661 ** Change the page number of page p to newPgno. 000662 */ 000663 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ 000664 PCache *pCache = p->pCache; 000665 sqlite3_pcache_page *pOther; 000666 assert( p->nRef>0 ); 000667 assert( newPgno>0 ); 000668 assert( sqlite3PcachePageSanity(p) ); 000669 pcacheTrace(("%p.MOVE %d -> %d\n",pCache,p->pgno,newPgno)); 000670 pOther = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, newPgno, 0); 000671 if( pOther ){ 000672 PgHdr *pXPage = (PgHdr*)pOther->pExtra; 000673 assert( pXPage->nRef==0 ); 000674 pXPage->nRef++; 000675 pCache->nRefSum++; 000676 sqlite3PcacheDrop(pXPage); 000677 } 000678 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); 000679 p->pgno = newPgno; 000680 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ 000681 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); 000682 assert( sqlite3PcachePageSanity(p) ); 000683 } 000684 } 000685 000686 /* 000687 ** Drop every cache entry whose page number is greater than "pgno". The 000688 ** caller must ensure that there are no outstanding references to any pages 000689 ** other than page 1 with a page number greater than pgno. 000690 ** 000691 ** If there is a reference to page 1 and the pgno parameter passed to this 000692 ** function is 0, then the data area associated with page 1 is zeroed, but 000693 ** the page object is not dropped. 000694 */ 000695 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ 000696 if( pCache->pCache ){ 000697 PgHdr *p; 000698 PgHdr *pNext; 000699 pcacheTrace(("%p.TRUNCATE %d\n",pCache,pgno)); 000700 for(p=pCache->pDirty; p; p=pNext){ 000701 pNext = p->pDirtyNext; 000702 /* This routine never gets call with a positive pgno except right 000703 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, 000704 ** it must be that pgno==0. 000705 */ 000706 assert( p->pgno>0 ); 000707 if( p->pgno>pgno ){ 000708 assert( p->flags&PGHDR_DIRTY ); 000709 sqlite3PcacheMakeClean(p); 000710 } 000711 } 000712 if( pgno==0 && pCache->nRefSum ){ 000713 sqlite3_pcache_page *pPage1; 000714 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); 000715 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because 000716 ** pCache->nRefSum>0 */ 000717 memset(pPage1->pBuf, 0, pCache->szPage); 000718 pgno = 1; 000719 } 000720 } 000721 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); 000722 } 000723 } 000724 000725 /* 000726 ** Close a cache. 000727 */ 000728 void sqlite3PcacheClose(PCache *pCache){ 000729 assert( pCache->pCache!=0 ); 000730 pcacheTrace(("%p.CLOSE\n",pCache)); 000731 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); 000732 } 000733 000734 /* 000735 ** Discard the contents of the cache. 000736 */ 000737 void sqlite3PcacheClear(PCache *pCache){ 000738 sqlite3PcacheTruncate(pCache, 0); 000739 } 000740 000741 /* 000742 ** Merge two lists of pages connected by pDirty and in pgno order. 000743 ** Do not bother fixing the pDirtyPrev pointers. 000744 */ 000745 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ 000746 PgHdr result, *pTail; 000747 pTail = &result; 000748 assert( pA!=0 && pB!=0 ); 000749 for(;;){ 000750 if( pA->pgno<pB->pgno ){ 000751 pTail->pDirty = pA; 000752 pTail = pA; 000753 pA = pA->pDirty; 000754 if( pA==0 ){ 000755 pTail->pDirty = pB; 000756 break; 000757 } 000758 }else{ 000759 pTail->pDirty = pB; 000760 pTail = pB; 000761 pB = pB->pDirty; 000762 if( pB==0 ){ 000763 pTail->pDirty = pA; 000764 break; 000765 } 000766 } 000767 } 000768 return result.pDirty; 000769 } 000770 000771 /* 000772 ** Sort the list of pages in ascending order by pgno. Pages are 000773 ** connected by pDirty pointers. The pDirtyPrev pointers are 000774 ** corrupted by this sort. 000775 ** 000776 ** Since there cannot be more than 2^31 distinct pages in a database, 000777 ** there cannot be more than 31 buckets required by the merge sorter. 000778 ** One extra bucket is added to catch overflow in case something 000779 ** ever changes to make the previous sentence incorrect. 000780 */ 000781 #define N_SORT_BUCKET 32 000782 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ 000783 PgHdr *a[N_SORT_BUCKET], *p; 000784 int i; 000785 memset(a, 0, sizeof(a)); 000786 while( pIn ){ 000787 p = pIn; 000788 pIn = p->pDirty; 000789 p->pDirty = 0; 000790 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ 000791 if( a[i]==0 ){ 000792 a[i] = p; 000793 break; 000794 }else{ 000795 p = pcacheMergeDirtyList(a[i], p); 000796 a[i] = 0; 000797 } 000798 } 000799 if( NEVER(i==N_SORT_BUCKET-1) ){ 000800 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in 000801 ** the input list. But that is impossible. 000802 */ 000803 a[i] = pcacheMergeDirtyList(a[i], p); 000804 } 000805 } 000806 p = a[0]; 000807 for(i=1; i<N_SORT_BUCKET; i++){ 000808 if( a[i]==0 ) continue; 000809 p = p ? pcacheMergeDirtyList(p, a[i]) : a[i]; 000810 } 000811 return p; 000812 } 000813 000814 /* 000815 ** Return a list of all dirty pages in the cache, sorted by page number. 000816 */ 000817 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ 000818 PgHdr *p; 000819 for(p=pCache->pDirty; p; p=p->pDirtyNext){ 000820 p->pDirty = p->pDirtyNext; 000821 } 000822 return pcacheSortDirtyList(pCache->pDirty); 000823 } 000824 000825 /* 000826 ** Return the total number of references to all pages held by the cache. 000827 ** 000828 ** This is not the total number of pages referenced, but the sum of the 000829 ** reference count for all pages. 000830 */ 000831 i64 sqlite3PcacheRefCount(PCache *pCache){ 000832 return pCache->nRefSum; 000833 } 000834 000835 /* 000836 ** Return the number of references to the page supplied as an argument. 000837 */ 000838 i64 sqlite3PcachePageRefcount(PgHdr *p){ 000839 return p->nRef; 000840 } 000841 000842 /* 000843 ** Return the total number of pages in the cache. 000844 */ 000845 int sqlite3PcachePagecount(PCache *pCache){ 000846 assert( pCache->pCache!=0 ); 000847 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); 000848 } 000849 000850 #ifdef SQLITE_TEST 000851 /* 000852 ** Get the suggested cache-size value. 000853 */ 000854 int sqlite3PcacheGetCachesize(PCache *pCache){ 000855 return numberOfCachePages(pCache); 000856 } 000857 #endif 000858 000859 /* 000860 ** Set the suggested cache-size value. 000861 */ 000862 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ 000863 assert( pCache->pCache!=0 ); 000864 pCache->szCache = mxPage; 000865 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, 000866 numberOfCachePages(pCache)); 000867 } 000868 000869 /* 000870 ** Set the suggested cache-spill value. Make no changes if if the 000871 ** argument is zero. Return the effective cache-spill size, which will 000872 ** be the larger of the szSpill and szCache. 000873 */ 000874 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ 000875 int res; 000876 assert( p->pCache!=0 ); 000877 if( mxPage ){ 000878 if( mxPage<0 ){ 000879 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); 000880 } 000881 p->szSpill = mxPage; 000882 } 000883 res = numberOfCachePages(p); 000884 if( res<p->szSpill ) res = p->szSpill; 000885 return res; 000886 } 000887 000888 /* 000889 ** Free up as much memory as possible from the page cache. 000890 */ 000891 void sqlite3PcacheShrink(PCache *pCache){ 000892 assert( pCache->pCache!=0 ); 000893 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); 000894 } 000895 000896 /* 000897 ** Return the size of the header added by this middleware layer 000898 ** in the page-cache hierarchy. 000899 */ 000900 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } 000901 000902 /* 000903 ** Return the number of dirty pages currently in the cache, as a percentage 000904 ** of the configured cache size. 000905 */ 000906 int sqlite3PCachePercentDirty(PCache *pCache){ 000907 PgHdr *pDirty; 000908 int nDirty = 0; 000909 int nCache = numberOfCachePages(pCache); 000910 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; 000911 return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; 000912 } 000913 000914 #ifdef SQLITE_DIRECT_OVERFLOW_READ 000915 /* 000916 ** Return true if there are one or more dirty pages in the cache. Else false. 000917 */ 000918 int sqlite3PCacheIsDirty(PCache *pCache){ 000919 return (pCache->pDirty!=0); 000920 } 000921 #endif 000922 000923 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) 000924 /* 000925 ** For all dirty pages currently in the cache, invoke the specified 000926 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is 000927 ** defined. 000928 */ 000929 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ 000930 PgHdr *pDirty; 000931 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ 000932 xIter(pDirty); 000933 } 000934 } 000935 #endif