000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** 000013 ** Memory allocation functions used throughout sqlite. 000014 */ 000015 #include "sqliteInt.h" 000016 #include <stdarg.h> 000017 000018 /* 000019 ** Attempt to release up to n bytes of non-essential memory currently 000020 ** held by SQLite. An example of non-essential memory is memory used to 000021 ** cache database pages that are not currently in use. 000022 */ 000023 int sqlite3_release_memory(int n){ 000024 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000025 return sqlite3PcacheReleaseMemory(n); 000026 #else 000027 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 000028 ** is a no-op returning zero if SQLite is not compiled with 000029 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 000030 UNUSED_PARAMETER(n); 000031 return 0; 000032 #endif 000033 } 000034 000035 /* 000036 ** Default value of the hard heap limit. 0 means "no limit". 000037 */ 000038 #ifndef SQLITE_MAX_MEMORY 000039 # define SQLITE_MAX_MEMORY 0 000040 #endif 000041 000042 /* 000043 ** State information local to the memory allocation subsystem. 000044 */ 000045 static SQLITE_WSD struct Mem0Global { 000046 sqlite3_mutex *mutex; /* Mutex to serialize access */ 000047 sqlite3_int64 alarmThreshold; /* The soft heap limit */ 000048 sqlite3_int64 hardLimit; /* The hard upper bound on memory */ 000049 000050 /* 000051 ** True if heap is nearly "full" where "full" is defined by the 000052 ** sqlite3_soft_heap_limit() setting. 000053 */ 000054 int nearlyFull; 000055 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; 000056 000057 #define mem0 GLOBAL(struct Mem0Global, mem0) 000058 000059 /* 000060 ** Return the memory allocator mutex. sqlite3_status() needs it. 000061 */ 000062 sqlite3_mutex *sqlite3MallocMutex(void){ 000063 return mem0.mutex; 000064 } 000065 000066 #ifndef SQLITE_OMIT_DEPRECATED 000067 /* 000068 ** Deprecated external interface. It used to set an alarm callback 000069 ** that was invoked when memory usage grew too large. Now it is a 000070 ** no-op. 000071 */ 000072 int sqlite3_memory_alarm( 000073 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 000074 void *pArg, 000075 sqlite3_int64 iThreshold 000076 ){ 000077 (void)xCallback; 000078 (void)pArg; 000079 (void)iThreshold; 000080 return SQLITE_OK; 000081 } 000082 #endif 000083 000084 /* 000085 ** Set the soft heap-size limit for the library. An argument of 000086 ** zero disables the limit. A negative argument is a no-op used to 000087 ** obtain the return value. 000088 ** 000089 ** The return value is the value of the heap limit just before this 000090 ** interface was called. 000091 ** 000092 ** If the hard heap limit is enabled, then the soft heap limit cannot 000093 ** be disabled nor raised above the hard heap limit. 000094 */ 000095 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 000096 sqlite3_int64 priorLimit; 000097 sqlite3_int64 excess; 000098 sqlite3_int64 nUsed; 000099 #ifndef SQLITE_OMIT_AUTOINIT 000100 int rc = sqlite3_initialize(); 000101 if( rc ) return -1; 000102 #endif 000103 sqlite3_mutex_enter(mem0.mutex); 000104 priorLimit = mem0.alarmThreshold; 000105 if( n<0 ){ 000106 sqlite3_mutex_leave(mem0.mutex); 000107 return priorLimit; 000108 } 000109 if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ 000110 n = mem0.hardLimit; 000111 } 000112 mem0.alarmThreshold = n; 000113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000114 AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed); 000115 sqlite3_mutex_leave(mem0.mutex); 000116 excess = sqlite3_memory_used() - n; 000117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 000118 return priorLimit; 000119 } 000120 void sqlite3_soft_heap_limit(int n){ 000121 if( n<0 ) n = 0; 000122 sqlite3_soft_heap_limit64(n); 000123 } 000124 000125 /* 000126 ** Set the hard heap-size limit for the library. An argument of zero 000127 ** disables the hard heap limit. A negative argument is a no-op used 000128 ** to obtain the return value without affecting the hard heap limit. 000129 ** 000130 ** The return value is the value of the hard heap limit just prior to 000131 ** calling this interface. 000132 ** 000133 ** Setting the hard heap limit will also activate the soft heap limit 000134 ** and constrain the soft heap limit to be no more than the hard heap 000135 ** limit. 000136 */ 000137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ 000138 sqlite3_int64 priorLimit; 000139 #ifndef SQLITE_OMIT_AUTOINIT 000140 int rc = sqlite3_initialize(); 000141 if( rc ) return -1; 000142 #endif 000143 sqlite3_mutex_enter(mem0.mutex); 000144 priorLimit = mem0.hardLimit; 000145 if( n>=0 ){ 000146 mem0.hardLimit = n; 000147 if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){ 000148 mem0.alarmThreshold = n; 000149 } 000150 } 000151 sqlite3_mutex_leave(mem0.mutex); 000152 return priorLimit; 000153 } 000154 000155 000156 /* 000157 ** Initialize the memory allocation subsystem. 000158 */ 000159 int sqlite3MallocInit(void){ 000160 int rc; 000161 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 000162 sqlite3MemSetDefault(); 000163 } 000164 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 000165 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 000166 || sqlite3GlobalConfig.nPage<=0 ){ 000167 sqlite3GlobalConfig.pPage = 0; 000168 sqlite3GlobalConfig.szPage = 0; 000169 } 000170 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 000171 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 000172 return rc; 000173 } 000174 000175 /* 000176 ** Return true if the heap is currently under memory pressure - in other 000177 ** words if the amount of heap used is close to the limit set by 000178 ** sqlite3_soft_heap_limit(). 000179 */ 000180 int sqlite3HeapNearlyFull(void){ 000181 return AtomicLoad(&mem0.nearlyFull); 000182 } 000183 000184 /* 000185 ** Deinitialize the memory allocation subsystem. 000186 */ 000187 void sqlite3MallocEnd(void){ 000188 if( sqlite3GlobalConfig.m.xShutdown ){ 000189 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 000190 } 000191 memset(&mem0, 0, sizeof(mem0)); 000192 } 000193 000194 /* 000195 ** Return the amount of memory currently checked out. 000196 */ 000197 sqlite3_int64 sqlite3_memory_used(void){ 000198 sqlite3_int64 res, mx; 000199 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 000200 return res; 000201 } 000202 000203 /* 000204 ** Return the maximum amount of memory that has ever been 000205 ** checked out since either the beginning of this process 000206 ** or since the most recent reset. 000207 */ 000208 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 000209 sqlite3_int64 res, mx; 000210 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 000211 return mx; 000212 } 000213 000214 /* 000215 ** Trigger the alarm 000216 */ 000217 static void sqlite3MallocAlarm(int nByte){ 000218 if( mem0.alarmThreshold<=0 ) return; 000219 sqlite3_mutex_leave(mem0.mutex); 000220 sqlite3_release_memory(nByte); 000221 sqlite3_mutex_enter(mem0.mutex); 000222 } 000223 000224 #ifdef SQLITE_DEBUG 000225 /* 000226 ** This routine is called whenever an out-of-memory condition is seen, 000227 ** It's only purpose to to serve as a breakpoint for gdb or similar 000228 ** code debuggers when working on out-of-memory conditions, for example 000229 ** caused by PRAGMA hard_heap_limit=N. 000230 */ 000231 static SQLITE_NOINLINE void test_oom_breakpoint(u64 n){ 000232 static u64 nOomFault = 0; 000233 nOomFault += n; 000234 /* The assert() is never reached in a human lifetime. It is here mostly 000235 ** to prevent code optimizers from optimizing out this function. */ 000236 assert( (nOomFault>>32) < 0xffffffff ); 000237 } 000238 #else 000239 # define test_oom_breakpoint(X) /* No-op for production builds */ 000240 #endif 000241 000242 /* 000243 ** Do a memory allocation with statistics and alarms. Assume the 000244 ** lock is already held. 000245 */ 000246 static void mallocWithAlarm(int n, void **pp){ 000247 void *p; 000248 int nFull; 000249 assert( sqlite3_mutex_held(mem0.mutex) ); 000250 assert( n>0 ); 000251 000252 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal 000253 ** implementation of malloc_good_size(), which must be called in debug 000254 ** mode and specifically when the DMD "Dark Matter Detector" is enabled 000255 ** or else a crash results. Hence, do not attempt to optimize out the 000256 ** following xRoundup() call. */ 000257 nFull = sqlite3GlobalConfig.m.xRoundup(n); 000258 000259 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); 000260 if( mem0.alarmThreshold>0 ){ 000261 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000262 if( nUsed >= mem0.alarmThreshold - nFull ){ 000263 AtomicStore(&mem0.nearlyFull, 1); 000264 sqlite3MallocAlarm(nFull); 000265 if( mem0.hardLimit ){ 000266 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 000267 if( nUsed >= mem0.hardLimit - nFull ){ 000268 test_oom_breakpoint(1); 000269 *pp = 0; 000270 return; 000271 } 000272 } 000273 }else{ 000274 AtomicStore(&mem0.nearlyFull, 0); 000275 } 000276 } 000277 p = sqlite3GlobalConfig.m.xMalloc(nFull); 000278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000279 if( p==0 && mem0.alarmThreshold>0 ){ 000280 sqlite3MallocAlarm(nFull); 000281 p = sqlite3GlobalConfig.m.xMalloc(nFull); 000282 } 000283 #endif 000284 if( p ){ 000285 nFull = sqlite3MallocSize(p); 000286 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 000287 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 000288 } 000289 *pp = p; 000290 } 000291 000292 /* 000293 ** Maximum size of any single memory allocation. 000294 ** 000295 ** This is not a limit on the total amount of memory used. This is 000296 ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc(). 000297 ** 000298 ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391 000299 ** This provides a 256-byte safety margin for defense against 32-bit 000300 ** signed integer overflow bugs when computing memory allocation sizes. 000301 ** Paranoid applications might want to reduce the maximum allocation size 000302 ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff 000303 ** or even smaller would be reasonable upper bounds on the size of a memory 000304 ** allocations for most applications. 000305 */ 000306 #ifndef SQLITE_MAX_ALLOCATION_SIZE 000307 # define SQLITE_MAX_ALLOCATION_SIZE 2147483391 000308 #endif 000309 #if SQLITE_MAX_ALLOCATION_SIZE>2147483391 000310 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391 000311 #endif 000312 000313 /* 000314 ** Allocate memory. This routine is like sqlite3_malloc() except that it 000315 ** assumes the memory subsystem has already been initialized. 000316 */ 000317 void *sqlite3Malloc(u64 n){ 000318 void *p; 000319 if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){ 000320 p = 0; 000321 }else if( sqlite3GlobalConfig.bMemstat ){ 000322 sqlite3_mutex_enter(mem0.mutex); 000323 mallocWithAlarm((int)n, &p); 000324 sqlite3_mutex_leave(mem0.mutex); 000325 }else{ 000326 p = sqlite3GlobalConfig.m.xMalloc((int)n); 000327 } 000328 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 000329 return p; 000330 } 000331 000332 /* 000333 ** This version of the memory allocation is for use by the application. 000334 ** First make sure the memory subsystem is initialized, then do the 000335 ** allocation. 000336 */ 000337 void *sqlite3_malloc(int n){ 000338 #ifndef SQLITE_OMIT_AUTOINIT 000339 if( sqlite3_initialize() ) return 0; 000340 #endif 000341 return n<=0 ? 0 : sqlite3Malloc(n); 000342 } 000343 void *sqlite3_malloc64(sqlite3_uint64 n){ 000344 #ifndef SQLITE_OMIT_AUTOINIT 000345 if( sqlite3_initialize() ) return 0; 000346 #endif 000347 return sqlite3Malloc(n); 000348 } 000349 000350 /* 000351 ** TRUE if p is a lookaside memory allocation from db 000352 */ 000353 #ifndef SQLITE_OMIT_LOOKASIDE 000354 static int isLookaside(sqlite3 *db, const void *p){ 000355 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd); 000356 } 000357 #else 000358 #define isLookaside(A,B) 0 000359 #endif 000360 000361 /* 000362 ** Return the size of a memory allocation previously obtained from 000363 ** sqlite3Malloc() or sqlite3_malloc(). 000364 */ 000365 int sqlite3MallocSize(const void *p){ 000366 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000367 return sqlite3GlobalConfig.m.xSize((void*)p); 000368 } 000369 static int lookasideMallocSize(sqlite3 *db, const void *p){ 000370 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000371 return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL; 000372 #else 000373 return db->lookaside.szTrue; 000374 #endif 000375 } 000376 int sqlite3DbMallocSize(sqlite3 *db, const void *p){ 000377 assert( p!=0 ); 000378 #ifdef SQLITE_DEBUG 000379 if( db==0 ){ 000380 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000381 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000382 }else if( !isLookaside(db,p) ){ 000383 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000384 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000385 } 000386 #endif 000387 if( db ){ 000388 if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){ 000389 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000390 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000391 assert( sqlite3_mutex_held(db->mutex) ); 000392 return LOOKASIDE_SMALL; 000393 } 000394 #endif 000395 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000396 assert( sqlite3_mutex_held(db->mutex) ); 000397 return db->lookaside.szTrue; 000398 } 000399 } 000400 } 000401 return sqlite3GlobalConfig.m.xSize((void*)p); 000402 } 000403 sqlite3_uint64 sqlite3_msize(void *p){ 000404 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000405 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000406 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; 000407 } 000408 000409 /* 000410 ** Free memory previously obtained from sqlite3Malloc(). 000411 */ 000412 void sqlite3_free(void *p){ 000413 if( p==0 ) return; /* IMP: R-49053-54554 */ 000414 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 000415 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 000416 if( sqlite3GlobalConfig.bMemstat ){ 000417 sqlite3_mutex_enter(mem0.mutex); 000418 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 000419 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 000420 sqlite3GlobalConfig.m.xFree(p); 000421 sqlite3_mutex_leave(mem0.mutex); 000422 }else{ 000423 sqlite3GlobalConfig.m.xFree(p); 000424 } 000425 } 000426 000427 /* 000428 ** Add the size of memory allocation "p" to the count in 000429 ** *db->pnBytesFreed. 000430 */ 000431 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 000432 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 000433 } 000434 000435 /* 000436 ** Free memory that might be associated with a particular database 000437 ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. 000438 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. 000439 */ 000440 void sqlite3DbFreeNN(sqlite3 *db, void *p){ 000441 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 000442 assert( p!=0 ); 000443 if( db ){ 000444 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ 000445 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000446 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000447 LookasideSlot *pBuf = (LookasideSlot*)p; 000448 assert( db->pnBytesFreed==0 ); 000449 #ifdef SQLITE_DEBUG 000450 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ 000451 #endif 000452 pBuf->pNext = db->lookaside.pSmallFree; 000453 db->lookaside.pSmallFree = pBuf; 000454 return; 000455 } 000456 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000457 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000458 LookasideSlot *pBuf = (LookasideSlot*)p; 000459 assert( db->pnBytesFreed==0 ); 000460 #ifdef SQLITE_DEBUG 000461 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ 000462 #endif 000463 pBuf->pNext = db->lookaside.pFree; 000464 db->lookaside.pFree = pBuf; 000465 return; 000466 } 000467 } 000468 if( db->pnBytesFreed ){ 000469 measureAllocationSize(db, p); 000470 return; 000471 } 000472 } 000473 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000474 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000475 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 000476 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000477 sqlite3_free(p); 000478 } 000479 void sqlite3DbNNFreeNN(sqlite3 *db, void *p){ 000480 assert( db!=0 ); 000481 assert( sqlite3_mutex_held(db->mutex) ); 000482 assert( p!=0 ); 000483 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){ 000484 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000485 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){ 000486 LookasideSlot *pBuf = (LookasideSlot*)p; 000487 assert( db->pnBytesFreed==0 ); 000488 #ifdef SQLITE_DEBUG 000489 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */ 000490 #endif 000491 pBuf->pNext = db->lookaside.pSmallFree; 000492 db->lookaside.pSmallFree = pBuf; 000493 return; 000494 } 000495 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000496 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){ 000497 LookasideSlot *pBuf = (LookasideSlot*)p; 000498 assert( db->pnBytesFreed==0 ); 000499 #ifdef SQLITE_DEBUG 000500 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */ 000501 #endif 000502 pBuf->pNext = db->lookaside.pFree; 000503 db->lookaside.pFree = pBuf; 000504 return; 000505 } 000506 } 000507 if( db->pnBytesFreed ){ 000508 measureAllocationSize(db, p); 000509 return; 000510 } 000511 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000512 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000513 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000514 sqlite3_free(p); 000515 } 000516 void sqlite3DbFree(sqlite3 *db, void *p){ 000517 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 000518 if( p ) sqlite3DbFreeNN(db, p); 000519 } 000520 000521 /* 000522 ** Change the size of an existing memory allocation 000523 */ 000524 void *sqlite3Realloc(void *pOld, u64 nBytes){ 000525 int nOld, nNew, nDiff; 000526 void *pNew; 000527 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 000528 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 000529 if( pOld==0 ){ 000530 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 000531 } 000532 if( nBytes==0 ){ 000533 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 000534 return 0; 000535 } 000536 if( nBytes>=0x7fffff00 ){ 000537 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 000538 return 0; 000539 } 000540 nOld = sqlite3MallocSize(pOld); 000541 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 000542 ** argument to xRealloc is always a value returned by a prior call to 000543 ** xRoundup. */ 000544 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 000545 if( nOld==nNew ){ 000546 pNew = pOld; 000547 }else if( sqlite3GlobalConfig.bMemstat ){ 000548 sqlite3_int64 nUsed; 000549 sqlite3_mutex_enter(mem0.mutex); 000550 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 000551 nDiff = nNew - nOld; 000552 if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= 000553 mem0.alarmThreshold-nDiff ){ 000554 sqlite3MallocAlarm(nDiff); 000555 if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){ 000556 sqlite3_mutex_leave(mem0.mutex); 000557 test_oom_breakpoint(1); 000558 return 0; 000559 } 000560 } 000561 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000562 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 000563 if( pNew==0 && mem0.alarmThreshold>0 ){ 000564 sqlite3MallocAlarm((int)nBytes); 000565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000566 } 000567 #endif 000568 if( pNew ){ 000569 nNew = sqlite3MallocSize(pNew); 000570 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 000571 } 000572 sqlite3_mutex_leave(mem0.mutex); 000573 }else{ 000574 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 000575 } 000576 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 000577 return pNew; 000578 } 000579 000580 /* 000581 ** The public interface to sqlite3Realloc. Make sure that the memory 000582 ** subsystem is initialized prior to invoking sqliteRealloc. 000583 */ 000584 void *sqlite3_realloc(void *pOld, int n){ 000585 #ifndef SQLITE_OMIT_AUTOINIT 000586 if( sqlite3_initialize() ) return 0; 000587 #endif 000588 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 000589 return sqlite3Realloc(pOld, n); 000590 } 000591 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 000592 #ifndef SQLITE_OMIT_AUTOINIT 000593 if( sqlite3_initialize() ) return 0; 000594 #endif 000595 return sqlite3Realloc(pOld, n); 000596 } 000597 000598 000599 /* 000600 ** Allocate and zero memory. 000601 */ 000602 void *sqlite3MallocZero(u64 n){ 000603 void *p = sqlite3Malloc(n); 000604 if( p ){ 000605 memset(p, 0, (size_t)n); 000606 } 000607 return p; 000608 } 000609 000610 /* 000611 ** Allocate and zero memory. If the allocation fails, make 000612 ** the mallocFailed flag in the connection pointer. 000613 */ 000614 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 000615 void *p; 000616 testcase( db==0 ); 000617 p = sqlite3DbMallocRaw(db, n); 000618 if( p ) memset(p, 0, (size_t)n); 000619 return p; 000620 } 000621 000622 000623 /* Finish the work of sqlite3DbMallocRawNN for the unusual and 000624 ** slower case when the allocation cannot be fulfilled using lookaside. 000625 */ 000626 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ 000627 void *p; 000628 assert( db!=0 ); 000629 p = sqlite3Malloc(n); 000630 if( !p ) sqlite3OomFault(db); 000631 sqlite3MemdebugSetType(p, 000632 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 000633 return p; 000634 } 000635 000636 /* 000637 ** Allocate memory, either lookaside (if possible) or heap. 000638 ** If the allocation fails, set the mallocFailed flag in 000639 ** the connection pointer. 000640 ** 000641 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 000642 ** failure on the same database connection) then always return 0. 000643 ** Hence for a particular database connection, once malloc starts 000644 ** failing, it fails consistently until mallocFailed is reset. 000645 ** This is an important assumption. There are many places in the 000646 ** code that do things like this: 000647 ** 000648 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 000649 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 000650 ** if( b ) a[10] = 9; 000651 ** 000652 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 000653 ** that all prior mallocs (ex: "a") worked too. 000654 ** 000655 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is 000656 ** not a NULL pointer. 000657 */ 000658 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 000659 void *p; 000660 if( db ) return sqlite3DbMallocRawNN(db, n); 000661 p = sqlite3Malloc(n); 000662 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000663 return p; 000664 } 000665 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ 000666 #ifndef SQLITE_OMIT_LOOKASIDE 000667 LookasideSlot *pBuf; 000668 assert( db!=0 ); 000669 assert( sqlite3_mutex_held(db->mutex) ); 000670 assert( db->pnBytesFreed==0 ); 000671 if( n>db->lookaside.sz ){ 000672 if( !db->lookaside.bDisable ){ 000673 db->lookaside.anStat[1]++; 000674 }else if( db->mallocFailed ){ 000675 return 0; 000676 } 000677 return dbMallocRawFinish(db, n); 000678 } 000679 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000680 if( n<=LOOKASIDE_SMALL ){ 000681 if( (pBuf = db->lookaside.pSmallFree)!=0 ){ 000682 db->lookaside.pSmallFree = pBuf->pNext; 000683 db->lookaside.anStat[0]++; 000684 return (void*)pBuf; 000685 }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){ 000686 db->lookaside.pSmallInit = pBuf->pNext; 000687 db->lookaside.anStat[0]++; 000688 return (void*)pBuf; 000689 } 000690 } 000691 #endif 000692 if( (pBuf = db->lookaside.pFree)!=0 ){ 000693 db->lookaside.pFree = pBuf->pNext; 000694 db->lookaside.anStat[0]++; 000695 return (void*)pBuf; 000696 }else if( (pBuf = db->lookaside.pInit)!=0 ){ 000697 db->lookaside.pInit = pBuf->pNext; 000698 db->lookaside.anStat[0]++; 000699 return (void*)pBuf; 000700 }else{ 000701 db->lookaside.anStat[2]++; 000702 } 000703 #else 000704 assert( db!=0 ); 000705 assert( sqlite3_mutex_held(db->mutex) ); 000706 assert( db->pnBytesFreed==0 ); 000707 if( db->mallocFailed ){ 000708 return 0; 000709 } 000710 #endif 000711 return dbMallocRawFinish(db, n); 000712 } 000713 000714 /* Forward declaration */ 000715 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); 000716 000717 /* 000718 ** Resize the block of memory pointed to by p to n bytes. If the 000719 ** resize fails, set the mallocFailed flag in the connection object. 000720 */ 000721 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 000722 assert( db!=0 ); 000723 if( p==0 ) return sqlite3DbMallocRawNN(db, n); 000724 assert( sqlite3_mutex_held(db->mutex) ); 000725 if( ((uptr)p)<(uptr)db->lookaside.pEnd ){ 000726 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000727 if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){ 000728 if( n<=LOOKASIDE_SMALL ) return p; 000729 }else 000730 #endif 000731 if( ((uptr)p)>=(uptr)db->lookaside.pStart ){ 000732 if( n<=db->lookaside.szTrue ) return p; 000733 } 000734 } 000735 return dbReallocFinish(db, p, n); 000736 } 000737 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ 000738 void *pNew = 0; 000739 assert( db!=0 ); 000740 assert( p!=0 ); 000741 if( db->mallocFailed==0 ){ 000742 if( isLookaside(db, p) ){ 000743 pNew = sqlite3DbMallocRawNN(db, n); 000744 if( pNew ){ 000745 memcpy(pNew, p, lookasideMallocSize(db, p)); 000746 sqlite3DbFree(db, p); 000747 } 000748 }else{ 000749 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000750 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 000751 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 000752 pNew = sqlite3Realloc(p, n); 000753 if( !pNew ){ 000754 sqlite3OomFault(db); 000755 } 000756 sqlite3MemdebugSetType(pNew, 000757 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 000758 } 000759 } 000760 return pNew; 000761 } 000762 000763 /* 000764 ** Attempt to reallocate p. If the reallocation fails, then free p 000765 ** and set the mallocFailed flag in the database connection. 000766 */ 000767 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 000768 void *pNew; 000769 pNew = sqlite3DbRealloc(db, p, n); 000770 if( !pNew ){ 000771 sqlite3DbFree(db, p); 000772 } 000773 return pNew; 000774 } 000775 000776 /* 000777 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 000778 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 000779 ** is because when memory debugging is turned on, these two functions are 000780 ** called via macros that record the current file and line number in the 000781 ** ThreadData structure. 000782 */ 000783 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 000784 char *zNew; 000785 size_t n; 000786 if( z==0 ){ 000787 return 0; 000788 } 000789 n = strlen(z) + 1; 000790 zNew = sqlite3DbMallocRaw(db, n); 000791 if( zNew ){ 000792 memcpy(zNew, z, n); 000793 } 000794 return zNew; 000795 } 000796 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 000797 char *zNew; 000798 assert( db!=0 ); 000799 assert( z!=0 || n==0 ); 000800 assert( (n&0x7fffffff)==n ); 000801 zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0; 000802 if( zNew ){ 000803 memcpy(zNew, z, (size_t)n); 000804 zNew[n] = 0; 000805 } 000806 return zNew; 000807 } 000808 000809 /* 000810 ** The text between zStart and zEnd represents a phrase within a larger 000811 ** SQL statement. Make a copy of this phrase in space obtained form 000812 ** sqlite3DbMalloc(). Omit leading and trailing whitespace. 000813 */ 000814 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ 000815 int n; 000816 #ifdef SQLITE_DEBUG 000817 /* Because of the way the parser works, the span is guaranteed to contain 000818 ** at least one non-space character */ 000819 for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]<zEnd ); } 000820 #endif 000821 while( sqlite3Isspace(zStart[0]) ) zStart++; 000822 n = (int)(zEnd - zStart); 000823 while( sqlite3Isspace(zStart[n-1]) ) n--; 000824 return sqlite3DbStrNDup(db, zStart, n); 000825 } 000826 000827 /* 000828 ** Free any prior content in *pz and replace it with a copy of zNew. 000829 */ 000830 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ 000831 char *z = sqlite3DbStrDup(db, zNew); 000832 sqlite3DbFree(db, *pz); 000833 *pz = z; 000834 } 000835 000836 /* 000837 ** Call this routine to record the fact that an OOM (out-of-memory) error 000838 ** has happened. This routine will set db->mallocFailed, and also 000839 ** temporarily disable the lookaside memory allocator and interrupt 000840 ** any running VDBEs. 000841 ** 000842 ** Always return a NULL pointer so that this routine can be invoked using 000843 ** 000844 ** return sqlite3OomFault(db); 000845 ** 000846 ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly 000847 ** common case where no OOM occurs. 000848 */ 000849 void *sqlite3OomFault(sqlite3 *db){ 000850 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ 000851 db->mallocFailed = 1; 000852 if( db->nVdbeExec>0 ){ 000853 AtomicStore(&db->u1.isInterrupted, 1); 000854 } 000855 DisableLookaside; 000856 if( db->pParse ){ 000857 Parse *pParse; 000858 sqlite3ErrorMsg(db->pParse, "out of memory"); 000859 db->pParse->rc = SQLITE_NOMEM_BKPT; 000860 for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){ 000861 pParse->nErr++; 000862 pParse->rc = SQLITE_NOMEM; 000863 } 000864 } 000865 } 000866 return 0; 000867 } 000868 000869 /* 000870 ** This routine reactivates the memory allocator and clears the 000871 ** db->mallocFailed flag as necessary. 000872 ** 000873 ** The memory allocator is not restarted if there are running 000874 ** VDBEs. 000875 */ 000876 void sqlite3OomClear(sqlite3 *db){ 000877 if( db->mallocFailed && db->nVdbeExec==0 ){ 000878 db->mallocFailed = 0; 000879 AtomicStore(&db->u1.isInterrupted, 0); 000880 assert( db->lookaside.bDisable>0 ); 000881 EnableLookaside; 000882 } 000883 } 000884 000885 /* 000886 ** Take actions at the end of an API call to deal with error codes. 000887 */ 000888 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){ 000889 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 000890 sqlite3OomClear(db); 000891 sqlite3Error(db, SQLITE_NOMEM); 000892 return SQLITE_NOMEM_BKPT; 000893 } 000894 return rc & db->errMask; 000895 } 000896 000897 /* 000898 ** This function must be called before exiting any API function (i.e. 000899 ** returning control to the user) that has called sqlite3_malloc or 000900 ** sqlite3_realloc. 000901 ** 000902 ** The returned value is normally a copy of the second argument to this 000903 ** function. However, if a malloc() failure has occurred since the previous 000904 ** invocation SQLITE_NOMEM is returned instead. 000905 ** 000906 ** If an OOM as occurred, then the connection error-code (the value 000907 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. 000908 */ 000909 int sqlite3ApiExit(sqlite3* db, int rc){ 000910 /* If the db handle must hold the connection handle mutex here. 000911 ** Otherwise the read (and possible write) of db->mallocFailed 000912 ** is unsafe, as is the call to sqlite3Error(). 000913 */ 000914 assert( db!=0 ); 000915 assert( sqlite3_mutex_held(db->mutex) ); 000916 if( db->mallocFailed || rc ){ 000917 return apiHandleError(db, rc); 000918 } 000919 return 0; 000920 }