000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  **
000013  ** Memory allocation functions used throughout sqlite.
000014  */
000015  #include "sqliteInt.h"
000016  #include <stdarg.h>
000017  
000018  /*
000019  ** Attempt to release up to n bytes of non-essential memory currently
000020  ** held by SQLite. An example of non-essential memory is memory used to
000021  ** cache database pages that are not currently in use.
000022  */
000023  int sqlite3_release_memory(int n){
000024  #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
000025    return sqlite3PcacheReleaseMemory(n);
000026  #else
000027    /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
000028    ** is a no-op returning zero if SQLite is not compiled with
000029    ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
000030    UNUSED_PARAMETER(n);
000031    return 0;
000032  #endif
000033  }
000034  
000035  /*
000036  ** Default value of the hard heap limit.  0 means "no limit".
000037  */
000038  #ifndef SQLITE_MAX_MEMORY
000039  # define SQLITE_MAX_MEMORY 0
000040  #endif
000041  
000042  /*
000043  ** State information local to the memory allocation subsystem.
000044  */
000045  static SQLITE_WSD struct Mem0Global {
000046    sqlite3_mutex *mutex;         /* Mutex to serialize access */
000047    sqlite3_int64 alarmThreshold; /* The soft heap limit */
000048    sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
000049  
000050    /*
000051    ** True if heap is nearly "full" where "full" is defined by the
000052    ** sqlite3_soft_heap_limit() setting.
000053    */
000054    int nearlyFull;
000055  } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
000056  
000057  #define mem0 GLOBAL(struct Mem0Global, mem0)
000058  
000059  /*
000060  ** Return the memory allocator mutex. sqlite3_status() needs it.
000061  */
000062  sqlite3_mutex *sqlite3MallocMutex(void){
000063    return mem0.mutex;
000064  }
000065  
000066  #ifndef SQLITE_OMIT_DEPRECATED
000067  /*
000068  ** Deprecated external interface.  It used to set an alarm callback
000069  ** that was invoked when memory usage grew too large.  Now it is a
000070  ** no-op.
000071  */
000072  int sqlite3_memory_alarm(
000073    void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
000074    void *pArg,
000075    sqlite3_int64 iThreshold
000076  ){
000077    (void)xCallback;
000078    (void)pArg;
000079    (void)iThreshold;
000080    return SQLITE_OK;
000081  }
000082  #endif
000083  
000084  /*
000085  ** Set the soft heap-size limit for the library.  An argument of
000086  ** zero disables the limit.  A negative argument is a no-op used to
000087  ** obtain the return value.
000088  **
000089  ** The return value is the value of the heap limit just before this
000090  ** interface was called.
000091  **
000092  ** If the hard heap limit is enabled, then the soft heap limit cannot
000093  ** be disabled nor raised above the hard heap limit.
000094  */
000095  sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
000096    sqlite3_int64 priorLimit;
000097    sqlite3_int64 excess;
000098    sqlite3_int64 nUsed;
000099  #ifndef SQLITE_OMIT_AUTOINIT
000100    int rc = sqlite3_initialize();
000101    if( rc ) return -1;
000102  #endif
000103    sqlite3_mutex_enter(mem0.mutex);
000104    priorLimit = mem0.alarmThreshold;
000105    if( n<0 ){
000106      sqlite3_mutex_leave(mem0.mutex);
000107      return priorLimit;
000108    }
000109    if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
000110      n = mem0.hardLimit;
000111    }
000112    mem0.alarmThreshold = n;
000113    nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
000114    AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
000115    sqlite3_mutex_leave(mem0.mutex);
000116    excess = sqlite3_memory_used() - n;
000117    if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
000118    return priorLimit;
000119  }
000120  void sqlite3_soft_heap_limit(int n){
000121    if( n<0 ) n = 0;
000122    sqlite3_soft_heap_limit64(n);
000123  }
000124  
000125  /*
000126  ** Set the hard heap-size limit for the library. An argument of zero
000127  ** disables the hard heap limit.  A negative argument is a no-op used
000128  ** to obtain the return value without affecting the hard heap limit.
000129  **
000130  ** The return value is the value of the hard heap limit just prior to
000131  ** calling this interface.
000132  **
000133  ** Setting the hard heap limit will also activate the soft heap limit
000134  ** and constrain the soft heap limit to be no more than the hard heap
000135  ** limit.
000136  */
000137  sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
000138    sqlite3_int64 priorLimit;
000139  #ifndef SQLITE_OMIT_AUTOINIT
000140    int rc = sqlite3_initialize();
000141    if( rc ) return -1;
000142  #endif
000143    sqlite3_mutex_enter(mem0.mutex);
000144    priorLimit = mem0.hardLimit;
000145    if( n>=0 ){
000146      mem0.hardLimit = n;
000147      if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
000148        mem0.alarmThreshold = n;
000149      }
000150    }
000151    sqlite3_mutex_leave(mem0.mutex);
000152    return priorLimit;
000153  }
000154  
000155  
000156  /*
000157  ** Initialize the memory allocation subsystem.
000158  */
000159  int sqlite3MallocInit(void){
000160    int rc;
000161    if( sqlite3GlobalConfig.m.xMalloc==0 ){
000162      sqlite3MemSetDefault();
000163    }
000164    mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
000165    if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
000166        || sqlite3GlobalConfig.nPage<=0 ){
000167      sqlite3GlobalConfig.pPage = 0;
000168      sqlite3GlobalConfig.szPage = 0;
000169    }
000170    rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
000171    if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
000172    return rc;
000173  }
000174  
000175  /*
000176  ** Return true if the heap is currently under memory pressure - in other
000177  ** words if the amount of heap used is close to the limit set by
000178  ** sqlite3_soft_heap_limit().
000179  */
000180  int sqlite3HeapNearlyFull(void){
000181    return AtomicLoad(&mem0.nearlyFull);
000182  }
000183  
000184  /*
000185  ** Deinitialize the memory allocation subsystem.
000186  */
000187  void sqlite3MallocEnd(void){
000188    if( sqlite3GlobalConfig.m.xShutdown ){
000189      sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
000190    }
000191    memset(&mem0, 0, sizeof(mem0));
000192  }
000193  
000194  /*
000195  ** Return the amount of memory currently checked out.
000196  */
000197  sqlite3_int64 sqlite3_memory_used(void){
000198    sqlite3_int64 res, mx;
000199    sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
000200    return res;
000201  }
000202  
000203  /*
000204  ** Return the maximum amount of memory that has ever been
000205  ** checked out since either the beginning of this process
000206  ** or since the most recent reset.
000207  */
000208  sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
000209    sqlite3_int64 res, mx;
000210    sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
000211    return mx;
000212  }
000213  
000214  /*
000215  ** Trigger the alarm 
000216  */
000217  static void sqlite3MallocAlarm(int nByte){
000218    if( mem0.alarmThreshold<=0 ) return;
000219    sqlite3_mutex_leave(mem0.mutex);
000220    sqlite3_release_memory(nByte);
000221    sqlite3_mutex_enter(mem0.mutex);
000222  }
000223  
000224  #ifdef SQLITE_DEBUG
000225  /*
000226  ** This routine is called whenever an out-of-memory condition is seen,
000227  ** It's only purpose to to serve as a breakpoint for gdb or similar
000228  ** code debuggers when working on out-of-memory conditions, for example
000229  ** caused by PRAGMA hard_heap_limit=N.
000230  */
000231  static SQLITE_NOINLINE void test_oom_breakpoint(u64 n){
000232    static u64 nOomFault = 0;
000233    nOomFault += n;
000234    /* The assert() is never reached in a human lifetime.  It  is here mostly
000235    ** to prevent code optimizers from optimizing out this function. */
000236    assert( (nOomFault>>32) < 0xffffffff );
000237  }
000238  #else
000239  # define test_oom_breakpoint(X)   /* No-op for production builds */
000240  #endif
000241  
000242  /*
000243  ** Do a memory allocation with statistics and alarms.  Assume the
000244  ** lock is already held.
000245  */
000246  static void mallocWithAlarm(int n, void **pp){
000247    void *p;
000248    int nFull;
000249    assert( sqlite3_mutex_held(mem0.mutex) );
000250    assert( n>0 );
000251  
000252    /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
000253    ** implementation of malloc_good_size(), which must be called in debug
000254    ** mode and specifically when the DMD "Dark Matter Detector" is enabled
000255    ** or else a crash results.  Hence, do not attempt to optimize out the
000256    ** following xRoundup() call. */
000257    nFull = sqlite3GlobalConfig.m.xRoundup(n);
000258  
000259    sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
000260    if( mem0.alarmThreshold>0 ){
000261      sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
000262      if( nUsed >= mem0.alarmThreshold - nFull ){
000263        AtomicStore(&mem0.nearlyFull, 1);
000264        sqlite3MallocAlarm(nFull);
000265        if( mem0.hardLimit ){
000266          nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
000267          if( nUsed >= mem0.hardLimit - nFull ){
000268            test_oom_breakpoint(1);
000269            *pp = 0;
000270            return;
000271          }
000272        }
000273      }else{
000274        AtomicStore(&mem0.nearlyFull, 0);
000275      }
000276    }
000277    p = sqlite3GlobalConfig.m.xMalloc(nFull);
000278  #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
000279    if( p==0 && mem0.alarmThreshold>0 ){
000280      sqlite3MallocAlarm(nFull);
000281      p = sqlite3GlobalConfig.m.xMalloc(nFull);
000282    }
000283  #endif
000284    if( p ){
000285      nFull = sqlite3MallocSize(p);
000286      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
000287      sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
000288    }
000289    *pp = p;
000290  }
000291  
000292  /*
000293  ** Maximum size of any single memory allocation.
000294  **
000295  ** This is not a limit on the total amount of memory used.  This is
000296  ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
000297  **
000298  ** The upper bound is slightly less than 2GiB:  0x7ffffeff == 2,147,483,391
000299  ** This provides a 256-byte safety margin for defense against 32-bit 
000300  ** signed integer overflow bugs when computing memory allocation sizes.
000301  ** Paranoid applications might want to reduce the maximum allocation size
000302  ** further for an even larger safety margin.  0x3fffffff or 0x0fffffff
000303  ** or even smaller would be reasonable upper bounds on the size of a memory
000304  ** allocations for most applications.
000305  */
000306  #ifndef SQLITE_MAX_ALLOCATION_SIZE
000307  # define SQLITE_MAX_ALLOCATION_SIZE  2147483391
000308  #endif
000309  #if SQLITE_MAX_ALLOCATION_SIZE>2147483391
000310  # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
000311  #endif
000312  
000313  /*
000314  ** Allocate memory.  This routine is like sqlite3_malloc() except that it
000315  ** assumes the memory subsystem has already been initialized.
000316  */
000317  void *sqlite3Malloc(u64 n){
000318    void *p;
000319    if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){
000320      p = 0;
000321    }else if( sqlite3GlobalConfig.bMemstat ){
000322      sqlite3_mutex_enter(mem0.mutex);
000323      mallocWithAlarm((int)n, &p);
000324      sqlite3_mutex_leave(mem0.mutex);
000325    }else{
000326      p = sqlite3GlobalConfig.m.xMalloc((int)n);
000327    }
000328    assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
000329    return p;
000330  }
000331  
000332  /*
000333  ** This version of the memory allocation is for use by the application.
000334  ** First make sure the memory subsystem is initialized, then do the
000335  ** allocation.
000336  */
000337  void *sqlite3_malloc(int n){
000338  #ifndef SQLITE_OMIT_AUTOINIT
000339    if( sqlite3_initialize() ) return 0;
000340  #endif
000341    return n<=0 ? 0 : sqlite3Malloc(n);
000342  }
000343  void *sqlite3_malloc64(sqlite3_uint64 n){
000344  #ifndef SQLITE_OMIT_AUTOINIT
000345    if( sqlite3_initialize() ) return 0;
000346  #endif
000347    return sqlite3Malloc(n);
000348  }
000349  
000350  /*
000351  ** TRUE if p is a lookaside memory allocation from db
000352  */
000353  #ifndef SQLITE_OMIT_LOOKASIDE
000354  static int isLookaside(sqlite3 *db, const void *p){
000355    return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd);
000356  }
000357  #else
000358  #define isLookaside(A,B) 0
000359  #endif
000360  
000361  /*
000362  ** Return the size of a memory allocation previously obtained from
000363  ** sqlite3Malloc() or sqlite3_malloc().
000364  */
000365  int sqlite3MallocSize(const void *p){
000366    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
000367    return sqlite3GlobalConfig.m.xSize((void*)p);
000368  }
000369  static int lookasideMallocSize(sqlite3 *db, const void *p){
000370  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE    
000371    return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
000372  #else
000373    return db->lookaside.szTrue;
000374  #endif  
000375  }
000376  int sqlite3DbMallocSize(sqlite3 *db, const void *p){
000377    assert( p!=0 );
000378  #ifdef SQLITE_DEBUG
000379    if( db==0 ){
000380      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
000381      assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
000382    }else if( !isLookaside(db,p) ){
000383      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000384      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000385    }
000386  #endif
000387    if( db ){
000388      if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){
000389  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
000390        if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
000391          assert( sqlite3_mutex_held(db->mutex) );
000392          return LOOKASIDE_SMALL;
000393        }
000394  #endif
000395        if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
000396          assert( sqlite3_mutex_held(db->mutex) );
000397          return db->lookaside.szTrue;
000398        }
000399      }
000400    }
000401    return sqlite3GlobalConfig.m.xSize((void*)p);
000402  }
000403  sqlite3_uint64 sqlite3_msize(void *p){
000404    assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
000405    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
000406    return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
000407  }
000408  
000409  /*
000410  ** Free memory previously obtained from sqlite3Malloc().
000411  */
000412  void sqlite3_free(void *p){
000413    if( p==0 ) return;  /* IMP: R-49053-54554 */
000414    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
000415    assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
000416    if( sqlite3GlobalConfig.bMemstat ){
000417      sqlite3_mutex_enter(mem0.mutex);
000418      sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
000419      sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
000420      sqlite3GlobalConfig.m.xFree(p);
000421      sqlite3_mutex_leave(mem0.mutex);
000422    }else{
000423      sqlite3GlobalConfig.m.xFree(p);
000424    }
000425  }
000426  
000427  /*
000428  ** Add the size of memory allocation "p" to the count in
000429  ** *db->pnBytesFreed.
000430  */
000431  static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
000432    *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
000433  }
000434  
000435  /*
000436  ** Free memory that might be associated with a particular database
000437  ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
000438  ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
000439  */
000440  void sqlite3DbFreeNN(sqlite3 *db, void *p){
000441    assert( db==0 || sqlite3_mutex_held(db->mutex) );
000442    assert( p!=0 );
000443    if( db ){
000444      if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
000445  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
000446        if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
000447          LookasideSlot *pBuf = (LookasideSlot*)p;
000448          assert( db->pnBytesFreed==0 );
000449  #ifdef SQLITE_DEBUG
000450          memset(p, 0xaa, LOOKASIDE_SMALL);  /* Trash freed content */
000451  #endif
000452          pBuf->pNext = db->lookaside.pSmallFree;
000453          db->lookaside.pSmallFree = pBuf;
000454          return;
000455        }
000456  #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
000457        if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
000458          LookasideSlot *pBuf = (LookasideSlot*)p;
000459          assert( db->pnBytesFreed==0 );
000460  #ifdef SQLITE_DEBUG
000461          memset(p, 0xaa, db->lookaside.szTrue);  /* Trash freed content */
000462  #endif
000463          pBuf->pNext = db->lookaside.pFree;
000464          db->lookaside.pFree = pBuf;
000465          return;
000466        }
000467      }
000468      if( db->pnBytesFreed ){
000469        measureAllocationSize(db, p);
000470        return;
000471      }
000472    }
000473    assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000474    assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000475    assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
000476    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
000477    sqlite3_free(p);
000478  }
000479  void sqlite3DbNNFreeNN(sqlite3 *db, void *p){
000480    assert( db!=0 );
000481    assert( sqlite3_mutex_held(db->mutex) );
000482    assert( p!=0 );
000483    if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
000484  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
000485      if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
000486        LookasideSlot *pBuf = (LookasideSlot*)p;
000487        assert( db->pnBytesFreed==0 );
000488  #ifdef SQLITE_DEBUG
000489        memset(p, 0xaa, LOOKASIDE_SMALL);  /* Trash freed content */
000490  #endif
000491        pBuf->pNext = db->lookaside.pSmallFree;
000492        db->lookaside.pSmallFree = pBuf;
000493        return;
000494      }
000495  #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
000496      if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
000497        LookasideSlot *pBuf = (LookasideSlot*)p;
000498        assert( db->pnBytesFreed==0 );
000499  #ifdef SQLITE_DEBUG
000500        memset(p, 0xaa, db->lookaside.szTrue);  /* Trash freed content */
000501  #endif
000502        pBuf->pNext = db->lookaside.pFree;
000503        db->lookaside.pFree = pBuf;
000504        return;
000505      }
000506    }
000507    if( db->pnBytesFreed ){
000508      measureAllocationSize(db, p);
000509      return;
000510    }
000511    assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000512    assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000513    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
000514    sqlite3_free(p);
000515  }
000516  void sqlite3DbFree(sqlite3 *db, void *p){
000517    assert( db==0 || sqlite3_mutex_held(db->mutex) );
000518    if( p ) sqlite3DbFreeNN(db, p);
000519  }
000520  
000521  /*
000522  ** Change the size of an existing memory allocation
000523  */
000524  void *sqlite3Realloc(void *pOld, u64 nBytes){
000525    int nOld, nNew, nDiff;
000526    void *pNew;
000527    assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
000528    assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
000529    if( pOld==0 ){
000530      return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
000531    }
000532    if( nBytes==0 ){
000533      sqlite3_free(pOld); /* IMP: R-26507-47431 */
000534      return 0;
000535    }
000536    if( nBytes>=0x7fffff00 ){
000537      /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
000538      return 0;
000539    }
000540    nOld = sqlite3MallocSize(pOld);
000541    /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
000542    ** argument to xRealloc is always a value returned by a prior call to
000543    ** xRoundup. */
000544    nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
000545    if( nOld==nNew ){
000546      pNew = pOld;
000547    }else if( sqlite3GlobalConfig.bMemstat ){
000548      sqlite3_int64 nUsed;
000549      sqlite3_mutex_enter(mem0.mutex);
000550      sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
000551      nDiff = nNew - nOld;
000552      if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >= 
000553            mem0.alarmThreshold-nDiff ){
000554        sqlite3MallocAlarm(nDiff);
000555        if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
000556          sqlite3_mutex_leave(mem0.mutex);
000557          test_oom_breakpoint(1);
000558          return 0;
000559        }
000560      }
000561      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
000562  #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
000563      if( pNew==0 && mem0.alarmThreshold>0 ){
000564        sqlite3MallocAlarm((int)nBytes);
000565        pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
000566      }
000567  #endif
000568      if( pNew ){
000569        nNew = sqlite3MallocSize(pNew);
000570        sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
000571      }
000572      sqlite3_mutex_leave(mem0.mutex);
000573    }else{
000574      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
000575    }
000576    assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
000577    return pNew;
000578  }
000579  
000580  /*
000581  ** The public interface to sqlite3Realloc.  Make sure that the memory
000582  ** subsystem is initialized prior to invoking sqliteRealloc.
000583  */
000584  void *sqlite3_realloc(void *pOld, int n){
000585  #ifndef SQLITE_OMIT_AUTOINIT
000586    if( sqlite3_initialize() ) return 0;
000587  #endif
000588    if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
000589    return sqlite3Realloc(pOld, n);
000590  }
000591  void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
000592  #ifndef SQLITE_OMIT_AUTOINIT
000593    if( sqlite3_initialize() ) return 0;
000594  #endif
000595    return sqlite3Realloc(pOld, n);
000596  }
000597  
000598  
000599  /*
000600  ** Allocate and zero memory.
000601  */ 
000602  void *sqlite3MallocZero(u64 n){
000603    void *p = sqlite3Malloc(n);
000604    if( p ){
000605      memset(p, 0, (size_t)n);
000606    }
000607    return p;
000608  }
000609  
000610  /*
000611  ** Allocate and zero memory.  If the allocation fails, make
000612  ** the mallocFailed flag in the connection pointer.
000613  */
000614  void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
000615    void *p;
000616    testcase( db==0 );
000617    p = sqlite3DbMallocRaw(db, n);
000618    if( p ) memset(p, 0, (size_t)n);
000619    return p;
000620  }
000621  
000622  
000623  /* Finish the work of sqlite3DbMallocRawNN for the unusual and
000624  ** slower case when the allocation cannot be fulfilled using lookaside.
000625  */
000626  static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
000627    void *p;
000628    assert( db!=0 );
000629    p = sqlite3Malloc(n);
000630    if( !p ) sqlite3OomFault(db);
000631    sqlite3MemdebugSetType(p, 
000632           (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
000633    return p;
000634  }
000635  
000636  /*
000637  ** Allocate memory, either lookaside (if possible) or heap.  
000638  ** If the allocation fails, set the mallocFailed flag in
000639  ** the connection pointer.
000640  **
000641  ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
000642  ** failure on the same database connection) then always return 0.
000643  ** Hence for a particular database connection, once malloc starts
000644  ** failing, it fails consistently until mallocFailed is reset.
000645  ** This is an important assumption.  There are many places in the
000646  ** code that do things like this:
000647  **
000648  **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
000649  **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
000650  **         if( b ) a[10] = 9;
000651  **
000652  ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
000653  ** that all prior mallocs (ex: "a") worked too.
000654  **
000655  ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
000656  ** not a NULL pointer.
000657  */
000658  void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
000659    void *p;
000660    if( db ) return sqlite3DbMallocRawNN(db, n);
000661    p = sqlite3Malloc(n);
000662    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
000663    return p;
000664  }
000665  void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
000666  #ifndef SQLITE_OMIT_LOOKASIDE
000667    LookasideSlot *pBuf;
000668    assert( db!=0 );
000669    assert( sqlite3_mutex_held(db->mutex) );
000670    assert( db->pnBytesFreed==0 );
000671    if( n>db->lookaside.sz ){
000672      if( !db->lookaside.bDisable ){
000673        db->lookaside.anStat[1]++;      
000674      }else if( db->mallocFailed ){
000675        return 0;
000676      }
000677      return dbMallocRawFinish(db, n);
000678    }
000679  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
000680    if( n<=LOOKASIDE_SMALL ){
000681      if( (pBuf = db->lookaside.pSmallFree)!=0 ){
000682        db->lookaside.pSmallFree = pBuf->pNext;
000683        db->lookaside.anStat[0]++;
000684        return (void*)pBuf;
000685      }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
000686        db->lookaside.pSmallInit = pBuf->pNext;
000687        db->lookaside.anStat[0]++;
000688        return (void*)pBuf;
000689      }
000690    }
000691  #endif
000692    if( (pBuf = db->lookaside.pFree)!=0 ){
000693      db->lookaside.pFree = pBuf->pNext;
000694      db->lookaside.anStat[0]++;
000695      return (void*)pBuf;
000696    }else if( (pBuf = db->lookaside.pInit)!=0 ){
000697      db->lookaside.pInit = pBuf->pNext;
000698      db->lookaside.anStat[0]++;
000699      return (void*)pBuf;
000700    }else{
000701      db->lookaside.anStat[2]++;
000702    }
000703  #else
000704    assert( db!=0 );
000705    assert( sqlite3_mutex_held(db->mutex) );
000706    assert( db->pnBytesFreed==0 );
000707    if( db->mallocFailed ){
000708      return 0;
000709    }
000710  #endif
000711    return dbMallocRawFinish(db, n);
000712  }
000713  
000714  /* Forward declaration */
000715  static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
000716  
000717  /*
000718  ** Resize the block of memory pointed to by p to n bytes. If the
000719  ** resize fails, set the mallocFailed flag in the connection object.
000720  */
000721  void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
000722    assert( db!=0 );
000723    if( p==0 ) return sqlite3DbMallocRawNN(db, n);
000724    assert( sqlite3_mutex_held(db->mutex) );
000725    if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
000726  #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
000727      if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
000728        if( n<=LOOKASIDE_SMALL ) return p;
000729      }else
000730  #endif
000731      if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
000732        if( n<=db->lookaside.szTrue ) return p;
000733      }
000734    }
000735    return dbReallocFinish(db, p, n);
000736  }
000737  static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
000738    void *pNew = 0;
000739    assert( db!=0 );
000740    assert( p!=0 );
000741    if( db->mallocFailed==0 ){
000742      if( isLookaside(db, p) ){
000743        pNew = sqlite3DbMallocRawNN(db, n);
000744        if( pNew ){
000745          memcpy(pNew, p, lookasideMallocSize(db, p));
000746          sqlite3DbFree(db, p);
000747        }
000748      }else{
000749        assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000750        assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
000751        sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
000752        pNew = sqlite3Realloc(p, n);
000753        if( !pNew ){
000754          sqlite3OomFault(db);
000755        }
000756        sqlite3MemdebugSetType(pNew,
000757              (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
000758      }
000759    }
000760    return pNew;
000761  }
000762  
000763  /*
000764  ** Attempt to reallocate p.  If the reallocation fails, then free p
000765  ** and set the mallocFailed flag in the database connection.
000766  */
000767  void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
000768    void *pNew;
000769    pNew = sqlite3DbRealloc(db, p, n);
000770    if( !pNew ){
000771      sqlite3DbFree(db, p);
000772    }
000773    return pNew;
000774  }
000775  
000776  /*
000777  ** Make a copy of a string in memory obtained from sqliteMalloc(). These 
000778  ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
000779  ** is because when memory debugging is turned on, these two functions are 
000780  ** called via macros that record the current file and line number in the
000781  ** ThreadData structure.
000782  */
000783  char *sqlite3DbStrDup(sqlite3 *db, const char *z){
000784    char *zNew;
000785    size_t n;
000786    if( z==0 ){
000787      return 0;
000788    }
000789    n = strlen(z) + 1;
000790    zNew = sqlite3DbMallocRaw(db, n);
000791    if( zNew ){
000792      memcpy(zNew, z, n);
000793    }
000794    return zNew;
000795  }
000796  char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
000797    char *zNew;
000798    assert( db!=0 );
000799    assert( z!=0 || n==0 );
000800    assert( (n&0x7fffffff)==n );
000801    zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
000802    if( zNew ){
000803      memcpy(zNew, z, (size_t)n);
000804      zNew[n] = 0;
000805    }
000806    return zNew;
000807  }
000808  
000809  /*
000810  ** The text between zStart and zEnd represents a phrase within a larger
000811  ** SQL statement.  Make a copy of this phrase in space obtained form
000812  ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
000813  */
000814  char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
000815    int n;
000816  #ifdef SQLITE_DEBUG
000817    /* Because of the way the parser works, the span is guaranteed to contain
000818    ** at least one non-space character */
000819    for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]<zEnd ); }
000820  #endif
000821    while( sqlite3Isspace(zStart[0]) ) zStart++;
000822    n = (int)(zEnd - zStart);
000823    while( sqlite3Isspace(zStart[n-1]) ) n--;
000824    return sqlite3DbStrNDup(db, zStart, n);
000825  }
000826  
000827  /*
000828  ** Free any prior content in *pz and replace it with a copy of zNew.
000829  */
000830  void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
000831    char *z = sqlite3DbStrDup(db, zNew);
000832    sqlite3DbFree(db, *pz);
000833    *pz = z;
000834  }
000835  
000836  /*
000837  ** Call this routine to record the fact that an OOM (out-of-memory) error
000838  ** has happened.  This routine will set db->mallocFailed, and also
000839  ** temporarily disable the lookaside memory allocator and interrupt
000840  ** any running VDBEs.
000841  **
000842  ** Always return a NULL pointer so that this routine can be invoked using
000843  **
000844  **      return sqlite3OomFault(db);
000845  **
000846  ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
000847  ** common case where no OOM occurs.
000848  */
000849  void *sqlite3OomFault(sqlite3 *db){
000850    if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
000851      db->mallocFailed = 1;
000852      if( db->nVdbeExec>0 ){
000853        AtomicStore(&db->u1.isInterrupted, 1);
000854      }
000855      DisableLookaside;
000856      if( db->pParse ){
000857        Parse *pParse;
000858        sqlite3ErrorMsg(db->pParse, "out of memory");
000859        db->pParse->rc = SQLITE_NOMEM_BKPT;
000860        for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){
000861          pParse->nErr++;
000862          pParse->rc = SQLITE_NOMEM;
000863        } 
000864      }
000865    }
000866    return 0;
000867  }
000868  
000869  /*
000870  ** This routine reactivates the memory allocator and clears the
000871  ** db->mallocFailed flag as necessary.
000872  **
000873  ** The memory allocator is not restarted if there are running
000874  ** VDBEs.
000875  */
000876  void sqlite3OomClear(sqlite3 *db){
000877    if( db->mallocFailed && db->nVdbeExec==0 ){
000878      db->mallocFailed = 0;
000879      AtomicStore(&db->u1.isInterrupted, 0);
000880      assert( db->lookaside.bDisable>0 );
000881      EnableLookaside;
000882    }
000883  }
000884  
000885  /*
000886  ** Take actions at the end of an API call to deal with error codes.
000887  */
000888  static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
000889    if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
000890      sqlite3OomClear(db);
000891      sqlite3Error(db, SQLITE_NOMEM);
000892      return SQLITE_NOMEM_BKPT;
000893    }
000894    return rc & db->errMask;
000895  }
000896  
000897  /*
000898  ** This function must be called before exiting any API function (i.e. 
000899  ** returning control to the user) that has called sqlite3_malloc or
000900  ** sqlite3_realloc.
000901  **
000902  ** The returned value is normally a copy of the second argument to this
000903  ** function. However, if a malloc() failure has occurred since the previous
000904  ** invocation SQLITE_NOMEM is returned instead. 
000905  **
000906  ** If an OOM as occurred, then the connection error-code (the value
000907  ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
000908  */
000909  int sqlite3ApiExit(sqlite3* db, int rc){
000910    /* If the db handle must hold the connection handle mutex here.
000911    ** Otherwise the read (and possible write) of db->mallocFailed 
000912    ** is unsafe, as is the call to sqlite3Error().
000913    */
000914    assert( db!=0 );
000915    assert( sqlite3_mutex_held(db->mutex) );
000916    if( db->mallocFailed || rc ){
000917      return apiHandleError(db, rc);
000918    }
000919    return 0;
000920  }