000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** Main file for the SQLite library. The routines in this file 000013 ** implement the programmer interface to the library. Routines in 000014 ** other files are for internal use by SQLite and should not be 000015 ** accessed by users of the library. 000016 */ 000017 #include "sqliteInt.h" 000018 000019 #ifdef SQLITE_ENABLE_FTS3 000020 # include "fts3.h" 000021 #endif 000022 #ifdef SQLITE_ENABLE_RTREE 000023 # include "rtree.h" 000024 #endif 000025 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 000026 # include "sqliteicu.h" 000027 #endif 000028 000029 /* 000030 ** This is an extension initializer that is a no-op and always 000031 ** succeeds, except that it fails if the fault-simulation is set 000032 ** to 500. 000033 */ 000034 static int sqlite3TestExtInit(sqlite3 *db){ 000035 (void)db; 000036 return sqlite3FaultSim(500); 000037 } 000038 000039 000040 /* 000041 ** Forward declarations of external module initializer functions 000042 ** for modules that need them. 000043 */ 000044 #ifdef SQLITE_ENABLE_FTS5 000045 int sqlite3Fts5Init(sqlite3*); 000046 #endif 000047 #ifdef SQLITE_ENABLE_STMTVTAB 000048 int sqlite3StmtVtabInit(sqlite3*); 000049 #endif 000050 #ifdef SQLITE_EXTRA_AUTOEXT 000051 int SQLITE_EXTRA_AUTOEXT(sqlite3*); 000052 #endif 000053 /* 000054 ** An array of pointers to extension initializer functions for 000055 ** built-in extensions. 000056 */ 000057 static int (*const sqlite3BuiltinExtensions[])(sqlite3*) = { 000058 #ifdef SQLITE_ENABLE_FTS3 000059 sqlite3Fts3Init, 000060 #endif 000061 #ifdef SQLITE_ENABLE_FTS5 000062 sqlite3Fts5Init, 000063 #endif 000064 #if defined(SQLITE_ENABLE_ICU) || defined(SQLITE_ENABLE_ICU_COLLATIONS) 000065 sqlite3IcuInit, 000066 #endif 000067 #ifdef SQLITE_ENABLE_RTREE 000068 sqlite3RtreeInit, 000069 #endif 000070 #ifdef SQLITE_ENABLE_DBPAGE_VTAB 000071 sqlite3DbpageRegister, 000072 #endif 000073 #ifdef SQLITE_ENABLE_DBSTAT_VTAB 000074 sqlite3DbstatRegister, 000075 #endif 000076 sqlite3TestExtInit, 000077 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && !defined(SQLITE_OMIT_JSON) 000078 sqlite3JsonTableFunctions, 000079 #endif 000080 #ifdef SQLITE_ENABLE_STMTVTAB 000081 sqlite3StmtVtabInit, 000082 #endif 000083 #ifdef SQLITE_ENABLE_BYTECODE_VTAB 000084 sqlite3VdbeBytecodeVtabInit, 000085 #endif 000086 #ifdef SQLITE_EXTRA_AUTOEXT 000087 SQLITE_EXTRA_AUTOEXT, 000088 #endif 000089 }; 000090 000091 #ifndef SQLITE_AMALGAMATION 000092 /* IMPLEMENTATION-OF: R-46656-45156 The sqlite3_version[] string constant 000093 ** contains the text of SQLITE_VERSION macro. 000094 */ 000095 const char sqlite3_version[] = SQLITE_VERSION; 000096 #endif 000097 000098 /* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns 000099 ** a pointer to the to the sqlite3_version[] string constant. 000100 */ 000101 const char *sqlite3_libversion(void){ return sqlite3_version; } 000102 000103 /* IMPLEMENTATION-OF: R-25063-23286 The sqlite3_sourceid() function returns a 000104 ** pointer to a string constant whose value is the same as the 000105 ** SQLITE_SOURCE_ID C preprocessor macro. Except if SQLite is built using 000106 ** an edited copy of the amalgamation, then the last four characters of 000107 ** the hash might be different from SQLITE_SOURCE_ID. 000108 */ 000109 const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } 000110 000111 /* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function 000112 ** returns an integer equal to SQLITE_VERSION_NUMBER. 000113 */ 000114 int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; } 000115 000116 /* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns 000117 ** zero if and only if SQLite was compiled with mutexing code omitted due to 000118 ** the SQLITE_THREADSAFE compile-time option being set to 0. 000119 */ 000120 int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; } 000121 000122 /* 000123 ** When compiling the test fixture or with debugging enabled (on Win32), 000124 ** this variable being set to non-zero will cause OSTRACE macros to emit 000125 ** extra diagnostic information. 000126 */ 000127 #ifdef SQLITE_HAVE_OS_TRACE 000128 # ifndef SQLITE_DEBUG_OS_TRACE 000129 # define SQLITE_DEBUG_OS_TRACE 0 000130 # endif 000131 int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE; 000132 #endif 000133 000134 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) 000135 /* 000136 ** If the following function pointer is not NULL and if 000137 ** SQLITE_ENABLE_IOTRACE is enabled, then messages describing 000138 ** I/O active are written using this function. These messages 000139 ** are intended for debugging activity only. 000140 */ 000141 SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0; 000142 #endif 000143 000144 /* 000145 ** If the following global variable points to a string which is the 000146 ** name of a directory, then that directory will be used to store 000147 ** temporary files. 000148 ** 000149 ** See also the "PRAGMA temp_store_directory" SQL command. 000150 */ 000151 char *sqlite3_temp_directory = 0; 000152 000153 /* 000154 ** If the following global variable points to a string which is the 000155 ** name of a directory, then that directory will be used to store 000156 ** all database files specified with a relative pathname. 000157 ** 000158 ** See also the "PRAGMA data_store_directory" SQL command. 000159 */ 000160 char *sqlite3_data_directory = 0; 000161 000162 /* 000163 ** Determine whether or not high-precision (long double) floating point 000164 ** math works correctly on CPU currently running. 000165 */ 000166 static SQLITE_NOINLINE int hasHighPrecisionDouble(int rc){ 000167 if( sizeof(LONGDOUBLE_TYPE)<=8 ){ 000168 /* If the size of "long double" is not more than 8, then 000169 ** high-precision math is not possible. */ 000170 return 0; 000171 }else{ 000172 /* Just because sizeof(long double)>8 does not mean that the underlying 000173 ** hardware actually supports high-precision floating point. For example, 000174 ** clearing the 0x100 bit in the floating-point control word on Intel 000175 ** processors will make long double work like double, even though long 000176 ** double takes up more space. The only way to determine if long double 000177 ** actually works is to run an experiment. */ 000178 LONGDOUBLE_TYPE a, b, c; 000179 rc++; 000180 a = 1.0+rc*0.1; 000181 b = 1.0e+18+rc*25.0; 000182 c = a+b; 000183 return b!=c; 000184 } 000185 } 000186 000187 000188 /* 000189 ** Initialize SQLite. 000190 ** 000191 ** This routine must be called to initialize the memory allocation, 000192 ** VFS, and mutex subsystems prior to doing any serious work with 000193 ** SQLite. But as long as you do not compile with SQLITE_OMIT_AUTOINIT 000194 ** this routine will be called automatically by key routines such as 000195 ** sqlite3_open(). 000196 ** 000197 ** This routine is a no-op except on its very first call for the process, 000198 ** or for the first call after a call to sqlite3_shutdown. 000199 ** 000200 ** The first thread to call this routine runs the initialization to 000201 ** completion. If subsequent threads call this routine before the first 000202 ** thread has finished the initialization process, then the subsequent 000203 ** threads must block until the first thread finishes with the initialization. 000204 ** 000205 ** The first thread might call this routine recursively. Recursive 000206 ** calls to this routine should not block, of course. Otherwise the 000207 ** initialization process would never complete. 000208 ** 000209 ** Let X be the first thread to enter this routine. Let Y be some other 000210 ** thread. Then while the initial invocation of this routine by X is 000211 ** incomplete, it is required that: 000212 ** 000213 ** * Calls to this routine from Y must block until the outer-most 000214 ** call by X completes. 000215 ** 000216 ** * Recursive calls to this routine from thread X return immediately 000217 ** without blocking. 000218 */ 000219 int sqlite3_initialize(void){ 000220 MUTEX_LOGIC( sqlite3_mutex *pMainMtx; ) /* The main static mutex */ 000221 int rc; /* Result code */ 000222 #ifdef SQLITE_EXTRA_INIT 000223 int bRunExtraInit = 0; /* Extra initialization needed */ 000224 #endif 000225 000226 #ifdef SQLITE_OMIT_WSD 000227 rc = sqlite3_wsd_init(4096, 24); 000228 if( rc!=SQLITE_OK ){ 000229 return rc; 000230 } 000231 #endif 000232 000233 /* If the following assert() fails on some obscure processor/compiler 000234 ** combination, the work-around is to set the correct pointer 000235 ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */ 000236 assert( SQLITE_PTRSIZE==sizeof(char*) ); 000237 000238 /* If SQLite is already completely initialized, then this call 000239 ** to sqlite3_initialize() should be a no-op. But the initialization 000240 ** must be complete. So isInit must not be set until the very end 000241 ** of this routine. 000242 */ 000243 if( sqlite3GlobalConfig.isInit ){ 000244 sqlite3MemoryBarrier(); 000245 return SQLITE_OK; 000246 } 000247 000248 /* Make sure the mutex subsystem is initialized. If unable to 000249 ** initialize the mutex subsystem, return early with the error. 000250 ** If the system is so sick that we are unable to allocate a mutex, 000251 ** there is not much SQLite is going to be able to do. 000252 ** 000253 ** The mutex subsystem must take care of serializing its own 000254 ** initialization. 000255 */ 000256 rc = sqlite3MutexInit(); 000257 if( rc ) return rc; 000258 000259 /* Initialize the malloc() system and the recursive pInitMutex mutex. 000260 ** This operation is protected by the STATIC_MAIN mutex. Note that 000261 ** MutexAlloc() is called for a static mutex prior to initializing the 000262 ** malloc subsystem - this implies that the allocation of a static 000263 ** mutex must not require support from the malloc subsystem. 000264 */ 000265 MUTEX_LOGIC( pMainMtx = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); ) 000266 sqlite3_mutex_enter(pMainMtx); 000267 sqlite3GlobalConfig.isMutexInit = 1; 000268 if( !sqlite3GlobalConfig.isMallocInit ){ 000269 rc = sqlite3MallocInit(); 000270 } 000271 if( rc==SQLITE_OK ){ 000272 sqlite3GlobalConfig.isMallocInit = 1; 000273 if( !sqlite3GlobalConfig.pInitMutex ){ 000274 sqlite3GlobalConfig.pInitMutex = 000275 sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 000276 if( sqlite3GlobalConfig.bCoreMutex && !sqlite3GlobalConfig.pInitMutex ){ 000277 rc = SQLITE_NOMEM_BKPT; 000278 } 000279 } 000280 } 000281 if( rc==SQLITE_OK ){ 000282 sqlite3GlobalConfig.nRefInitMutex++; 000283 } 000284 sqlite3_mutex_leave(pMainMtx); 000285 000286 /* If rc is not SQLITE_OK at this point, then either the malloc 000287 ** subsystem could not be initialized or the system failed to allocate 000288 ** the pInitMutex mutex. Return an error in either case. */ 000289 if( rc!=SQLITE_OK ){ 000290 return rc; 000291 } 000292 000293 /* Do the rest of the initialization under the recursive mutex so 000294 ** that we will be able to handle recursive calls into 000295 ** sqlite3_initialize(). The recursive calls normally come through 000296 ** sqlite3_os_init() when it invokes sqlite3_vfs_register(), but other 000297 ** recursive calls might also be possible. 000298 ** 000299 ** IMPLEMENTATION-OF: R-00140-37445 SQLite automatically serializes calls 000300 ** to the xInit method, so the xInit method need not be threadsafe. 000301 ** 000302 ** The following mutex is what serializes access to the appdef pcache xInit 000303 ** methods. The sqlite3_pcache_methods.xInit() all is embedded in the 000304 ** call to sqlite3PcacheInitialize(). 000305 */ 000306 sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex); 000307 if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){ 000308 sqlite3GlobalConfig.inProgress = 1; 000309 #ifdef SQLITE_ENABLE_SQLLOG 000310 { 000311 extern void sqlite3_init_sqllog(void); 000312 sqlite3_init_sqllog(); 000313 } 000314 #endif 000315 memset(&sqlite3BuiltinFunctions, 0, sizeof(sqlite3BuiltinFunctions)); 000316 sqlite3RegisterBuiltinFunctions(); 000317 if( sqlite3GlobalConfig.isPCacheInit==0 ){ 000318 rc = sqlite3PcacheInitialize(); 000319 } 000320 if( rc==SQLITE_OK ){ 000321 sqlite3GlobalConfig.isPCacheInit = 1; 000322 rc = sqlite3OsInit(); 000323 } 000324 #ifndef SQLITE_OMIT_DESERIALIZE 000325 if( rc==SQLITE_OK ){ 000326 rc = sqlite3MemdbInit(); 000327 } 000328 #endif 000329 if( rc==SQLITE_OK ){ 000330 sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, 000331 sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); 000332 sqlite3MemoryBarrier(); 000333 sqlite3GlobalConfig.isInit = 1; 000334 #ifdef SQLITE_EXTRA_INIT 000335 bRunExtraInit = 1; 000336 #endif 000337 } 000338 sqlite3GlobalConfig.inProgress = 0; 000339 } 000340 sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); 000341 000342 /* Go back under the static mutex and clean up the recursive 000343 ** mutex to prevent a resource leak. 000344 */ 000345 sqlite3_mutex_enter(pMainMtx); 000346 sqlite3GlobalConfig.nRefInitMutex--; 000347 if( sqlite3GlobalConfig.nRefInitMutex<=0 ){ 000348 assert( sqlite3GlobalConfig.nRefInitMutex==0 ); 000349 sqlite3_mutex_free(sqlite3GlobalConfig.pInitMutex); 000350 sqlite3GlobalConfig.pInitMutex = 0; 000351 } 000352 sqlite3_mutex_leave(pMainMtx); 000353 000354 /* The following is just a sanity check to make sure SQLite has 000355 ** been compiled correctly. It is important to run this code, but 000356 ** we don't want to run it too often and soak up CPU cycles for no 000357 ** reason. So we run it once during initialization. 000358 */ 000359 #ifndef NDEBUG 000360 #ifndef SQLITE_OMIT_FLOATING_POINT 000361 /* This section of code's only "output" is via assert() statements. */ 000362 if( rc==SQLITE_OK ){ 000363 u64 x = (((u64)1)<<63)-1; 000364 double y; 000365 assert(sizeof(x)==8); 000366 assert(sizeof(x)==sizeof(y)); 000367 memcpy(&y, &x, 8); 000368 assert( sqlite3IsNaN(y) ); 000369 } 000370 #endif 000371 #endif 000372 000373 /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT 000374 ** compile-time option. 000375 */ 000376 #ifdef SQLITE_EXTRA_INIT 000377 if( bRunExtraInit ){ 000378 int SQLITE_EXTRA_INIT(const char*); 000379 rc = SQLITE_EXTRA_INIT(0); 000380 } 000381 #endif 000382 000383 /* Experimentally determine if high-precision floating point is 000384 ** available. */ 000385 #ifndef SQLITE_OMIT_WSD 000386 sqlite3Config.bUseLongDouble = hasHighPrecisionDouble(rc); 000387 #endif 000388 000389 return rc; 000390 } 000391 000392 /* 000393 ** Undo the effects of sqlite3_initialize(). Must not be called while 000394 ** there are outstanding database connections or memory allocations or 000395 ** while any part of SQLite is otherwise in use in any thread. This 000396 ** routine is not threadsafe. But it is safe to invoke this routine 000397 ** on when SQLite is already shut down. If SQLite is already shut down 000398 ** when this routine is invoked, then this routine is a harmless no-op. 000399 */ 000400 int sqlite3_shutdown(void){ 000401 #ifdef SQLITE_OMIT_WSD 000402 int rc = sqlite3_wsd_init(4096, 24); 000403 if( rc!=SQLITE_OK ){ 000404 return rc; 000405 } 000406 #endif 000407 000408 if( sqlite3GlobalConfig.isInit ){ 000409 #ifdef SQLITE_EXTRA_SHUTDOWN 000410 void SQLITE_EXTRA_SHUTDOWN(void); 000411 SQLITE_EXTRA_SHUTDOWN(); 000412 #endif 000413 sqlite3_os_end(); 000414 sqlite3_reset_auto_extension(); 000415 sqlite3GlobalConfig.isInit = 0; 000416 } 000417 if( sqlite3GlobalConfig.isPCacheInit ){ 000418 sqlite3PcacheShutdown(); 000419 sqlite3GlobalConfig.isPCacheInit = 0; 000420 } 000421 if( sqlite3GlobalConfig.isMallocInit ){ 000422 sqlite3MallocEnd(); 000423 sqlite3GlobalConfig.isMallocInit = 0; 000424 000425 #ifndef SQLITE_OMIT_SHUTDOWN_DIRECTORIES 000426 /* The heap subsystem has now been shutdown and these values are supposed 000427 ** to be NULL or point to memory that was obtained from sqlite3_malloc(), 000428 ** which would rely on that heap subsystem; therefore, make sure these 000429 ** values cannot refer to heap memory that was just invalidated when the 000430 ** heap subsystem was shutdown. This is only done if the current call to 000431 ** this function resulted in the heap subsystem actually being shutdown. 000432 */ 000433 sqlite3_data_directory = 0; 000434 sqlite3_temp_directory = 0; 000435 #endif 000436 } 000437 if( sqlite3GlobalConfig.isMutexInit ){ 000438 sqlite3MutexEnd(); 000439 sqlite3GlobalConfig.isMutexInit = 0; 000440 } 000441 000442 return SQLITE_OK; 000443 } 000444 000445 /* 000446 ** This API allows applications to modify the global configuration of 000447 ** the SQLite library at run-time. 000448 ** 000449 ** This routine should only be called when there are no outstanding 000450 ** database connections or memory allocations. This routine is not 000451 ** threadsafe. Failure to heed these warnings can lead to unpredictable 000452 ** behavior. 000453 */ 000454 int sqlite3_config(int op, ...){ 000455 va_list ap; 000456 int rc = SQLITE_OK; 000457 000458 /* sqlite3_config() normally returns SQLITE_MISUSE if it is invoked while 000459 ** the SQLite library is in use. Except, a few selected opcodes 000460 ** are allowed. 000461 */ 000462 if( sqlite3GlobalConfig.isInit ){ 000463 static const u64 mAnytimeConfigOption = 0 000464 | MASKBIT64( SQLITE_CONFIG_LOG ) 000465 | MASKBIT64( SQLITE_CONFIG_PCACHE_HDRSZ ) 000466 ; 000467 if( op<0 || op>63 || (MASKBIT64(op) & mAnytimeConfigOption)==0 ){ 000468 return SQLITE_MISUSE_BKPT; 000469 } 000470 testcase( op==SQLITE_CONFIG_LOG ); 000471 testcase( op==SQLITE_CONFIG_PCACHE_HDRSZ ); 000472 } 000473 000474 va_start(ap, op); 000475 switch( op ){ 000476 000477 /* Mutex configuration options are only available in a threadsafe 000478 ** compile. 000479 */ 000480 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-54466-46756 */ 000481 case SQLITE_CONFIG_SINGLETHREAD: { 000482 /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to 000483 ** Single-thread. */ 000484 sqlite3GlobalConfig.bCoreMutex = 0; /* Disable mutex on core */ 000485 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000486 break; 000487 } 000488 #endif 000489 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */ 000490 case SQLITE_CONFIG_MULTITHREAD: { 000491 /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to 000492 ** Multi-thread. */ 000493 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000494 sqlite3GlobalConfig.bFullMutex = 0; /* Disable mutex on connections */ 000495 break; 000496 } 000497 #endif 000498 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */ 000499 case SQLITE_CONFIG_SERIALIZED: { 000500 /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to 000501 ** Serialized. */ 000502 sqlite3GlobalConfig.bCoreMutex = 1; /* Enable mutex on core */ 000503 sqlite3GlobalConfig.bFullMutex = 1; /* Enable mutex on connections */ 000504 break; 000505 } 000506 #endif 000507 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */ 000508 case SQLITE_CONFIG_MUTEX: { 000509 /* Specify an alternative mutex implementation */ 000510 sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*); 000511 break; 000512 } 000513 #endif 000514 #if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */ 000515 case SQLITE_CONFIG_GETMUTEX: { 000516 /* Retrieve the current mutex implementation */ 000517 *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex; 000518 break; 000519 } 000520 #endif 000521 000522 case SQLITE_CONFIG_MALLOC: { 000523 /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a 000524 ** single argument which is a pointer to an instance of the 000525 ** sqlite3_mem_methods structure. The argument specifies alternative 000526 ** low-level memory allocation routines to be used in place of the memory 000527 ** allocation routines built into SQLite. */ 000528 sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*); 000529 break; 000530 } 000531 case SQLITE_CONFIG_GETMALLOC: { 000532 /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a 000533 ** single argument which is a pointer to an instance of the 000534 ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is 000535 ** filled with the currently defined memory allocation routines. */ 000536 if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault(); 000537 *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m; 000538 break; 000539 } 000540 case SQLITE_CONFIG_MEMSTATUS: { 000541 assert( !sqlite3GlobalConfig.isInit ); /* Cannot change at runtime */ 000542 /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes 000543 ** single argument of type int, interpreted as a boolean, which enables 000544 ** or disables the collection of memory allocation statistics. */ 000545 sqlite3GlobalConfig.bMemstat = va_arg(ap, int); 000546 break; 000547 } 000548 case SQLITE_CONFIG_SMALL_MALLOC: { 000549 sqlite3GlobalConfig.bSmallMalloc = va_arg(ap, int); 000550 break; 000551 } 000552 case SQLITE_CONFIG_PAGECACHE: { 000553 /* EVIDENCE-OF: R-18761-36601 There are three arguments to 000554 ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem), 000555 ** the size of each page cache line (sz), and the number of cache lines 000556 ** (N). */ 000557 sqlite3GlobalConfig.pPage = va_arg(ap, void*); 000558 sqlite3GlobalConfig.szPage = va_arg(ap, int); 000559 sqlite3GlobalConfig.nPage = va_arg(ap, int); 000560 break; 000561 } 000562 case SQLITE_CONFIG_PCACHE_HDRSZ: { 000563 /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes 000564 ** a single parameter which is a pointer to an integer and writes into 000565 ** that integer the number of extra bytes per page required for each page 000566 ** in SQLITE_CONFIG_PAGECACHE. */ 000567 *va_arg(ap, int*) = 000568 sqlite3HeaderSizeBtree() + 000569 sqlite3HeaderSizePcache() + 000570 sqlite3HeaderSizePcache1(); 000571 break; 000572 } 000573 000574 case SQLITE_CONFIG_PCACHE: { 000575 /* no-op */ 000576 break; 000577 } 000578 case SQLITE_CONFIG_GETPCACHE: { 000579 /* now an error */ 000580 rc = SQLITE_ERROR; 000581 break; 000582 } 000583 000584 case SQLITE_CONFIG_PCACHE2: { 000585 /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a 000586 ** single argument which is a pointer to an sqlite3_pcache_methods2 000587 ** object. This object specifies the interface to a custom page cache 000588 ** implementation. */ 000589 sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*); 000590 break; 000591 } 000592 case SQLITE_CONFIG_GETPCACHE2: { 000593 /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a 000594 ** single argument which is a pointer to an sqlite3_pcache_methods2 000595 ** object. SQLite copies of the current page cache implementation into 000596 ** that object. */ 000597 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ 000598 sqlite3PCacheSetDefault(); 000599 } 000600 *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2; 000601 break; 000602 } 000603 000604 /* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only 000605 ** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or 000606 ** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */ 000607 #if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5) 000608 case SQLITE_CONFIG_HEAP: { 000609 /* EVIDENCE-OF: R-19854-42126 There are three arguments to 000610 ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the 000611 ** number of bytes in the memory buffer, and the minimum allocation size. 000612 */ 000613 sqlite3GlobalConfig.pHeap = va_arg(ap, void*); 000614 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000615 sqlite3GlobalConfig.mnReq = va_arg(ap, int); 000616 000617 if( sqlite3GlobalConfig.mnReq<1 ){ 000618 sqlite3GlobalConfig.mnReq = 1; 000619 }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){ 000620 /* cap min request size at 2^12 */ 000621 sqlite3GlobalConfig.mnReq = (1<<12); 000622 } 000623 000624 if( sqlite3GlobalConfig.pHeap==0 ){ 000625 /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer) 000626 ** is NULL, then SQLite reverts to using its default memory allocator 000627 ** (the system malloc() implementation), undoing any prior invocation of 000628 ** SQLITE_CONFIG_MALLOC. 000629 ** 000630 ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to 000631 ** revert to its default implementation when sqlite3_initialize() is run 000632 */ 000633 memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); 000634 }else{ 000635 /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the 000636 ** alternative memory allocator is engaged to handle all of SQLites 000637 ** memory allocation needs. */ 000638 #ifdef SQLITE_ENABLE_MEMSYS3 000639 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); 000640 #endif 000641 #ifdef SQLITE_ENABLE_MEMSYS5 000642 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); 000643 #endif 000644 } 000645 break; 000646 } 000647 #endif 000648 000649 case SQLITE_CONFIG_LOOKASIDE: { 000650 sqlite3GlobalConfig.szLookaside = va_arg(ap, int); 000651 sqlite3GlobalConfig.nLookaside = va_arg(ap, int); 000652 break; 000653 } 000654 000655 /* Record a pointer to the logger function and its first argument. 000656 ** The default is NULL. Logging is disabled if the function pointer is 000657 ** NULL. 000658 */ 000659 case SQLITE_CONFIG_LOG: { 000660 /* MSVC is picky about pulling func ptrs from va lists. 000661 ** http://support.microsoft.com/kb/47961 000662 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); 000663 */ 000664 typedef void(*LOGFUNC_t)(void*,int,const char*); 000665 LOGFUNC_t xLog = va_arg(ap, LOGFUNC_t); 000666 void *pLogArg = va_arg(ap, void*); 000667 AtomicStore(&sqlite3GlobalConfig.xLog, xLog); 000668 AtomicStore(&sqlite3GlobalConfig.pLogArg, pLogArg); 000669 break; 000670 } 000671 000672 /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames 000673 ** can be changed at start-time using the 000674 ** sqlite3_config(SQLITE_CONFIG_URI,1) or 000675 ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls. 000676 */ 000677 case SQLITE_CONFIG_URI: { 000678 /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single 000679 ** argument of type int. If non-zero, then URI handling is globally 000680 ** enabled. If the parameter is zero, then URI handling is globally 000681 ** disabled. */ 000682 int bOpenUri = va_arg(ap, int); 000683 AtomicStore(&sqlite3GlobalConfig.bOpenUri, bOpenUri); 000684 break; 000685 } 000686 000687 case SQLITE_CONFIG_COVERING_INDEX_SCAN: { 000688 /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN 000689 ** option takes a single integer argument which is interpreted as a 000690 ** boolean in order to enable or disable the use of covering indices for 000691 ** full table scans in the query optimizer. */ 000692 sqlite3GlobalConfig.bUseCis = va_arg(ap, int); 000693 break; 000694 } 000695 000696 #ifdef SQLITE_ENABLE_SQLLOG 000697 case SQLITE_CONFIG_SQLLOG: { 000698 typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int); 000699 sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t); 000700 sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *); 000701 break; 000702 } 000703 #endif 000704 000705 case SQLITE_CONFIG_MMAP_SIZE: { 000706 /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit 000707 ** integer (sqlite3_int64) values that are the default mmap size limit 000708 ** (the default setting for PRAGMA mmap_size) and the maximum allowed 000709 ** mmap size limit. */ 000710 sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64); 000711 sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64); 000712 /* EVIDENCE-OF: R-53367-43190 If either argument to this option is 000713 ** negative, then that argument is changed to its compile-time default. 000714 ** 000715 ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be 000716 ** silently truncated if necessary so that it does not exceed the 000717 ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE 000718 ** compile-time option. 000719 */ 000720 if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){ 000721 mxMmap = SQLITE_MAX_MMAP_SIZE; 000722 } 000723 if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE; 000724 if( szMmap>mxMmap) szMmap = mxMmap; 000725 sqlite3GlobalConfig.mxMmap = mxMmap; 000726 sqlite3GlobalConfig.szMmap = szMmap; 000727 break; 000728 } 000729 000730 #if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */ 000731 case SQLITE_CONFIG_WIN32_HEAPSIZE: { 000732 /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit 000733 ** unsigned integer value that specifies the maximum size of the created 000734 ** heap. */ 000735 sqlite3GlobalConfig.nHeap = va_arg(ap, int); 000736 break; 000737 } 000738 #endif 000739 000740 case SQLITE_CONFIG_PMASZ: { 000741 sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int); 000742 break; 000743 } 000744 000745 case SQLITE_CONFIG_STMTJRNL_SPILL: { 000746 sqlite3GlobalConfig.nStmtSpill = va_arg(ap, int); 000747 break; 000748 } 000749 000750 #ifdef SQLITE_ENABLE_SORTER_REFERENCES 000751 case SQLITE_CONFIG_SORTERREF_SIZE: { 000752 int iVal = va_arg(ap, int); 000753 if( iVal<0 ){ 000754 iVal = SQLITE_DEFAULT_SORTERREF_SIZE; 000755 } 000756 sqlite3GlobalConfig.szSorterRef = (u32)iVal; 000757 break; 000758 } 000759 #endif /* SQLITE_ENABLE_SORTER_REFERENCES */ 000760 000761 #ifndef SQLITE_OMIT_DESERIALIZE 000762 case SQLITE_CONFIG_MEMDB_MAXSIZE: { 000763 sqlite3GlobalConfig.mxMemdbSize = va_arg(ap, sqlite3_int64); 000764 break; 000765 } 000766 #endif /* SQLITE_OMIT_DESERIALIZE */ 000767 000768 case SQLITE_CONFIG_ROWID_IN_VIEW: { 000769 int *pVal = va_arg(ap,int*); 000770 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 000771 if( 0==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = TF_NoVisibleRowid; 000772 if( 1==*pVal ) sqlite3GlobalConfig.mNoVisibleRowid = 0; 000773 *pVal = (sqlite3GlobalConfig.mNoVisibleRowid==0); 000774 #else 000775 *pVal = 0; 000776 #endif 000777 break; 000778 } 000779 000780 default: { 000781 rc = SQLITE_ERROR; 000782 break; 000783 } 000784 } 000785 va_end(ap); 000786 return rc; 000787 } 000788 000789 /* 000790 ** Set up the lookaside buffers for a database connection. 000791 ** Return SQLITE_OK on success. 000792 ** If lookaside is already active, return SQLITE_BUSY. 000793 ** 000794 ** The sz parameter is the number of bytes in each lookaside slot. 000795 ** The cnt parameter is the number of slots. If pStart is NULL the 000796 ** space for the lookaside memory is obtained from sqlite3_malloc(). 000797 ** If pStart is not NULL then it is sz*cnt bytes of memory to use for 000798 ** the lookaside memory. 000799 */ 000800 static int setupLookaside(sqlite3 *db, void *pBuf, int sz, int cnt){ 000801 #ifndef SQLITE_OMIT_LOOKASIDE 000802 void *pStart; 000803 sqlite3_int64 szAlloc = sz*(sqlite3_int64)cnt; 000804 int nBig; /* Number of full-size slots */ 000805 int nSm; /* Number smaller LOOKASIDE_SMALL-byte slots */ 000806 000807 if( sqlite3LookasideUsed(db,0)>0 ){ 000808 return SQLITE_BUSY; 000809 } 000810 /* Free any existing lookaside buffer for this handle before 000811 ** allocating a new one so we don't have to have space for 000812 ** both at the same time. 000813 */ 000814 if( db->lookaside.bMalloced ){ 000815 sqlite3_free(db->lookaside.pStart); 000816 } 000817 /* The size of a lookaside slot after ROUNDDOWN8 needs to be larger 000818 ** than a pointer to be useful. 000819 */ 000820 sz = ROUNDDOWN8(sz); /* IMP: R-33038-09382 */ 000821 if( sz<=(int)sizeof(LookasideSlot*) ) sz = 0; 000822 if( cnt<0 ) cnt = 0; 000823 if( sz==0 || cnt==0 ){ 000824 sz = 0; 000825 pStart = 0; 000826 }else if( pBuf==0 ){ 000827 sqlite3BeginBenignMalloc(); 000828 pStart = sqlite3Malloc( szAlloc ); /* IMP: R-61949-35727 */ 000829 sqlite3EndBenignMalloc(); 000830 if( pStart ) szAlloc = sqlite3MallocSize(pStart); 000831 }else{ 000832 pStart = pBuf; 000833 } 000834 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000835 if( sz>=LOOKASIDE_SMALL*3 ){ 000836 nBig = szAlloc/(3*LOOKASIDE_SMALL+sz); 000837 nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; 000838 }else if( sz>=LOOKASIDE_SMALL*2 ){ 000839 nBig = szAlloc/(LOOKASIDE_SMALL+sz); 000840 nSm = (szAlloc - sz*nBig)/LOOKASIDE_SMALL; 000841 }else 000842 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000843 if( sz>0 ){ 000844 nBig = szAlloc/sz; 000845 nSm = 0; 000846 }else{ 000847 nBig = nSm = 0; 000848 } 000849 db->lookaside.pStart = pStart; 000850 db->lookaside.pInit = 0; 000851 db->lookaside.pFree = 0; 000852 db->lookaside.sz = (u16)sz; 000853 db->lookaside.szTrue = (u16)sz; 000854 if( pStart ){ 000855 int i; 000856 LookasideSlot *p; 000857 assert( sz > (int)sizeof(LookasideSlot*) ); 000858 p = (LookasideSlot*)pStart; 000859 for(i=0; i<nBig; i++){ 000860 p->pNext = db->lookaside.pInit; 000861 db->lookaside.pInit = p; 000862 p = (LookasideSlot*)&((u8*)p)[sz]; 000863 } 000864 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000865 db->lookaside.pSmallInit = 0; 000866 db->lookaside.pSmallFree = 0; 000867 db->lookaside.pMiddle = p; 000868 for(i=0; i<nSm; i++){ 000869 p->pNext = db->lookaside.pSmallInit; 000870 db->lookaside.pSmallInit = p; 000871 p = (LookasideSlot*)&((u8*)p)[LOOKASIDE_SMALL]; 000872 } 000873 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000874 assert( ((uptr)p)<=szAlloc + (uptr)pStart ); 000875 db->lookaside.pEnd = p; 000876 db->lookaside.bDisable = 0; 000877 db->lookaside.bMalloced = pBuf==0 ?1:0; 000878 db->lookaside.nSlot = nBig+nSm; 000879 }else{ 000880 db->lookaside.pStart = 0; 000881 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE 000882 db->lookaside.pSmallInit = 0; 000883 db->lookaside.pSmallFree = 0; 000884 db->lookaside.pMiddle = 0; 000885 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */ 000886 db->lookaside.pEnd = 0; 000887 db->lookaside.bDisable = 1; 000888 db->lookaside.sz = 0; 000889 db->lookaside.bMalloced = 0; 000890 db->lookaside.nSlot = 0; 000891 } 000892 db->lookaside.pTrueEnd = db->lookaside.pEnd; 000893 assert( sqlite3LookasideUsed(db,0)==0 ); 000894 #endif /* SQLITE_OMIT_LOOKASIDE */ 000895 return SQLITE_OK; 000896 } 000897 000898 /* 000899 ** Return the mutex associated with a database connection. 000900 */ 000901 sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){ 000902 #ifdef SQLITE_ENABLE_API_ARMOR 000903 if( !sqlite3SafetyCheckOk(db) ){ 000904 (void)SQLITE_MISUSE_BKPT; 000905 return 0; 000906 } 000907 #endif 000908 return db->mutex; 000909 } 000910 000911 /* 000912 ** Free up as much memory as we can from the given database 000913 ** connection. 000914 */ 000915 int sqlite3_db_release_memory(sqlite3 *db){ 000916 int i; 000917 000918 #ifdef SQLITE_ENABLE_API_ARMOR 000919 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000920 #endif 000921 sqlite3_mutex_enter(db->mutex); 000922 sqlite3BtreeEnterAll(db); 000923 for(i=0; i<db->nDb; i++){ 000924 Btree *pBt = db->aDb[i].pBt; 000925 if( pBt ){ 000926 Pager *pPager = sqlite3BtreePager(pBt); 000927 sqlite3PagerShrink(pPager); 000928 } 000929 } 000930 sqlite3BtreeLeaveAll(db); 000931 sqlite3_mutex_leave(db->mutex); 000932 return SQLITE_OK; 000933 } 000934 000935 /* 000936 ** Flush any dirty pages in the pager-cache for any attached database 000937 ** to disk. 000938 */ 000939 int sqlite3_db_cacheflush(sqlite3 *db){ 000940 int i; 000941 int rc = SQLITE_OK; 000942 int bSeenBusy = 0; 000943 000944 #ifdef SQLITE_ENABLE_API_ARMOR 000945 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000946 #endif 000947 sqlite3_mutex_enter(db->mutex); 000948 sqlite3BtreeEnterAll(db); 000949 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 000950 Btree *pBt = db->aDb[i].pBt; 000951 if( pBt && sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){ 000952 Pager *pPager = sqlite3BtreePager(pBt); 000953 rc = sqlite3PagerFlush(pPager); 000954 if( rc==SQLITE_BUSY ){ 000955 bSeenBusy = 1; 000956 rc = SQLITE_OK; 000957 } 000958 } 000959 } 000960 sqlite3BtreeLeaveAll(db); 000961 sqlite3_mutex_leave(db->mutex); 000962 return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc); 000963 } 000964 000965 /* 000966 ** Configuration settings for an individual database connection 000967 */ 000968 int sqlite3_db_config(sqlite3 *db, int op, ...){ 000969 va_list ap; 000970 int rc; 000971 000972 #ifdef SQLITE_ENABLE_API_ARMOR 000973 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 000974 #endif 000975 sqlite3_mutex_enter(db->mutex); 000976 va_start(ap, op); 000977 switch( op ){ 000978 case SQLITE_DBCONFIG_MAINDBNAME: { 000979 /* IMP: R-06824-28531 */ 000980 /* IMP: R-36257-52125 */ 000981 db->aDb[0].zDbSName = va_arg(ap,char*); 000982 rc = SQLITE_OK; 000983 break; 000984 } 000985 case SQLITE_DBCONFIG_LOOKASIDE: { 000986 void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */ 000987 int sz = va_arg(ap, int); /* IMP: R-47871-25994 */ 000988 int cnt = va_arg(ap, int); /* IMP: R-04460-53386 */ 000989 rc = setupLookaside(db, pBuf, sz, cnt); 000990 break; 000991 } 000992 default: { 000993 static const struct { 000994 int op; /* The opcode */ 000995 u32 mask; /* Mask of the bit in sqlite3.flags to set/clear */ 000996 } aFlagOp[] = { 000997 { SQLITE_DBCONFIG_ENABLE_FKEY, SQLITE_ForeignKeys }, 000998 { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, 000999 { SQLITE_DBCONFIG_ENABLE_VIEW, SQLITE_EnableView }, 001000 { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, 001001 { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, 001002 { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, 001003 { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, 001004 { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, 001005 { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, 001006 { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, 001007 { SQLITE_DBCONFIG_WRITABLE_SCHEMA, SQLITE_WriteSchema| 001008 SQLITE_NoSchemaError }, 001009 { SQLITE_DBCONFIG_LEGACY_ALTER_TABLE, SQLITE_LegacyAlter }, 001010 { SQLITE_DBCONFIG_DQS_DDL, SQLITE_DqsDDL }, 001011 { SQLITE_DBCONFIG_DQS_DML, SQLITE_DqsDML }, 001012 { SQLITE_DBCONFIG_LEGACY_FILE_FORMAT, SQLITE_LegacyFileFmt }, 001013 { SQLITE_DBCONFIG_TRUSTED_SCHEMA, SQLITE_TrustedSchema }, 001014 { SQLITE_DBCONFIG_STMT_SCANSTATUS, SQLITE_StmtScanStatus }, 001015 { SQLITE_DBCONFIG_REVERSE_SCANORDER, SQLITE_ReverseOrder }, 001016 }; 001017 unsigned int i; 001018 rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ 001019 for(i=0; i<ArraySize(aFlagOp); i++){ 001020 if( aFlagOp[i].op==op ){ 001021 int onoff = va_arg(ap, int); 001022 int *pRes = va_arg(ap, int*); 001023 u64 oldFlags = db->flags; 001024 if( onoff>0 ){ 001025 db->flags |= aFlagOp[i].mask; 001026 }else if( onoff==0 ){ 001027 db->flags &= ~(u64)aFlagOp[i].mask; 001028 } 001029 if( oldFlags!=db->flags ){ 001030 sqlite3ExpirePreparedStatements(db, 0); 001031 } 001032 if( pRes ){ 001033 *pRes = (db->flags & aFlagOp[i].mask)!=0; 001034 } 001035 rc = SQLITE_OK; 001036 break; 001037 } 001038 } 001039 break; 001040 } 001041 } 001042 va_end(ap); 001043 sqlite3_mutex_leave(db->mutex); 001044 return rc; 001045 } 001046 001047 /* 001048 ** This is the default collating function named "BINARY" which is always 001049 ** available. 001050 */ 001051 static int binCollFunc( 001052 void *NotUsed, 001053 int nKey1, const void *pKey1, 001054 int nKey2, const void *pKey2 001055 ){ 001056 int rc, n; 001057 UNUSED_PARAMETER(NotUsed); 001058 n = nKey1<nKey2 ? nKey1 : nKey2; 001059 /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares 001060 ** strings byte by byte using the memcmp() function from the standard C 001061 ** library. */ 001062 assert( pKey1 && pKey2 ); 001063 rc = memcmp(pKey1, pKey2, n); 001064 if( rc==0 ){ 001065 rc = nKey1 - nKey2; 001066 } 001067 return rc; 001068 } 001069 001070 /* 001071 ** This is the collating function named "RTRIM" which is always 001072 ** available. Ignore trailing spaces. 001073 */ 001074 static int rtrimCollFunc( 001075 void *pUser, 001076 int nKey1, const void *pKey1, 001077 int nKey2, const void *pKey2 001078 ){ 001079 const u8 *pK1 = (const u8*)pKey1; 001080 const u8 *pK2 = (const u8*)pKey2; 001081 while( nKey1 && pK1[nKey1-1]==' ' ) nKey1--; 001082 while( nKey2 && pK2[nKey2-1]==' ' ) nKey2--; 001083 return binCollFunc(pUser, nKey1, pKey1, nKey2, pKey2); 001084 } 001085 001086 /* 001087 ** Return true if CollSeq is the default built-in BINARY. 001088 */ 001089 int sqlite3IsBinary(const CollSeq *p){ 001090 assert( p==0 || p->xCmp!=binCollFunc || strcmp(p->zName,"BINARY")==0 ); 001091 return p==0 || p->xCmp==binCollFunc; 001092 } 001093 001094 /* 001095 ** Another built-in collating sequence: NOCASE. 001096 ** 001097 ** This collating sequence is intended to be used for "case independent 001098 ** comparison". SQLite's knowledge of upper and lower case equivalents 001099 ** extends only to the 26 characters used in the English language. 001100 ** 001101 ** At the moment there is only a UTF-8 implementation. 001102 */ 001103 static int nocaseCollatingFunc( 001104 void *NotUsed, 001105 int nKey1, const void *pKey1, 001106 int nKey2, const void *pKey2 001107 ){ 001108 int r = sqlite3StrNICmp( 001109 (const char *)pKey1, (const char *)pKey2, (nKey1<nKey2)?nKey1:nKey2); 001110 UNUSED_PARAMETER(NotUsed); 001111 if( 0==r ){ 001112 r = nKey1-nKey2; 001113 } 001114 return r; 001115 } 001116 001117 /* 001118 ** Return the ROWID of the most recent insert 001119 */ 001120 sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){ 001121 #ifdef SQLITE_ENABLE_API_ARMOR 001122 if( !sqlite3SafetyCheckOk(db) ){ 001123 (void)SQLITE_MISUSE_BKPT; 001124 return 0; 001125 } 001126 #endif 001127 return db->lastRowid; 001128 } 001129 001130 /* 001131 ** Set the value returned by the sqlite3_last_insert_rowid() API function. 001132 */ 001133 void sqlite3_set_last_insert_rowid(sqlite3 *db, sqlite3_int64 iRowid){ 001134 #ifdef SQLITE_ENABLE_API_ARMOR 001135 if( !sqlite3SafetyCheckOk(db) ){ 001136 (void)SQLITE_MISUSE_BKPT; 001137 return; 001138 } 001139 #endif 001140 sqlite3_mutex_enter(db->mutex); 001141 db->lastRowid = iRowid; 001142 sqlite3_mutex_leave(db->mutex); 001143 } 001144 001145 /* 001146 ** Return the number of changes in the most recent call to sqlite3_exec(). 001147 */ 001148 sqlite3_int64 sqlite3_changes64(sqlite3 *db){ 001149 #ifdef SQLITE_ENABLE_API_ARMOR 001150 if( !sqlite3SafetyCheckOk(db) ){ 001151 (void)SQLITE_MISUSE_BKPT; 001152 return 0; 001153 } 001154 #endif 001155 return db->nChange; 001156 } 001157 int sqlite3_changes(sqlite3 *db){ 001158 return (int)sqlite3_changes64(db); 001159 } 001160 001161 /* 001162 ** Return the number of changes since the database handle was opened. 001163 */ 001164 sqlite3_int64 sqlite3_total_changes64(sqlite3 *db){ 001165 #ifdef SQLITE_ENABLE_API_ARMOR 001166 if( !sqlite3SafetyCheckOk(db) ){ 001167 (void)SQLITE_MISUSE_BKPT; 001168 return 0; 001169 } 001170 #endif 001171 return db->nTotalChange; 001172 } 001173 int sqlite3_total_changes(sqlite3 *db){ 001174 return (int)sqlite3_total_changes64(db); 001175 } 001176 001177 /* 001178 ** Close all open savepoints. This function only manipulates fields of the 001179 ** database handle object, it does not close any savepoints that may be open 001180 ** at the b-tree/pager level. 001181 */ 001182 void sqlite3CloseSavepoints(sqlite3 *db){ 001183 while( db->pSavepoint ){ 001184 Savepoint *pTmp = db->pSavepoint; 001185 db->pSavepoint = pTmp->pNext; 001186 sqlite3DbFree(db, pTmp); 001187 } 001188 db->nSavepoint = 0; 001189 db->nStatement = 0; 001190 db->isTransactionSavepoint = 0; 001191 } 001192 001193 /* 001194 ** Invoke the destructor function associated with FuncDef p, if any. Except, 001195 ** if this is not the last copy of the function, do not invoke it. Multiple 001196 ** copies of a single function are created when create_function() is called 001197 ** with SQLITE_ANY as the encoding. 001198 */ 001199 static void functionDestroy(sqlite3 *db, FuncDef *p){ 001200 FuncDestructor *pDestructor; 001201 assert( (p->funcFlags & SQLITE_FUNC_BUILTIN)==0 ); 001202 pDestructor = p->u.pDestructor; 001203 if( pDestructor ){ 001204 pDestructor->nRef--; 001205 if( pDestructor->nRef==0 ){ 001206 pDestructor->xDestroy(pDestructor->pUserData); 001207 sqlite3DbFree(db, pDestructor); 001208 } 001209 } 001210 } 001211 001212 /* 001213 ** Disconnect all sqlite3_vtab objects that belong to database connection 001214 ** db. This is called when db is being closed. 001215 */ 001216 static void disconnectAllVtab(sqlite3 *db){ 001217 #ifndef SQLITE_OMIT_VIRTUALTABLE 001218 int i; 001219 HashElem *p; 001220 sqlite3BtreeEnterAll(db); 001221 for(i=0; i<db->nDb; i++){ 001222 Schema *pSchema = db->aDb[i].pSchema; 001223 if( pSchema ){ 001224 for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){ 001225 Table *pTab = (Table *)sqliteHashData(p); 001226 if( IsVirtual(pTab) ) sqlite3VtabDisconnect(db, pTab); 001227 } 001228 } 001229 } 001230 for(p=sqliteHashFirst(&db->aModule); p; p=sqliteHashNext(p)){ 001231 Module *pMod = (Module *)sqliteHashData(p); 001232 if( pMod->pEpoTab ){ 001233 sqlite3VtabDisconnect(db, pMod->pEpoTab); 001234 } 001235 } 001236 sqlite3VtabUnlockList(db); 001237 sqlite3BtreeLeaveAll(db); 001238 #else 001239 UNUSED_PARAMETER(db); 001240 #endif 001241 } 001242 001243 /* 001244 ** Return TRUE if database connection db has unfinalized prepared 001245 ** statements or unfinished sqlite3_backup objects. 001246 */ 001247 static int connectionIsBusy(sqlite3 *db){ 001248 int j; 001249 assert( sqlite3_mutex_held(db->mutex) ); 001250 if( db->pVdbe ) return 1; 001251 for(j=0; j<db->nDb; j++){ 001252 Btree *pBt = db->aDb[j].pBt; 001253 if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1; 001254 } 001255 return 0; 001256 } 001257 001258 /* 001259 ** Close an existing SQLite database 001260 */ 001261 static int sqlite3Close(sqlite3 *db, int forceZombie){ 001262 if( !db ){ 001263 /* EVIDENCE-OF: R-63257-11740 Calling sqlite3_close() or 001264 ** sqlite3_close_v2() with a NULL pointer argument is a harmless no-op. */ 001265 return SQLITE_OK; 001266 } 001267 if( !sqlite3SafetyCheckSickOrOk(db) ){ 001268 return SQLITE_MISUSE_BKPT; 001269 } 001270 sqlite3_mutex_enter(db->mutex); 001271 if( db->mTrace & SQLITE_TRACE_CLOSE ){ 001272 db->trace.xV2(SQLITE_TRACE_CLOSE, db->pTraceArg, db, 0); 001273 } 001274 001275 /* Force xDisconnect calls on all virtual tables */ 001276 disconnectAllVtab(db); 001277 001278 /* If a transaction is open, the disconnectAllVtab() call above 001279 ** will not have called the xDisconnect() method on any virtual 001280 ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback() 001281 ** call will do so. We need to do this before the check for active 001282 ** SQL statements below, as the v-table implementation may be storing 001283 ** some prepared statements internally. 001284 */ 001285 sqlite3VtabRollback(db); 001286 001287 /* Legacy behavior (sqlite3_close() behavior) is to return 001288 ** SQLITE_BUSY if the connection can not be closed immediately. 001289 */ 001290 if( !forceZombie && connectionIsBusy(db) ){ 001291 sqlite3ErrorWithMsg(db, SQLITE_BUSY, "unable to close due to unfinalized " 001292 "statements or unfinished backups"); 001293 sqlite3_mutex_leave(db->mutex); 001294 return SQLITE_BUSY; 001295 } 001296 001297 #ifdef SQLITE_ENABLE_SQLLOG 001298 if( sqlite3GlobalConfig.xSqllog ){ 001299 /* Closing the handle. Fourth parameter is passed the value 2. */ 001300 sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); 001301 } 001302 #endif 001303 001304 while( db->pDbData ){ 001305 DbClientData *p = db->pDbData; 001306 db->pDbData = p->pNext; 001307 assert( p->pData!=0 ); 001308 if( p->xDestructor ) p->xDestructor(p->pData); 001309 sqlite3_free(p); 001310 } 001311 001312 /* Convert the connection into a zombie and then close it. 001313 */ 001314 db->eOpenState = SQLITE_STATE_ZOMBIE; 001315 sqlite3LeaveMutexAndCloseZombie(db); 001316 return SQLITE_OK; 001317 } 001318 001319 /* 001320 ** Return the transaction state for a single databse, or the maximum 001321 ** transaction state over all attached databases if zSchema is null. 001322 */ 001323 int sqlite3_txn_state(sqlite3 *db, const char *zSchema){ 001324 int iDb, nDb; 001325 int iTxn = -1; 001326 #ifdef SQLITE_ENABLE_API_ARMOR 001327 if( !sqlite3SafetyCheckOk(db) ){ 001328 (void)SQLITE_MISUSE_BKPT; 001329 return -1; 001330 } 001331 #endif 001332 sqlite3_mutex_enter(db->mutex); 001333 if( zSchema ){ 001334 nDb = iDb = sqlite3FindDbName(db, zSchema); 001335 if( iDb<0 ) nDb--; 001336 }else{ 001337 iDb = 0; 001338 nDb = db->nDb-1; 001339 } 001340 for(; iDb<=nDb; iDb++){ 001341 Btree *pBt = db->aDb[iDb].pBt; 001342 int x = pBt!=0 ? sqlite3BtreeTxnState(pBt) : SQLITE_TXN_NONE; 001343 if( x>iTxn ) iTxn = x; 001344 } 001345 sqlite3_mutex_leave(db->mutex); 001346 return iTxn; 001347 } 001348 001349 /* 001350 ** Two variations on the public interface for closing a database 001351 ** connection. The sqlite3_close() version returns SQLITE_BUSY and 001352 ** leaves the connection open if there are unfinalized prepared 001353 ** statements or unfinished sqlite3_backups. The sqlite3_close_v2() 001354 ** version forces the connection to become a zombie if there are 001355 ** unclosed resources, and arranges for deallocation when the last 001356 ** prepare statement or sqlite3_backup closes. 001357 */ 001358 int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); } 001359 int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); } 001360 001361 001362 /* 001363 ** Close the mutex on database connection db. 001364 ** 001365 ** Furthermore, if database connection db is a zombie (meaning that there 001366 ** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and 001367 ** every sqlite3_stmt has now been finalized and every sqlite3_backup has 001368 ** finished, then free all resources. 001369 */ 001370 void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){ 001371 HashElem *i; /* Hash table iterator */ 001372 int j; 001373 001374 /* If there are outstanding sqlite3_stmt or sqlite3_backup objects 001375 ** or if the connection has not yet been closed by sqlite3_close_v2(), 001376 ** then just leave the mutex and return. 001377 */ 001378 if( db->eOpenState!=SQLITE_STATE_ZOMBIE || connectionIsBusy(db) ){ 001379 sqlite3_mutex_leave(db->mutex); 001380 return; 001381 } 001382 001383 /* If we reach this point, it means that the database connection has 001384 ** closed all sqlite3_stmt and sqlite3_backup objects and has been 001385 ** passed to sqlite3_close (meaning that it is a zombie). Therefore, 001386 ** go ahead and free all resources. 001387 */ 001388 001389 /* If a transaction is open, roll it back. This also ensures that if 001390 ** any database schemas have been modified by an uncommitted transaction 001391 ** they are reset. And that the required b-tree mutex is held to make 001392 ** the pager rollback and schema reset an atomic operation. */ 001393 sqlite3RollbackAll(db, SQLITE_OK); 001394 001395 /* Free any outstanding Savepoint structures. */ 001396 sqlite3CloseSavepoints(db); 001397 001398 /* Close all database connections */ 001399 for(j=0; j<db->nDb; j++){ 001400 struct Db *pDb = &db->aDb[j]; 001401 if( pDb->pBt ){ 001402 sqlite3BtreeClose(pDb->pBt); 001403 pDb->pBt = 0; 001404 if( j!=1 ){ 001405 pDb->pSchema = 0; 001406 } 001407 } 001408 } 001409 /* Clear the TEMP schema separately and last */ 001410 if( db->aDb[1].pSchema ){ 001411 sqlite3SchemaClear(db->aDb[1].pSchema); 001412 } 001413 sqlite3VtabUnlockList(db); 001414 001415 /* Free up the array of auxiliary databases */ 001416 sqlite3CollapseDatabaseArray(db); 001417 assert( db->nDb<=2 ); 001418 assert( db->aDb==db->aDbStatic ); 001419 001420 /* Tell the code in notify.c that the connection no longer holds any 001421 ** locks and does not require any further unlock-notify callbacks. 001422 */ 001423 sqlite3ConnectionClosed(db); 001424 001425 for(i=sqliteHashFirst(&db->aFunc); i; i=sqliteHashNext(i)){ 001426 FuncDef *pNext, *p; 001427 p = sqliteHashData(i); 001428 do{ 001429 functionDestroy(db, p); 001430 pNext = p->pNext; 001431 sqlite3DbFree(db, p); 001432 p = pNext; 001433 }while( p ); 001434 } 001435 sqlite3HashClear(&db->aFunc); 001436 for(i=sqliteHashFirst(&db->aCollSeq); i; i=sqliteHashNext(i)){ 001437 CollSeq *pColl = (CollSeq *)sqliteHashData(i); 001438 /* Invoke any destructors registered for collation sequence user data. */ 001439 for(j=0; j<3; j++){ 001440 if( pColl[j].xDel ){ 001441 pColl[j].xDel(pColl[j].pUser); 001442 } 001443 } 001444 sqlite3DbFree(db, pColl); 001445 } 001446 sqlite3HashClear(&db->aCollSeq); 001447 #ifndef SQLITE_OMIT_VIRTUALTABLE 001448 for(i=sqliteHashFirst(&db->aModule); i; i=sqliteHashNext(i)){ 001449 Module *pMod = (Module *)sqliteHashData(i); 001450 sqlite3VtabEponymousTableClear(db, pMod); 001451 sqlite3VtabModuleUnref(db, pMod); 001452 } 001453 sqlite3HashClear(&db->aModule); 001454 #endif 001455 001456 sqlite3Error(db, SQLITE_OK); /* Deallocates any cached error strings. */ 001457 sqlite3ValueFree(db->pErr); 001458 sqlite3CloseExtensions(db); 001459 #if SQLITE_USER_AUTHENTICATION 001460 sqlite3_free(db->auth.zAuthUser); 001461 sqlite3_free(db->auth.zAuthPW); 001462 #endif 001463 001464 db->eOpenState = SQLITE_STATE_ERROR; 001465 001466 /* The temp-database schema is allocated differently from the other schema 001467 ** objects (using sqliteMalloc() directly, instead of sqlite3BtreeSchema()). 001468 ** So it needs to be freed here. Todo: Why not roll the temp schema into 001469 ** the same sqliteMalloc() as the one that allocates the database 001470 ** structure? 001471 */ 001472 sqlite3DbFree(db, db->aDb[1].pSchema); 001473 if( db->xAutovacDestr ){ 001474 db->xAutovacDestr(db->pAutovacPagesArg); 001475 } 001476 sqlite3_mutex_leave(db->mutex); 001477 db->eOpenState = SQLITE_STATE_CLOSED; 001478 sqlite3_mutex_free(db->mutex); 001479 assert( sqlite3LookasideUsed(db,0)==0 ); 001480 if( db->lookaside.bMalloced ){ 001481 sqlite3_free(db->lookaside.pStart); 001482 } 001483 sqlite3_free(db); 001484 } 001485 001486 /* 001487 ** Rollback all database files. If tripCode is not SQLITE_OK, then 001488 ** any write cursors are invalidated ("tripped" - as in "tripping a circuit 001489 ** breaker") and made to return tripCode if there are any further 001490 ** attempts to use that cursor. Read cursors remain open and valid 001491 ** but are "saved" in case the table pages are moved around. 001492 */ 001493 void sqlite3RollbackAll(sqlite3 *db, int tripCode){ 001494 int i; 001495 int inTrans = 0; 001496 int schemaChange; 001497 assert( sqlite3_mutex_held(db->mutex) ); 001498 sqlite3BeginBenignMalloc(); 001499 001500 /* Obtain all b-tree mutexes before making any calls to BtreeRollback(). 001501 ** This is important in case the transaction being rolled back has 001502 ** modified the database schema. If the b-tree mutexes are not taken 001503 ** here, then another shared-cache connection might sneak in between 001504 ** the database rollback and schema reset, which can cause false 001505 ** corruption reports in some cases. */ 001506 sqlite3BtreeEnterAll(db); 001507 schemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0 && db->init.busy==0; 001508 001509 for(i=0; i<db->nDb; i++){ 001510 Btree *p = db->aDb[i].pBt; 001511 if( p ){ 001512 if( sqlite3BtreeTxnState(p)==SQLITE_TXN_WRITE ){ 001513 inTrans = 1; 001514 } 001515 sqlite3BtreeRollback(p, tripCode, !schemaChange); 001516 } 001517 } 001518 sqlite3VtabRollback(db); 001519 sqlite3EndBenignMalloc(); 001520 001521 if( schemaChange ){ 001522 sqlite3ExpirePreparedStatements(db, 0); 001523 sqlite3ResetAllSchemasOfConnection(db); 001524 } 001525 sqlite3BtreeLeaveAll(db); 001526 001527 /* Any deferred constraint violations have now been resolved. */ 001528 db->nDeferredCons = 0; 001529 db->nDeferredImmCons = 0; 001530 db->flags &= ~(u64)(SQLITE_DeferFKs|SQLITE_CorruptRdOnly); 001531 001532 /* If one has been configured, invoke the rollback-hook callback */ 001533 if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ 001534 db->xRollbackCallback(db->pRollbackArg); 001535 } 001536 } 001537 001538 /* 001539 ** Return a static string containing the name corresponding to the error code 001540 ** specified in the argument. 001541 */ 001542 #if defined(SQLITE_NEED_ERR_NAME) 001543 const char *sqlite3ErrName(int rc){ 001544 const char *zName = 0; 001545 int i, origRc = rc; 001546 for(i=0; i<2 && zName==0; i++, rc &= 0xff){ 001547 switch( rc ){ 001548 case SQLITE_OK: zName = "SQLITE_OK"; break; 001549 case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; 001550 case SQLITE_ERROR_SNAPSHOT: zName = "SQLITE_ERROR_SNAPSHOT"; break; 001551 case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; 001552 case SQLITE_PERM: zName = "SQLITE_PERM"; break; 001553 case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; 001554 case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; 001555 case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; 001556 case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; 001557 case SQLITE_BUSY_SNAPSHOT: zName = "SQLITE_BUSY_SNAPSHOT"; break; 001558 case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; 001559 case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; 001560 case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; 001561 case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; 001562 case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; 001563 case SQLITE_READONLY_CANTINIT: zName = "SQLITE_READONLY_CANTINIT"; break; 001564 case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; 001565 case SQLITE_READONLY_DBMOVED: zName = "SQLITE_READONLY_DBMOVED"; break; 001566 case SQLITE_READONLY_DIRECTORY: zName = "SQLITE_READONLY_DIRECTORY";break; 001567 case SQLITE_INTERRUPT: zName = "SQLITE_INTERRUPT"; break; 001568 case SQLITE_IOERR: zName = "SQLITE_IOERR"; break; 001569 case SQLITE_IOERR_READ: zName = "SQLITE_IOERR_READ"; break; 001570 case SQLITE_IOERR_SHORT_READ: zName = "SQLITE_IOERR_SHORT_READ"; break; 001571 case SQLITE_IOERR_WRITE: zName = "SQLITE_IOERR_WRITE"; break; 001572 case SQLITE_IOERR_FSYNC: zName = "SQLITE_IOERR_FSYNC"; break; 001573 case SQLITE_IOERR_DIR_FSYNC: zName = "SQLITE_IOERR_DIR_FSYNC"; break; 001574 case SQLITE_IOERR_TRUNCATE: zName = "SQLITE_IOERR_TRUNCATE"; break; 001575 case SQLITE_IOERR_FSTAT: zName = "SQLITE_IOERR_FSTAT"; break; 001576 case SQLITE_IOERR_UNLOCK: zName = "SQLITE_IOERR_UNLOCK"; break; 001577 case SQLITE_IOERR_RDLOCK: zName = "SQLITE_IOERR_RDLOCK"; break; 001578 case SQLITE_IOERR_DELETE: zName = "SQLITE_IOERR_DELETE"; break; 001579 case SQLITE_IOERR_NOMEM: zName = "SQLITE_IOERR_NOMEM"; break; 001580 case SQLITE_IOERR_ACCESS: zName = "SQLITE_IOERR_ACCESS"; break; 001581 case SQLITE_IOERR_CHECKRESERVEDLOCK: 001582 zName = "SQLITE_IOERR_CHECKRESERVEDLOCK"; break; 001583 case SQLITE_IOERR_LOCK: zName = "SQLITE_IOERR_LOCK"; break; 001584 case SQLITE_IOERR_CLOSE: zName = "SQLITE_IOERR_CLOSE"; break; 001585 case SQLITE_IOERR_DIR_CLOSE: zName = "SQLITE_IOERR_DIR_CLOSE"; break; 001586 case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; 001587 case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; 001588 case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; 001589 case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; 001590 case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; 001591 case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; 001592 case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; 001593 case SQLITE_IOERR_GETTEMPPATH: zName = "SQLITE_IOERR_GETTEMPPATH"; break; 001594 case SQLITE_IOERR_CONVPATH: zName = "SQLITE_IOERR_CONVPATH"; break; 001595 case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; 001596 case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; 001597 case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; 001598 case SQLITE_FULL: zName = "SQLITE_FULL"; break; 001599 case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; 001600 case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; 001601 case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; 001602 case SQLITE_CANTOPEN_FULLPATH: zName = "SQLITE_CANTOPEN_FULLPATH"; break; 001603 case SQLITE_CANTOPEN_CONVPATH: zName = "SQLITE_CANTOPEN_CONVPATH"; break; 001604 case SQLITE_CANTOPEN_SYMLINK: zName = "SQLITE_CANTOPEN_SYMLINK"; break; 001605 case SQLITE_PROTOCOL: zName = "SQLITE_PROTOCOL"; break; 001606 case SQLITE_EMPTY: zName = "SQLITE_EMPTY"; break; 001607 case SQLITE_SCHEMA: zName = "SQLITE_SCHEMA"; break; 001608 case SQLITE_TOOBIG: zName = "SQLITE_TOOBIG"; break; 001609 case SQLITE_CONSTRAINT: zName = "SQLITE_CONSTRAINT"; break; 001610 case SQLITE_CONSTRAINT_UNIQUE: zName = "SQLITE_CONSTRAINT_UNIQUE"; break; 001611 case SQLITE_CONSTRAINT_TRIGGER: zName = "SQLITE_CONSTRAINT_TRIGGER";break; 001612 case SQLITE_CONSTRAINT_FOREIGNKEY: 001613 zName = "SQLITE_CONSTRAINT_FOREIGNKEY"; break; 001614 case SQLITE_CONSTRAINT_CHECK: zName = "SQLITE_CONSTRAINT_CHECK"; break; 001615 case SQLITE_CONSTRAINT_PRIMARYKEY: 001616 zName = "SQLITE_CONSTRAINT_PRIMARYKEY"; break; 001617 case SQLITE_CONSTRAINT_NOTNULL: zName = "SQLITE_CONSTRAINT_NOTNULL";break; 001618 case SQLITE_CONSTRAINT_COMMITHOOK: 001619 zName = "SQLITE_CONSTRAINT_COMMITHOOK"; break; 001620 case SQLITE_CONSTRAINT_VTAB: zName = "SQLITE_CONSTRAINT_VTAB"; break; 001621 case SQLITE_CONSTRAINT_FUNCTION: 001622 zName = "SQLITE_CONSTRAINT_FUNCTION"; break; 001623 case SQLITE_CONSTRAINT_ROWID: zName = "SQLITE_CONSTRAINT_ROWID"; break; 001624 case SQLITE_MISMATCH: zName = "SQLITE_MISMATCH"; break; 001625 case SQLITE_MISUSE: zName = "SQLITE_MISUSE"; break; 001626 case SQLITE_NOLFS: zName = "SQLITE_NOLFS"; break; 001627 case SQLITE_AUTH: zName = "SQLITE_AUTH"; break; 001628 case SQLITE_FORMAT: zName = "SQLITE_FORMAT"; break; 001629 case SQLITE_RANGE: zName = "SQLITE_RANGE"; break; 001630 case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; 001631 case SQLITE_ROW: zName = "SQLITE_ROW"; break; 001632 case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; 001633 case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; 001634 case SQLITE_NOTICE_RECOVER_ROLLBACK: 001635 zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; 001636 case SQLITE_NOTICE_RBU: zName = "SQLITE_NOTICE_RBU"; break; 001637 case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; 001638 case SQLITE_WARNING_AUTOINDEX: zName = "SQLITE_WARNING_AUTOINDEX"; break; 001639 case SQLITE_DONE: zName = "SQLITE_DONE"; break; 001640 } 001641 } 001642 if( zName==0 ){ 001643 static char zBuf[50]; 001644 sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); 001645 zName = zBuf; 001646 } 001647 return zName; 001648 } 001649 #endif 001650 001651 /* 001652 ** Return a static string that describes the kind of error specified in the 001653 ** argument. 001654 */ 001655 const char *sqlite3ErrStr(int rc){ 001656 static const char* const aMsg[] = { 001657 /* SQLITE_OK */ "not an error", 001658 /* SQLITE_ERROR */ "SQL logic error", 001659 /* SQLITE_INTERNAL */ 0, 001660 /* SQLITE_PERM */ "access permission denied", 001661 /* SQLITE_ABORT */ "query aborted", 001662 /* SQLITE_BUSY */ "database is locked", 001663 /* SQLITE_LOCKED */ "database table is locked", 001664 /* SQLITE_NOMEM */ "out of memory", 001665 /* SQLITE_READONLY */ "attempt to write a readonly database", 001666 /* SQLITE_INTERRUPT */ "interrupted", 001667 /* SQLITE_IOERR */ "disk I/O error", 001668 /* SQLITE_CORRUPT */ "database disk image is malformed", 001669 /* SQLITE_NOTFOUND */ "unknown operation", 001670 /* SQLITE_FULL */ "database or disk is full", 001671 /* SQLITE_CANTOPEN */ "unable to open database file", 001672 /* SQLITE_PROTOCOL */ "locking protocol", 001673 /* SQLITE_EMPTY */ 0, 001674 /* SQLITE_SCHEMA */ "database schema has changed", 001675 /* SQLITE_TOOBIG */ "string or blob too big", 001676 /* SQLITE_CONSTRAINT */ "constraint failed", 001677 /* SQLITE_MISMATCH */ "datatype mismatch", 001678 /* SQLITE_MISUSE */ "bad parameter or other API misuse", 001679 #ifdef SQLITE_DISABLE_LFS 001680 /* SQLITE_NOLFS */ "large file support is disabled", 001681 #else 001682 /* SQLITE_NOLFS */ 0, 001683 #endif 001684 /* SQLITE_AUTH */ "authorization denied", 001685 /* SQLITE_FORMAT */ 0, 001686 /* SQLITE_RANGE */ "column index out of range", 001687 /* SQLITE_NOTADB */ "file is not a database", 001688 /* SQLITE_NOTICE */ "notification message", 001689 /* SQLITE_WARNING */ "warning message", 001690 }; 001691 const char *zErr = "unknown error"; 001692 switch( rc ){ 001693 case SQLITE_ABORT_ROLLBACK: { 001694 zErr = "abort due to ROLLBACK"; 001695 break; 001696 } 001697 case SQLITE_ROW: { 001698 zErr = "another row available"; 001699 break; 001700 } 001701 case SQLITE_DONE: { 001702 zErr = "no more rows available"; 001703 break; 001704 } 001705 default: { 001706 rc &= 0xff; 001707 if( ALWAYS(rc>=0) && rc<ArraySize(aMsg) && aMsg[rc]!=0 ){ 001708 zErr = aMsg[rc]; 001709 } 001710 break; 001711 } 001712 } 001713 return zErr; 001714 } 001715 001716 /* 001717 ** This routine implements a busy callback that sleeps and tries 001718 ** again until a timeout value is reached. The timeout value is 001719 ** an integer number of milliseconds passed in as the first 001720 ** argument. 001721 ** 001722 ** Return non-zero to retry the lock. Return zero to stop trying 001723 ** and cause SQLite to return SQLITE_BUSY. 001724 */ 001725 static int sqliteDefaultBusyCallback( 001726 void *ptr, /* Database connection */ 001727 int count /* Number of times table has been busy */ 001728 ){ 001729 #if SQLITE_OS_WIN || !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP 001730 /* This case is for systems that have support for sleeping for fractions of 001731 ** a second. Examples: All windows systems, unix systems with nanosleep() */ 001732 static const u8 delays[] = 001733 { 1, 2, 5, 10, 15, 20, 25, 25, 25, 50, 50, 100 }; 001734 static const u8 totals[] = 001735 { 0, 1, 3, 8, 18, 33, 53, 78, 103, 128, 178, 228 }; 001736 # define NDELAY ArraySize(delays) 001737 sqlite3 *db = (sqlite3 *)ptr; 001738 int tmout = db->busyTimeout; 001739 int delay, prior; 001740 001741 assert( count>=0 ); 001742 if( count < NDELAY ){ 001743 delay = delays[count]; 001744 prior = totals[count]; 001745 }else{ 001746 delay = delays[NDELAY-1]; 001747 prior = totals[NDELAY-1] + delay*(count-(NDELAY-1)); 001748 } 001749 if( prior + delay > tmout ){ 001750 delay = tmout - prior; 001751 if( delay<=0 ) return 0; 001752 } 001753 sqlite3OsSleep(db->pVfs, delay*1000); 001754 return 1; 001755 #else 001756 /* This case for unix systems that lack usleep() support. Sleeping 001757 ** must be done in increments of whole seconds */ 001758 sqlite3 *db = (sqlite3 *)ptr; 001759 int tmout = ((sqlite3 *)ptr)->busyTimeout; 001760 if( (count+1)*1000 > tmout ){ 001761 return 0; 001762 } 001763 sqlite3OsSleep(db->pVfs, 1000000); 001764 return 1; 001765 #endif 001766 } 001767 001768 /* 001769 ** Invoke the given busy handler. 001770 ** 001771 ** This routine is called when an operation failed to acquire a 001772 ** lock on VFS file pFile. 001773 ** 001774 ** If this routine returns non-zero, the lock is retried. If it 001775 ** returns 0, the operation aborts with an SQLITE_BUSY error. 001776 */ 001777 int sqlite3InvokeBusyHandler(BusyHandler *p){ 001778 int rc; 001779 if( p->xBusyHandler==0 || p->nBusy<0 ) return 0; 001780 rc = p->xBusyHandler(p->pBusyArg, p->nBusy); 001781 if( rc==0 ){ 001782 p->nBusy = -1; 001783 }else{ 001784 p->nBusy++; 001785 } 001786 return rc; 001787 } 001788 001789 /* 001790 ** This routine sets the busy callback for an Sqlite database to the 001791 ** given callback function with the given argument. 001792 */ 001793 int sqlite3_busy_handler( 001794 sqlite3 *db, 001795 int (*xBusy)(void*,int), 001796 void *pArg 001797 ){ 001798 #ifdef SQLITE_ENABLE_API_ARMOR 001799 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001800 #endif 001801 sqlite3_mutex_enter(db->mutex); 001802 db->busyHandler.xBusyHandler = xBusy; 001803 db->busyHandler.pBusyArg = pArg; 001804 db->busyHandler.nBusy = 0; 001805 db->busyTimeout = 0; 001806 sqlite3_mutex_leave(db->mutex); 001807 return SQLITE_OK; 001808 } 001809 001810 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK 001811 /* 001812 ** This routine sets the progress callback for an Sqlite database to the 001813 ** given callback function with the given argument. The progress callback will 001814 ** be invoked every nOps opcodes. 001815 */ 001816 void sqlite3_progress_handler( 001817 sqlite3 *db, 001818 int nOps, 001819 int (*xProgress)(void*), 001820 void *pArg 001821 ){ 001822 #ifdef SQLITE_ENABLE_API_ARMOR 001823 if( !sqlite3SafetyCheckOk(db) ){ 001824 (void)SQLITE_MISUSE_BKPT; 001825 return; 001826 } 001827 #endif 001828 sqlite3_mutex_enter(db->mutex); 001829 if( nOps>0 ){ 001830 db->xProgress = xProgress; 001831 db->nProgressOps = (unsigned)nOps; 001832 db->pProgressArg = pArg; 001833 }else{ 001834 db->xProgress = 0; 001835 db->nProgressOps = 0; 001836 db->pProgressArg = 0; 001837 } 001838 sqlite3_mutex_leave(db->mutex); 001839 } 001840 #endif 001841 001842 001843 /* 001844 ** This routine installs a default busy handler that waits for the 001845 ** specified number of milliseconds before returning 0. 001846 */ 001847 int sqlite3_busy_timeout(sqlite3 *db, int ms){ 001848 #ifdef SQLITE_ENABLE_API_ARMOR 001849 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 001850 #endif 001851 if( ms>0 ){ 001852 sqlite3_busy_handler(db, (int(*)(void*,int))sqliteDefaultBusyCallback, 001853 (void*)db); 001854 db->busyTimeout = ms; 001855 }else{ 001856 sqlite3_busy_handler(db, 0, 0); 001857 } 001858 return SQLITE_OK; 001859 } 001860 001861 /* 001862 ** Cause any pending operation to stop at its earliest opportunity. 001863 */ 001864 void sqlite3_interrupt(sqlite3 *db){ 001865 #ifdef SQLITE_ENABLE_API_ARMOR 001866 if( !sqlite3SafetyCheckOk(db) 001867 && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) 001868 ){ 001869 (void)SQLITE_MISUSE_BKPT; 001870 return; 001871 } 001872 #endif 001873 AtomicStore(&db->u1.isInterrupted, 1); 001874 } 001875 001876 /* 001877 ** Return true or false depending on whether or not an interrupt is 001878 ** pending on connection db. 001879 */ 001880 int sqlite3_is_interrupted(sqlite3 *db){ 001881 #ifdef SQLITE_ENABLE_API_ARMOR 001882 if( !sqlite3SafetyCheckOk(db) 001883 && (db==0 || db->eOpenState!=SQLITE_STATE_ZOMBIE) 001884 ){ 001885 (void)SQLITE_MISUSE_BKPT; 001886 return 0; 001887 } 001888 #endif 001889 return AtomicLoad(&db->u1.isInterrupted)!=0; 001890 } 001891 001892 /* 001893 ** This function is exactly the same as sqlite3_create_function(), except 001894 ** that it is designed to be called by internal code. The difference is 001895 ** that if a malloc() fails in sqlite3_create_function(), an error code 001896 ** is returned and the mallocFailed flag cleared. 001897 */ 001898 int sqlite3CreateFunc( 001899 sqlite3 *db, 001900 const char *zFunctionName, 001901 int nArg, 001902 int enc, 001903 void *pUserData, 001904 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 001905 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 001906 void (*xFinal)(sqlite3_context*), 001907 void (*xValue)(sqlite3_context*), 001908 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 001909 FuncDestructor *pDestructor 001910 ){ 001911 FuncDef *p; 001912 int extraFlags; 001913 001914 assert( sqlite3_mutex_held(db->mutex) ); 001915 assert( xValue==0 || xSFunc==0 ); 001916 if( zFunctionName==0 /* Must have a valid name */ 001917 || (xSFunc!=0 && xFinal!=0) /* Not both xSFunc and xFinal */ 001918 || ((xFinal==0)!=(xStep==0)) /* Both or neither of xFinal and xStep */ 001919 || ((xValue==0)!=(xInverse==0)) /* Both or neither of xValue, xInverse */ 001920 || (nArg<-1 || nArg>SQLITE_MAX_FUNCTION_ARG) 001921 || (255<sqlite3Strlen30(zFunctionName)) 001922 ){ 001923 return SQLITE_MISUSE_BKPT; 001924 } 001925 001926 assert( SQLITE_FUNC_CONSTANT==SQLITE_DETERMINISTIC ); 001927 assert( SQLITE_FUNC_DIRECT==SQLITE_DIRECTONLY ); 001928 extraFlags = enc & (SQLITE_DETERMINISTIC|SQLITE_DIRECTONLY| 001929 SQLITE_SUBTYPE|SQLITE_INNOCUOUS|SQLITE_RESULT_SUBTYPE); 001930 enc &= (SQLITE_FUNC_ENCMASK|SQLITE_ANY); 001931 001932 /* The SQLITE_INNOCUOUS flag is the same bit as SQLITE_FUNC_UNSAFE. But 001933 ** the meaning is inverted. So flip the bit. */ 001934 assert( SQLITE_FUNC_UNSAFE==SQLITE_INNOCUOUS ); 001935 extraFlags ^= SQLITE_FUNC_UNSAFE; /* tag-20230109-1 */ 001936 001937 001938 #ifndef SQLITE_OMIT_UTF16 001939 /* If SQLITE_UTF16 is specified as the encoding type, transform this 001940 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 001941 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 001942 ** 001943 ** If SQLITE_ANY is specified, add three versions of the function 001944 ** to the hash table. 001945 */ 001946 switch( enc ){ 001947 case SQLITE_UTF16: 001948 enc = SQLITE_UTF16NATIVE; 001949 break; 001950 case SQLITE_ANY: { 001951 int rc; 001952 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 001953 (SQLITE_UTF8|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1 */ 001954 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 001955 if( rc==SQLITE_OK ){ 001956 rc = sqlite3CreateFunc(db, zFunctionName, nArg, 001957 (SQLITE_UTF16LE|extraFlags)^SQLITE_FUNC_UNSAFE, /* tag-20230109-1*/ 001958 pUserData, xSFunc, xStep, xFinal, xValue, xInverse, pDestructor); 001959 } 001960 if( rc!=SQLITE_OK ){ 001961 return rc; 001962 } 001963 enc = SQLITE_UTF16BE; 001964 break; 001965 } 001966 case SQLITE_UTF8: 001967 case SQLITE_UTF16LE: 001968 case SQLITE_UTF16BE: 001969 break; 001970 default: 001971 enc = SQLITE_UTF8; 001972 break; 001973 } 001974 #else 001975 enc = SQLITE_UTF8; 001976 #endif 001977 001978 /* Check if an existing function is being overridden or deleted. If so, 001979 ** and there are active VMs, then return SQLITE_BUSY. If a function 001980 ** is being overridden/deleted but there are no active VMs, allow the 001981 ** operation to continue but invalidate all precompiled statements. 001982 */ 001983 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 0); 001984 if( p && (p->funcFlags & SQLITE_FUNC_ENCMASK)==(u32)enc && p->nArg==nArg ){ 001985 if( db->nVdbeActive ){ 001986 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 001987 "unable to delete/modify user-function due to active statements"); 001988 assert( !db->mallocFailed ); 001989 return SQLITE_BUSY; 001990 }else{ 001991 sqlite3ExpirePreparedStatements(db, 0); 001992 } 001993 }else if( xSFunc==0 && xFinal==0 ){ 001994 /* Trying to delete a function that does not exist. This is a no-op. 001995 ** https://sqlite.org/forum/forumpost/726219164b */ 001996 return SQLITE_OK; 001997 } 001998 001999 p = sqlite3FindFunction(db, zFunctionName, nArg, (u8)enc, 1); 002000 assert(p || db->mallocFailed); 002001 if( !p ){ 002002 return SQLITE_NOMEM_BKPT; 002003 } 002004 002005 /* If an older version of the function with a configured destructor is 002006 ** being replaced invoke the destructor function here. */ 002007 functionDestroy(db, p); 002008 002009 if( pDestructor ){ 002010 pDestructor->nRef++; 002011 } 002012 p->u.pDestructor = pDestructor; 002013 p->funcFlags = (p->funcFlags & SQLITE_FUNC_ENCMASK) | extraFlags; 002014 testcase( p->funcFlags & SQLITE_DETERMINISTIC ); 002015 testcase( p->funcFlags & SQLITE_DIRECTONLY ); 002016 p->xSFunc = xSFunc ? xSFunc : xStep; 002017 p->xFinalize = xFinal; 002018 p->xValue = xValue; 002019 p->xInverse = xInverse; 002020 p->pUserData = pUserData; 002021 p->nArg = (u16)nArg; 002022 return SQLITE_OK; 002023 } 002024 002025 /* 002026 ** Worker function used by utf-8 APIs that create new functions: 002027 ** 002028 ** sqlite3_create_function() 002029 ** sqlite3_create_function_v2() 002030 ** sqlite3_create_window_function() 002031 */ 002032 static int createFunctionApi( 002033 sqlite3 *db, 002034 const char *zFunc, 002035 int nArg, 002036 int enc, 002037 void *p, 002038 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 002039 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 002040 void (*xFinal)(sqlite3_context*), 002041 void (*xValue)(sqlite3_context*), 002042 void (*xInverse)(sqlite3_context*,int,sqlite3_value**), 002043 void(*xDestroy)(void*) 002044 ){ 002045 int rc = SQLITE_ERROR; 002046 FuncDestructor *pArg = 0; 002047 002048 #ifdef SQLITE_ENABLE_API_ARMOR 002049 if( !sqlite3SafetyCheckOk(db) ){ 002050 return SQLITE_MISUSE_BKPT; 002051 } 002052 #endif 002053 sqlite3_mutex_enter(db->mutex); 002054 if( xDestroy ){ 002055 pArg = (FuncDestructor *)sqlite3Malloc(sizeof(FuncDestructor)); 002056 if( !pArg ){ 002057 sqlite3OomFault(db); 002058 xDestroy(p); 002059 goto out; 002060 } 002061 pArg->nRef = 0; 002062 pArg->xDestroy = xDestroy; 002063 pArg->pUserData = p; 002064 } 002065 rc = sqlite3CreateFunc(db, zFunc, nArg, enc, p, 002066 xSFunc, xStep, xFinal, xValue, xInverse, pArg 002067 ); 002068 if( pArg && pArg->nRef==0 ){ 002069 assert( rc!=SQLITE_OK || (xStep==0 && xFinal==0) ); 002070 xDestroy(p); 002071 sqlite3_free(pArg); 002072 } 002073 002074 out: 002075 rc = sqlite3ApiExit(db, rc); 002076 sqlite3_mutex_leave(db->mutex); 002077 return rc; 002078 } 002079 002080 /* 002081 ** Create new user functions. 002082 */ 002083 int sqlite3_create_function( 002084 sqlite3 *db, 002085 const char *zFunc, 002086 int nArg, 002087 int enc, 002088 void *p, 002089 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 002090 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002091 void (*xFinal)(sqlite3_context*) 002092 ){ 002093 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 002094 xFinal, 0, 0, 0); 002095 } 002096 int sqlite3_create_function_v2( 002097 sqlite3 *db, 002098 const char *zFunc, 002099 int nArg, 002100 int enc, 002101 void *p, 002102 void (*xSFunc)(sqlite3_context*,int,sqlite3_value **), 002103 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002104 void (*xFinal)(sqlite3_context*), 002105 void (*xDestroy)(void *) 002106 ){ 002107 return createFunctionApi(db, zFunc, nArg, enc, p, xSFunc, xStep, 002108 xFinal, 0, 0, xDestroy); 002109 } 002110 int sqlite3_create_window_function( 002111 sqlite3 *db, 002112 const char *zFunc, 002113 int nArg, 002114 int enc, 002115 void *p, 002116 void (*xStep)(sqlite3_context*,int,sqlite3_value **), 002117 void (*xFinal)(sqlite3_context*), 002118 void (*xValue)(sqlite3_context*), 002119 void (*xInverse)(sqlite3_context*,int,sqlite3_value **), 002120 void (*xDestroy)(void *) 002121 ){ 002122 return createFunctionApi(db, zFunc, nArg, enc, p, 0, xStep, 002123 xFinal, xValue, xInverse, xDestroy); 002124 } 002125 002126 #ifndef SQLITE_OMIT_UTF16 002127 int sqlite3_create_function16( 002128 sqlite3 *db, 002129 const void *zFunctionName, 002130 int nArg, 002131 int eTextRep, 002132 void *p, 002133 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**), 002134 void (*xStep)(sqlite3_context*,int,sqlite3_value**), 002135 void (*xFinal)(sqlite3_context*) 002136 ){ 002137 int rc; 002138 char *zFunc8; 002139 002140 #ifdef SQLITE_ENABLE_API_ARMOR 002141 if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT; 002142 #endif 002143 sqlite3_mutex_enter(db->mutex); 002144 assert( !db->mallocFailed ); 002145 zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE); 002146 rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xSFunc,xStep,xFinal,0,0,0); 002147 sqlite3DbFree(db, zFunc8); 002148 rc = sqlite3ApiExit(db, rc); 002149 sqlite3_mutex_leave(db->mutex); 002150 return rc; 002151 } 002152 #endif 002153 002154 002155 /* 002156 ** The following is the implementation of an SQL function that always 002157 ** fails with an error message stating that the function is used in the 002158 ** wrong context. The sqlite3_overload_function() API might construct 002159 ** SQL function that use this routine so that the functions will exist 002160 ** for name resolution but are actually overloaded by the xFindFunction 002161 ** method of virtual tables. 002162 */ 002163 static void sqlite3InvalidFunction( 002164 sqlite3_context *context, /* The function calling context */ 002165 int NotUsed, /* Number of arguments to the function */ 002166 sqlite3_value **NotUsed2 /* Value of each argument */ 002167 ){ 002168 const char *zName = (const char*)sqlite3_user_data(context); 002169 char *zErr; 002170 UNUSED_PARAMETER2(NotUsed, NotUsed2); 002171 zErr = sqlite3_mprintf( 002172 "unable to use function %s in the requested context", zName); 002173 sqlite3_result_error(context, zErr, -1); 002174 sqlite3_free(zErr); 002175 } 002176 002177 /* 002178 ** Declare that a function has been overloaded by a virtual table. 002179 ** 002180 ** If the function already exists as a regular global function, then 002181 ** this routine is a no-op. If the function does not exist, then create 002182 ** a new one that always throws a run-time error. 002183 ** 002184 ** When virtual tables intend to provide an overloaded function, they 002185 ** should call this routine to make sure the global function exists. 002186 ** A global function must exist in order for name resolution to work 002187 ** properly. 002188 */ 002189 int sqlite3_overload_function( 002190 sqlite3 *db, 002191 const char *zName, 002192 int nArg 002193 ){ 002194 int rc; 002195 char *zCopy; 002196 002197 #ifdef SQLITE_ENABLE_API_ARMOR 002198 if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){ 002199 return SQLITE_MISUSE_BKPT; 002200 } 002201 #endif 002202 sqlite3_mutex_enter(db->mutex); 002203 rc = sqlite3FindFunction(db, zName, nArg, SQLITE_UTF8, 0)!=0; 002204 sqlite3_mutex_leave(db->mutex); 002205 if( rc ) return SQLITE_OK; 002206 zCopy = sqlite3_mprintf("%s", zName); 002207 if( zCopy==0 ) return SQLITE_NOMEM; 002208 return sqlite3_create_function_v2(db, zName, nArg, SQLITE_UTF8, 002209 zCopy, sqlite3InvalidFunction, 0, 0, sqlite3_free); 002210 } 002211 002212 #ifndef SQLITE_OMIT_TRACE 002213 /* 002214 ** Register a trace function. The pArg from the previously registered trace 002215 ** is returned. 002216 ** 002217 ** A NULL trace function means that no tracing is executes. A non-NULL 002218 ** trace is a pointer to a function that is invoked at the start of each 002219 ** SQL statement. 002220 */ 002221 #ifndef SQLITE_OMIT_DEPRECATED 002222 void *sqlite3_trace(sqlite3 *db, void(*xTrace)(void*,const char*), void *pArg){ 002223 void *pOld; 002224 002225 #ifdef SQLITE_ENABLE_API_ARMOR 002226 if( !sqlite3SafetyCheckOk(db) ){ 002227 (void)SQLITE_MISUSE_BKPT; 002228 return 0; 002229 } 002230 #endif 002231 sqlite3_mutex_enter(db->mutex); 002232 pOld = db->pTraceArg; 002233 db->mTrace = xTrace ? SQLITE_TRACE_LEGACY : 0; 002234 db->trace.xLegacy = xTrace; 002235 db->pTraceArg = pArg; 002236 sqlite3_mutex_leave(db->mutex); 002237 return pOld; 002238 } 002239 #endif /* SQLITE_OMIT_DEPRECATED */ 002240 002241 /* Register a trace callback using the version-2 interface. 002242 */ 002243 int sqlite3_trace_v2( 002244 sqlite3 *db, /* Trace this connection */ 002245 unsigned mTrace, /* Mask of events to be traced */ 002246 int(*xTrace)(unsigned,void*,void*,void*), /* Callback to invoke */ 002247 void *pArg /* Context */ 002248 ){ 002249 #ifdef SQLITE_ENABLE_API_ARMOR 002250 if( !sqlite3SafetyCheckOk(db) ){ 002251 return SQLITE_MISUSE_BKPT; 002252 } 002253 #endif 002254 sqlite3_mutex_enter(db->mutex); 002255 if( mTrace==0 ) xTrace = 0; 002256 if( xTrace==0 ) mTrace = 0; 002257 db->mTrace = mTrace; 002258 db->trace.xV2 = xTrace; 002259 db->pTraceArg = pArg; 002260 sqlite3_mutex_leave(db->mutex); 002261 return SQLITE_OK; 002262 } 002263 002264 #ifndef SQLITE_OMIT_DEPRECATED 002265 /* 002266 ** Register a profile function. The pArg from the previously registered 002267 ** profile function is returned. 002268 ** 002269 ** A NULL profile function means that no profiling is executes. A non-NULL 002270 ** profile is a pointer to a function that is invoked at the conclusion of 002271 ** each SQL statement that is run. 002272 */ 002273 void *sqlite3_profile( 002274 sqlite3 *db, 002275 void (*xProfile)(void*,const char*,sqlite_uint64), 002276 void *pArg 002277 ){ 002278 void *pOld; 002279 002280 #ifdef SQLITE_ENABLE_API_ARMOR 002281 if( !sqlite3SafetyCheckOk(db) ){ 002282 (void)SQLITE_MISUSE_BKPT; 002283 return 0; 002284 } 002285 #endif 002286 sqlite3_mutex_enter(db->mutex); 002287 pOld = db->pProfileArg; 002288 db->xProfile = xProfile; 002289 db->pProfileArg = pArg; 002290 db->mTrace &= SQLITE_TRACE_NONLEGACY_MASK; 002291 if( db->xProfile ) db->mTrace |= SQLITE_TRACE_XPROFILE; 002292 sqlite3_mutex_leave(db->mutex); 002293 return pOld; 002294 } 002295 #endif /* SQLITE_OMIT_DEPRECATED */ 002296 #endif /* SQLITE_OMIT_TRACE */ 002297 002298 /* 002299 ** Register a function to be invoked when a transaction commits. 002300 ** If the invoked function returns non-zero, then the commit becomes a 002301 ** rollback. 002302 */ 002303 void *sqlite3_commit_hook( 002304 sqlite3 *db, /* Attach the hook to this database */ 002305 int (*xCallback)(void*), /* Function to invoke on each commit */ 002306 void *pArg /* Argument to the function */ 002307 ){ 002308 void *pOld; 002309 002310 #ifdef SQLITE_ENABLE_API_ARMOR 002311 if( !sqlite3SafetyCheckOk(db) ){ 002312 (void)SQLITE_MISUSE_BKPT; 002313 return 0; 002314 } 002315 #endif 002316 sqlite3_mutex_enter(db->mutex); 002317 pOld = db->pCommitArg; 002318 db->xCommitCallback = xCallback; 002319 db->pCommitArg = pArg; 002320 sqlite3_mutex_leave(db->mutex); 002321 return pOld; 002322 } 002323 002324 /* 002325 ** Register a callback to be invoked each time a row is updated, 002326 ** inserted or deleted using this database connection. 002327 */ 002328 void *sqlite3_update_hook( 002329 sqlite3 *db, /* Attach the hook to this database */ 002330 void (*xCallback)(void*,int,char const *,char const *,sqlite_int64), 002331 void *pArg /* Argument to the function */ 002332 ){ 002333 void *pRet; 002334 002335 #ifdef SQLITE_ENABLE_API_ARMOR 002336 if( !sqlite3SafetyCheckOk(db) ){ 002337 (void)SQLITE_MISUSE_BKPT; 002338 return 0; 002339 } 002340 #endif 002341 sqlite3_mutex_enter(db->mutex); 002342 pRet = db->pUpdateArg; 002343 db->xUpdateCallback = xCallback; 002344 db->pUpdateArg = pArg; 002345 sqlite3_mutex_leave(db->mutex); 002346 return pRet; 002347 } 002348 002349 /* 002350 ** Register a callback to be invoked each time a transaction is rolled 002351 ** back by this database connection. 002352 */ 002353 void *sqlite3_rollback_hook( 002354 sqlite3 *db, /* Attach the hook to this database */ 002355 void (*xCallback)(void*), /* Callback function */ 002356 void *pArg /* Argument to the function */ 002357 ){ 002358 void *pRet; 002359 002360 #ifdef SQLITE_ENABLE_API_ARMOR 002361 if( !sqlite3SafetyCheckOk(db) ){ 002362 (void)SQLITE_MISUSE_BKPT; 002363 return 0; 002364 } 002365 #endif 002366 sqlite3_mutex_enter(db->mutex); 002367 pRet = db->pRollbackArg; 002368 db->xRollbackCallback = xCallback; 002369 db->pRollbackArg = pArg; 002370 sqlite3_mutex_leave(db->mutex); 002371 return pRet; 002372 } 002373 002374 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002375 /* 002376 ** Register a callback to be invoked each time a row is updated, 002377 ** inserted or deleted using this database connection. 002378 */ 002379 void *sqlite3_preupdate_hook( 002380 sqlite3 *db, /* Attach the hook to this database */ 002381 void(*xCallback)( /* Callback function */ 002382 void*,sqlite3*,int,char const*,char const*,sqlite3_int64,sqlite3_int64), 002383 void *pArg /* First callback argument */ 002384 ){ 002385 void *pRet; 002386 002387 #ifdef SQLITE_ENABLE_API_ARMOR 002388 if( db==0 ){ 002389 return 0; 002390 } 002391 #endif 002392 sqlite3_mutex_enter(db->mutex); 002393 pRet = db->pPreUpdateArg; 002394 db->xPreUpdateCallback = xCallback; 002395 db->pPreUpdateArg = pArg; 002396 sqlite3_mutex_leave(db->mutex); 002397 return pRet; 002398 } 002399 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002400 002401 /* 002402 ** Register a function to be invoked prior to each autovacuum that 002403 ** determines the number of pages to vacuum. 002404 */ 002405 int sqlite3_autovacuum_pages( 002406 sqlite3 *db, /* Attach the hook to this database */ 002407 unsigned int (*xCallback)(void*,const char*,u32,u32,u32), 002408 void *pArg, /* Argument to the function */ 002409 void (*xDestructor)(void*) /* Destructor for pArg */ 002410 ){ 002411 #ifdef SQLITE_ENABLE_API_ARMOR 002412 if( !sqlite3SafetyCheckOk(db) ){ 002413 if( xDestructor ) xDestructor(pArg); 002414 return SQLITE_MISUSE_BKPT; 002415 } 002416 #endif 002417 sqlite3_mutex_enter(db->mutex); 002418 if( db->xAutovacDestr ){ 002419 db->xAutovacDestr(db->pAutovacPagesArg); 002420 } 002421 db->xAutovacPages = xCallback; 002422 db->pAutovacPagesArg = pArg; 002423 db->xAutovacDestr = xDestructor; 002424 sqlite3_mutex_leave(db->mutex); 002425 return SQLITE_OK; 002426 } 002427 002428 002429 #ifndef SQLITE_OMIT_WAL 002430 /* 002431 ** The sqlite3_wal_hook() callback registered by sqlite3_wal_autocheckpoint(). 002432 ** Invoke sqlite3_wal_checkpoint if the number of frames in the log file 002433 ** is greater than sqlite3.pWalArg cast to an integer (the value configured by 002434 ** wal_autocheckpoint()). 002435 */ 002436 int sqlite3WalDefaultHook( 002437 void *pClientData, /* Argument */ 002438 sqlite3 *db, /* Connection */ 002439 const char *zDb, /* Database */ 002440 int nFrame /* Size of WAL */ 002441 ){ 002442 if( nFrame>=SQLITE_PTR_TO_INT(pClientData) ){ 002443 sqlite3BeginBenignMalloc(); 002444 sqlite3_wal_checkpoint(db, zDb); 002445 sqlite3EndBenignMalloc(); 002446 } 002447 return SQLITE_OK; 002448 } 002449 #endif /* SQLITE_OMIT_WAL */ 002450 002451 /* 002452 ** Configure an sqlite3_wal_hook() callback to automatically checkpoint 002453 ** a database after committing a transaction if there are nFrame or 002454 ** more frames in the log file. Passing zero or a negative value as the 002455 ** nFrame parameter disables automatic checkpoints entirely. 002456 ** 002457 ** The callback registered by this function replaces any existing callback 002458 ** registered using sqlite3_wal_hook(). Likewise, registering a callback 002459 ** using sqlite3_wal_hook() disables the automatic checkpoint mechanism 002460 ** configured by this function. 002461 */ 002462 int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){ 002463 #ifdef SQLITE_OMIT_WAL 002464 UNUSED_PARAMETER(db); 002465 UNUSED_PARAMETER(nFrame); 002466 #else 002467 #ifdef SQLITE_ENABLE_API_ARMOR 002468 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002469 #endif 002470 if( nFrame>0 ){ 002471 sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame)); 002472 }else{ 002473 sqlite3_wal_hook(db, 0, 0); 002474 } 002475 #endif 002476 return SQLITE_OK; 002477 } 002478 002479 /* 002480 ** Register a callback to be invoked each time a transaction is written 002481 ** into the write-ahead-log by this database connection. 002482 */ 002483 void *sqlite3_wal_hook( 002484 sqlite3 *db, /* Attach the hook to this db handle */ 002485 int(*xCallback)(void *, sqlite3*, const char*, int), 002486 void *pArg /* First argument passed to xCallback() */ 002487 ){ 002488 #ifndef SQLITE_OMIT_WAL 002489 void *pRet; 002490 #ifdef SQLITE_ENABLE_API_ARMOR 002491 if( !sqlite3SafetyCheckOk(db) ){ 002492 (void)SQLITE_MISUSE_BKPT; 002493 return 0; 002494 } 002495 #endif 002496 sqlite3_mutex_enter(db->mutex); 002497 pRet = db->pWalArg; 002498 db->xWalCallback = xCallback; 002499 db->pWalArg = pArg; 002500 sqlite3_mutex_leave(db->mutex); 002501 return pRet; 002502 #else 002503 return 0; 002504 #endif 002505 } 002506 002507 /* 002508 ** Checkpoint database zDb. 002509 */ 002510 int sqlite3_wal_checkpoint_v2( 002511 sqlite3 *db, /* Database handle */ 002512 const char *zDb, /* Name of attached database (or NULL) */ 002513 int eMode, /* SQLITE_CHECKPOINT_* value */ 002514 int *pnLog, /* OUT: Size of WAL log in frames */ 002515 int *pnCkpt /* OUT: Total number of frames checkpointed */ 002516 ){ 002517 #ifdef SQLITE_OMIT_WAL 002518 return SQLITE_OK; 002519 #else 002520 int rc; /* Return code */ 002521 int iDb; /* Schema to checkpoint */ 002522 002523 #ifdef SQLITE_ENABLE_API_ARMOR 002524 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 002525 #endif 002526 002527 /* Initialize the output variables to -1 in case an error occurs. */ 002528 if( pnLog ) *pnLog = -1; 002529 if( pnCkpt ) *pnCkpt = -1; 002530 002531 assert( SQLITE_CHECKPOINT_PASSIVE==0 ); 002532 assert( SQLITE_CHECKPOINT_FULL==1 ); 002533 assert( SQLITE_CHECKPOINT_RESTART==2 ); 002534 assert( SQLITE_CHECKPOINT_TRUNCATE==3 ); 002535 if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){ 002536 /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint 002537 ** mode: */ 002538 return SQLITE_MISUSE_BKPT; 002539 } 002540 002541 sqlite3_mutex_enter(db->mutex); 002542 if( zDb && zDb[0] ){ 002543 iDb = sqlite3FindDbName(db, zDb); 002544 }else{ 002545 iDb = SQLITE_MAX_DB; /* This means process all schemas */ 002546 } 002547 if( iDb<0 ){ 002548 rc = SQLITE_ERROR; 002549 sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb); 002550 }else{ 002551 db->busyHandler.nBusy = 0; 002552 rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt); 002553 sqlite3Error(db, rc); 002554 } 002555 rc = sqlite3ApiExit(db, rc); 002556 002557 /* If there are no active statements, clear the interrupt flag at this 002558 ** point. */ 002559 if( db->nVdbeActive==0 ){ 002560 AtomicStore(&db->u1.isInterrupted, 0); 002561 } 002562 002563 sqlite3_mutex_leave(db->mutex); 002564 return rc; 002565 #endif 002566 } 002567 002568 002569 /* 002570 ** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points 002571 ** to contains a zero-length string, all attached databases are 002572 ** checkpointed. 002573 */ 002574 int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){ 002575 /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to 002576 ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */ 002577 return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0); 002578 } 002579 002580 #ifndef SQLITE_OMIT_WAL 002581 /* 002582 ** Run a checkpoint on database iDb. This is a no-op if database iDb is 002583 ** not currently open in WAL mode. 002584 ** 002585 ** If a transaction is open on the database being checkpointed, this 002586 ** function returns SQLITE_LOCKED and a checkpoint is not attempted. If 002587 ** an error occurs while running the checkpoint, an SQLite error code is 002588 ** returned (i.e. SQLITE_IOERR). Otherwise, SQLITE_OK. 002589 ** 002590 ** The mutex on database handle db should be held by the caller. The mutex 002591 ** associated with the specific b-tree being checkpointed is taken by 002592 ** this function while the checkpoint is running. 002593 ** 002594 ** If iDb is passed SQLITE_MAX_DB then all attached databases are 002595 ** checkpointed. If an error is encountered it is returned immediately - 002596 ** no attempt is made to checkpoint any remaining databases. 002597 ** 002598 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL, RESTART 002599 ** or TRUNCATE. 002600 */ 002601 int sqlite3Checkpoint(sqlite3 *db, int iDb, int eMode, int *pnLog, int *pnCkpt){ 002602 int rc = SQLITE_OK; /* Return code */ 002603 int i; /* Used to iterate through attached dbs */ 002604 int bBusy = 0; /* True if SQLITE_BUSY has been encountered */ 002605 002606 assert( sqlite3_mutex_held(db->mutex) ); 002607 assert( !pnLog || *pnLog==-1 ); 002608 assert( !pnCkpt || *pnCkpt==-1 ); 002609 testcase( iDb==SQLITE_MAX_ATTACHED ); /* See forum post a006d86f72 */ 002610 testcase( iDb==SQLITE_MAX_DB ); 002611 002612 for(i=0; i<db->nDb && rc==SQLITE_OK; i++){ 002613 if( i==iDb || iDb==SQLITE_MAX_DB ){ 002614 rc = sqlite3BtreeCheckpoint(db->aDb[i].pBt, eMode, pnLog, pnCkpt); 002615 pnLog = 0; 002616 pnCkpt = 0; 002617 if( rc==SQLITE_BUSY ){ 002618 bBusy = 1; 002619 rc = SQLITE_OK; 002620 } 002621 } 002622 } 002623 002624 return (rc==SQLITE_OK && bBusy) ? SQLITE_BUSY : rc; 002625 } 002626 #endif /* SQLITE_OMIT_WAL */ 002627 002628 /* 002629 ** This function returns true if main-memory should be used instead of 002630 ** a temporary file for transient pager files and statement journals. 002631 ** The value returned depends on the value of db->temp_store (runtime 002632 ** parameter) and the compile time value of SQLITE_TEMP_STORE. The 002633 ** following table describes the relationship between these two values 002634 ** and this functions return value. 002635 ** 002636 ** SQLITE_TEMP_STORE db->temp_store Location of temporary database 002637 ** ----------------- -------------- ------------------------------ 002638 ** 0 any file (return 0) 002639 ** 1 1 file (return 0) 002640 ** 1 2 memory (return 1) 002641 ** 1 0 file (return 0) 002642 ** 2 1 file (return 0) 002643 ** 2 2 memory (return 1) 002644 ** 2 0 memory (return 1) 002645 ** 3 any memory (return 1) 002646 */ 002647 int sqlite3TempInMemory(const sqlite3 *db){ 002648 #if SQLITE_TEMP_STORE==1 002649 return ( db->temp_store==2 ); 002650 #endif 002651 #if SQLITE_TEMP_STORE==2 002652 return ( db->temp_store!=1 ); 002653 #endif 002654 #if SQLITE_TEMP_STORE==3 002655 UNUSED_PARAMETER(db); 002656 return 1; 002657 #endif 002658 #if SQLITE_TEMP_STORE<1 || SQLITE_TEMP_STORE>3 002659 UNUSED_PARAMETER(db); 002660 return 0; 002661 #endif 002662 } 002663 002664 /* 002665 ** Return UTF-8 encoded English language explanation of the most recent 002666 ** error. 002667 */ 002668 const char *sqlite3_errmsg(sqlite3 *db){ 002669 const char *z; 002670 if( !db ){ 002671 return sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002672 } 002673 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002674 return sqlite3ErrStr(SQLITE_MISUSE_BKPT); 002675 } 002676 sqlite3_mutex_enter(db->mutex); 002677 if( db->mallocFailed ){ 002678 z = sqlite3ErrStr(SQLITE_NOMEM_BKPT); 002679 }else{ 002680 testcase( db->pErr==0 ); 002681 z = db->errCode ? (char*)sqlite3_value_text(db->pErr) : 0; 002682 assert( !db->mallocFailed ); 002683 if( z==0 ){ 002684 z = sqlite3ErrStr(db->errCode); 002685 } 002686 } 002687 sqlite3_mutex_leave(db->mutex); 002688 return z; 002689 } 002690 002691 /* 002692 ** Return the byte offset of the most recent error 002693 */ 002694 int sqlite3_error_offset(sqlite3 *db){ 002695 int iOffset = -1; 002696 if( db && sqlite3SafetyCheckSickOrOk(db) && db->errCode ){ 002697 sqlite3_mutex_enter(db->mutex); 002698 iOffset = db->errByteOffset; 002699 sqlite3_mutex_leave(db->mutex); 002700 } 002701 return iOffset; 002702 } 002703 002704 #ifndef SQLITE_OMIT_UTF16 002705 /* 002706 ** Return UTF-16 encoded English language explanation of the most recent 002707 ** error. 002708 */ 002709 const void *sqlite3_errmsg16(sqlite3 *db){ 002710 static const u16 outOfMem[] = { 002711 'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0 002712 }; 002713 static const u16 misuse[] = { 002714 'b', 'a', 'd', ' ', 'p', 'a', 'r', 'a', 'm', 'e', 't', 'e', 'r', ' ', 002715 'o', 'r', ' ', 'o', 't', 'h', 'e', 'r', ' ', 'A', 'P', 'I', ' ', 002716 'm', 'i', 's', 'u', 's', 'e', 0 002717 }; 002718 002719 const void *z; 002720 if( !db ){ 002721 return (void *)outOfMem; 002722 } 002723 if( !sqlite3SafetyCheckSickOrOk(db) ){ 002724 return (void *)misuse; 002725 } 002726 sqlite3_mutex_enter(db->mutex); 002727 if( db->mallocFailed ){ 002728 z = (void *)outOfMem; 002729 }else{ 002730 z = sqlite3_value_text16(db->pErr); 002731 if( z==0 ){ 002732 sqlite3ErrorWithMsg(db, db->errCode, sqlite3ErrStr(db->errCode)); 002733 z = sqlite3_value_text16(db->pErr); 002734 } 002735 /* A malloc() may have failed within the call to sqlite3_value_text16() 002736 ** above. If this is the case, then the db->mallocFailed flag needs to 002737 ** be cleared before returning. Do this directly, instead of via 002738 ** sqlite3ApiExit(), to avoid setting the database handle error message. 002739 */ 002740 sqlite3OomClear(db); 002741 } 002742 sqlite3_mutex_leave(db->mutex); 002743 return z; 002744 } 002745 #endif /* SQLITE_OMIT_UTF16 */ 002746 002747 /* 002748 ** Return the most recent error code generated by an SQLite routine. If NULL is 002749 ** passed to this function, we assume a malloc() failed during sqlite3_open(). 002750 */ 002751 int sqlite3_errcode(sqlite3 *db){ 002752 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002753 return SQLITE_MISUSE_BKPT; 002754 } 002755 if( !db || db->mallocFailed ){ 002756 return SQLITE_NOMEM_BKPT; 002757 } 002758 return db->errCode & db->errMask; 002759 } 002760 int sqlite3_extended_errcode(sqlite3 *db){ 002761 if( db && !sqlite3SafetyCheckSickOrOk(db) ){ 002762 return SQLITE_MISUSE_BKPT; 002763 } 002764 if( !db || db->mallocFailed ){ 002765 return SQLITE_NOMEM_BKPT; 002766 } 002767 return db->errCode; 002768 } 002769 int sqlite3_system_errno(sqlite3 *db){ 002770 return db ? db->iSysErrno : 0; 002771 } 002772 002773 /* 002774 ** Return a string that describes the kind of error specified in the 002775 ** argument. For now, this simply calls the internal sqlite3ErrStr() 002776 ** function. 002777 */ 002778 const char *sqlite3_errstr(int rc){ 002779 return sqlite3ErrStr(rc); 002780 } 002781 002782 /* 002783 ** Create a new collating function for database "db". The name is zName 002784 ** and the encoding is enc. 002785 */ 002786 static int createCollation( 002787 sqlite3* db, 002788 const char *zName, 002789 u8 enc, 002790 void* pCtx, 002791 int(*xCompare)(void*,int,const void*,int,const void*), 002792 void(*xDel)(void*) 002793 ){ 002794 CollSeq *pColl; 002795 int enc2; 002796 002797 assert( sqlite3_mutex_held(db->mutex) ); 002798 002799 /* If SQLITE_UTF16 is specified as the encoding type, transform this 002800 ** to one of SQLITE_UTF16LE or SQLITE_UTF16BE using the 002801 ** SQLITE_UTF16NATIVE macro. SQLITE_UTF16 is not used internally. 002802 */ 002803 enc2 = enc; 002804 testcase( enc2==SQLITE_UTF16 ); 002805 testcase( enc2==SQLITE_UTF16_ALIGNED ); 002806 if( enc2==SQLITE_UTF16 || enc2==SQLITE_UTF16_ALIGNED ){ 002807 enc2 = SQLITE_UTF16NATIVE; 002808 } 002809 if( enc2<SQLITE_UTF8 || enc2>SQLITE_UTF16BE ){ 002810 return SQLITE_MISUSE_BKPT; 002811 } 002812 002813 /* Check if this call is removing or replacing an existing collation 002814 ** sequence. If so, and there are active VMs, return busy. If there 002815 ** are no active VMs, invalidate any pre-compiled statements. 002816 */ 002817 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); 002818 if( pColl && pColl->xCmp ){ 002819 if( db->nVdbeActive ){ 002820 sqlite3ErrorWithMsg(db, SQLITE_BUSY, 002821 "unable to delete/modify collation sequence due to active statements"); 002822 return SQLITE_BUSY; 002823 } 002824 sqlite3ExpirePreparedStatements(db, 0); 002825 002826 /* If collation sequence pColl was created directly by a call to 002827 ** sqlite3_create_collation, and not generated by synthCollSeq(), 002828 ** then any copies made by synthCollSeq() need to be invalidated. 002829 ** Also, collation destructor - CollSeq.xDel() - function may need 002830 ** to be called. 002831 */ 002832 if( (pColl->enc & ~SQLITE_UTF16_ALIGNED)==enc2 ){ 002833 CollSeq *aColl = sqlite3HashFind(&db->aCollSeq, zName); 002834 int j; 002835 for(j=0; j<3; j++){ 002836 CollSeq *p = &aColl[j]; 002837 if( p->enc==pColl->enc ){ 002838 if( p->xDel ){ 002839 p->xDel(p->pUser); 002840 } 002841 p->xCmp = 0; 002842 } 002843 } 002844 } 002845 } 002846 002847 pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 1); 002848 if( pColl==0 ) return SQLITE_NOMEM_BKPT; 002849 pColl->xCmp = xCompare; 002850 pColl->pUser = pCtx; 002851 pColl->xDel = xDel; 002852 pColl->enc = (u8)(enc2 | (enc & SQLITE_UTF16_ALIGNED)); 002853 sqlite3Error(db, SQLITE_OK); 002854 return SQLITE_OK; 002855 } 002856 002857 002858 /* 002859 ** This array defines hard upper bounds on limit values. The 002860 ** initializer must be kept in sync with the SQLITE_LIMIT_* 002861 ** #defines in sqlite3.h. 002862 */ 002863 static const int aHardLimit[] = { 002864 SQLITE_MAX_LENGTH, 002865 SQLITE_MAX_SQL_LENGTH, 002866 SQLITE_MAX_COLUMN, 002867 SQLITE_MAX_EXPR_DEPTH, 002868 SQLITE_MAX_COMPOUND_SELECT, 002869 SQLITE_MAX_VDBE_OP, 002870 SQLITE_MAX_FUNCTION_ARG, 002871 SQLITE_MAX_ATTACHED, 002872 SQLITE_MAX_LIKE_PATTERN_LENGTH, 002873 SQLITE_MAX_VARIABLE_NUMBER, /* IMP: R-38091-32352 */ 002874 SQLITE_MAX_TRIGGER_DEPTH, 002875 SQLITE_MAX_WORKER_THREADS, 002876 }; 002877 002878 /* 002879 ** Make sure the hard limits are set to reasonable values 002880 */ 002881 #if SQLITE_MAX_LENGTH<100 002882 # error SQLITE_MAX_LENGTH must be at least 100 002883 #endif 002884 #if SQLITE_MAX_SQL_LENGTH<100 002885 # error SQLITE_MAX_SQL_LENGTH must be at least 100 002886 #endif 002887 #if SQLITE_MAX_SQL_LENGTH>SQLITE_MAX_LENGTH 002888 # error SQLITE_MAX_SQL_LENGTH must not be greater than SQLITE_MAX_LENGTH 002889 #endif 002890 #if SQLITE_MAX_COMPOUND_SELECT<2 002891 # error SQLITE_MAX_COMPOUND_SELECT must be at least 2 002892 #endif 002893 #if SQLITE_MAX_VDBE_OP<40 002894 # error SQLITE_MAX_VDBE_OP must be at least 40 002895 #endif 002896 #if SQLITE_MAX_FUNCTION_ARG<0 || SQLITE_MAX_FUNCTION_ARG>127 002897 # error SQLITE_MAX_FUNCTION_ARG must be between 0 and 127 002898 #endif 002899 #if SQLITE_MAX_ATTACHED<0 || SQLITE_MAX_ATTACHED>125 002900 # error SQLITE_MAX_ATTACHED must be between 0 and 125 002901 #endif 002902 #if SQLITE_MAX_LIKE_PATTERN_LENGTH<1 002903 # error SQLITE_MAX_LIKE_PATTERN_LENGTH must be at least 1 002904 #endif 002905 #if SQLITE_MAX_COLUMN>32767 002906 # error SQLITE_MAX_COLUMN must not exceed 32767 002907 #endif 002908 #if SQLITE_MAX_TRIGGER_DEPTH<1 002909 # error SQLITE_MAX_TRIGGER_DEPTH must be at least 1 002910 #endif 002911 #if SQLITE_MAX_WORKER_THREADS<0 || SQLITE_MAX_WORKER_THREADS>50 002912 # error SQLITE_MAX_WORKER_THREADS must be between 0 and 50 002913 #endif 002914 002915 002916 /* 002917 ** Change the value of a limit. Report the old value. 002918 ** If an invalid limit index is supplied, report -1. 002919 ** Make no changes but still report the old value if the 002920 ** new limit is negative. 002921 ** 002922 ** A new lower limit does not shrink existing constructs. 002923 ** It merely prevents new constructs that exceed the limit 002924 ** from forming. 002925 */ 002926 int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){ 002927 int oldLimit; 002928 002929 #ifdef SQLITE_ENABLE_API_ARMOR 002930 if( !sqlite3SafetyCheckOk(db) ){ 002931 (void)SQLITE_MISUSE_BKPT; 002932 return -1; 002933 } 002934 #endif 002935 002936 /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME 002937 ** there is a hard upper bound set at compile-time by a C preprocessor 002938 ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to 002939 ** "_MAX_".) 002940 */ 002941 assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH ); 002942 assert( aHardLimit[SQLITE_LIMIT_SQL_LENGTH]==SQLITE_MAX_SQL_LENGTH ); 002943 assert( aHardLimit[SQLITE_LIMIT_COLUMN]==SQLITE_MAX_COLUMN ); 002944 assert( aHardLimit[SQLITE_LIMIT_EXPR_DEPTH]==SQLITE_MAX_EXPR_DEPTH ); 002945 assert( aHardLimit[SQLITE_LIMIT_COMPOUND_SELECT]==SQLITE_MAX_COMPOUND_SELECT); 002946 assert( aHardLimit[SQLITE_LIMIT_VDBE_OP]==SQLITE_MAX_VDBE_OP ); 002947 assert( aHardLimit[SQLITE_LIMIT_FUNCTION_ARG]==SQLITE_MAX_FUNCTION_ARG ); 002948 assert( aHardLimit[SQLITE_LIMIT_ATTACHED]==SQLITE_MAX_ATTACHED ); 002949 assert( aHardLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]== 002950 SQLITE_MAX_LIKE_PATTERN_LENGTH ); 002951 assert( aHardLimit[SQLITE_LIMIT_VARIABLE_NUMBER]==SQLITE_MAX_VARIABLE_NUMBER); 002952 assert( aHardLimit[SQLITE_LIMIT_TRIGGER_DEPTH]==SQLITE_MAX_TRIGGER_DEPTH ); 002953 assert( aHardLimit[SQLITE_LIMIT_WORKER_THREADS]==SQLITE_MAX_WORKER_THREADS ); 002954 assert( SQLITE_LIMIT_WORKER_THREADS==(SQLITE_N_LIMIT-1) ); 002955 002956 002957 if( limitId<0 || limitId>=SQLITE_N_LIMIT ){ 002958 return -1; 002959 } 002960 oldLimit = db->aLimit[limitId]; 002961 if( newLimit>=0 ){ /* IMP: R-52476-28732 */ 002962 if( newLimit>aHardLimit[limitId] ){ 002963 newLimit = aHardLimit[limitId]; /* IMP: R-51463-25634 */ 002964 }else if( newLimit<1 && limitId==SQLITE_LIMIT_LENGTH ){ 002965 newLimit = 1; 002966 } 002967 db->aLimit[limitId] = newLimit; 002968 } 002969 return oldLimit; /* IMP: R-53341-35419 */ 002970 } 002971 002972 /* 002973 ** This function is used to parse both URIs and non-URI filenames passed by the 002974 ** user to API functions sqlite3_open() or sqlite3_open_v2(), and for database 002975 ** URIs specified as part of ATTACH statements. 002976 ** 002977 ** The first argument to this function is the name of the VFS to use (or 002978 ** a NULL to signify the default VFS) if the URI does not contain a "vfs=xxx" 002979 ** query parameter. The second argument contains the URI (or non-URI filename) 002980 ** itself. When this function is called the *pFlags variable should contain 002981 ** the default flags to open the database handle with. The value stored in 002982 ** *pFlags may be updated before returning if the URI filename contains 002983 ** "cache=xxx" or "mode=xxx" query parameters. 002984 ** 002985 ** If successful, SQLITE_OK is returned. In this case *ppVfs is set to point to 002986 ** the VFS that should be used to open the database file. *pzFile is set to 002987 ** point to a buffer containing the name of the file to open. The value 002988 ** stored in *pzFile is a database name acceptable to sqlite3_uri_parameter() 002989 ** and is in the same format as names created using sqlite3_create_filename(). 002990 ** The caller must invoke sqlite3_free_filename() (not sqlite3_free()!) on 002991 ** the value returned in *pzFile to avoid a memory leak. 002992 ** 002993 ** If an error occurs, then an SQLite error code is returned and *pzErrMsg 002994 ** may be set to point to a buffer containing an English language error 002995 ** message. It is the responsibility of the caller to eventually release 002996 ** this buffer by calling sqlite3_free(). 002997 */ 002998 int sqlite3ParseUri( 002999 const char *zDefaultVfs, /* VFS to use if no "vfs=xxx" query option */ 003000 const char *zUri, /* Nul-terminated URI to parse */ 003001 unsigned int *pFlags, /* IN/OUT: SQLITE_OPEN_XXX flags */ 003002 sqlite3_vfs **ppVfs, /* OUT: VFS to use */ 003003 char **pzFile, /* OUT: Filename component of URI */ 003004 char **pzErrMsg /* OUT: Error message (if rc!=SQLITE_OK) */ 003005 ){ 003006 int rc = SQLITE_OK; 003007 unsigned int flags = *pFlags; 003008 const char *zVfs = zDefaultVfs; 003009 char *zFile; 003010 char c; 003011 int nUri = sqlite3Strlen30(zUri); 003012 003013 assert( *pzErrMsg==0 ); 003014 003015 if( ((flags & SQLITE_OPEN_URI) /* IMP: R-48725-32206 */ 003016 || AtomicLoad(&sqlite3GlobalConfig.bOpenUri)) /* IMP: R-51689-46548 */ 003017 && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */ 003018 ){ 003019 char *zOpt; 003020 int eState; /* Parser state when parsing URI */ 003021 int iIn; /* Input character index */ 003022 int iOut = 0; /* Output character index */ 003023 u64 nByte = nUri+8; /* Bytes of space to allocate */ 003024 003025 /* Make sure the SQLITE_OPEN_URI flag is set to indicate to the VFS xOpen 003026 ** method that there may be extra parameters following the file-name. */ 003027 flags |= SQLITE_OPEN_URI; 003028 003029 for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); 003030 zFile = sqlite3_malloc64(nByte); 003031 if( !zFile ) return SQLITE_NOMEM_BKPT; 003032 003033 memset(zFile, 0, 4); /* 4-byte of 0x00 is the start of DB name marker */ 003034 zFile += 4; 003035 003036 iIn = 5; 003037 #ifdef SQLITE_ALLOW_URI_AUTHORITY 003038 if( strncmp(zUri+5, "///", 3)==0 ){ 003039 iIn = 7; 003040 /* The following condition causes URIs with five leading / characters 003041 ** like file://///host/path to be converted into UNCs like //host/path. 003042 ** The correct URI for that UNC has only two or four leading / characters 003043 ** file://host/path or file:////host/path. But 5 leading slashes is a 003044 ** common error, we are told, so we handle it as a special case. */ 003045 if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; } 003046 }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){ 003047 iIn = 16; 003048 } 003049 #else 003050 /* Discard the scheme and authority segments of the URI. */ 003051 if( zUri[5]=='/' && zUri[6]=='/' ){ 003052 iIn = 7; 003053 while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; 003054 if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ 003055 *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 003056 iIn-7, &zUri[7]); 003057 rc = SQLITE_ERROR; 003058 goto parse_uri_out; 003059 } 003060 } 003061 #endif 003062 003063 /* Copy the filename and any query parameters into the zFile buffer. 003064 ** Decode %HH escape codes along the way. 003065 ** 003066 ** Within this loop, variable eState may be set to 0, 1 or 2, depending 003067 ** on the parsing context. As follows: 003068 ** 003069 ** 0: Parsing file-name. 003070 ** 1: Parsing name section of a name=value query parameter. 003071 ** 2: Parsing value section of a name=value query parameter. 003072 */ 003073 eState = 0; 003074 while( (c = zUri[iIn])!=0 && c!='#' ){ 003075 iIn++; 003076 if( c=='%' 003077 && sqlite3Isxdigit(zUri[iIn]) 003078 && sqlite3Isxdigit(zUri[iIn+1]) 003079 ){ 003080 int octet = (sqlite3HexToInt(zUri[iIn++]) << 4); 003081 octet += sqlite3HexToInt(zUri[iIn++]); 003082 003083 assert( octet>=0 && octet<256 ); 003084 if( octet==0 ){ 003085 #ifndef SQLITE_ENABLE_URI_00_ERROR 003086 /* This branch is taken when "%00" appears within the URI. In this 003087 ** case we ignore all text in the remainder of the path, name or 003088 ** value currently being parsed. So ignore the current character 003089 ** and skip to the next "?", "=" or "&", as appropriate. */ 003090 while( (c = zUri[iIn])!=0 && c!='#' 003091 && (eState!=0 || c!='?') 003092 && (eState!=1 || (c!='=' && c!='&')) 003093 && (eState!=2 || c!='&') 003094 ){ 003095 iIn++; 003096 } 003097 continue; 003098 #else 003099 /* If ENABLE_URI_00_ERROR is defined, "%00" in a URI is an error. */ 003100 *pzErrMsg = sqlite3_mprintf("unexpected %%00 in uri"); 003101 rc = SQLITE_ERROR; 003102 goto parse_uri_out; 003103 #endif 003104 } 003105 c = octet; 003106 }else if( eState==1 && (c=='&' || c=='=') ){ 003107 if( zFile[iOut-1]==0 ){ 003108 /* An empty option name. Ignore this option altogether. */ 003109 while( zUri[iIn] && zUri[iIn]!='#' && zUri[iIn-1]!='&' ) iIn++; 003110 continue; 003111 } 003112 if( c=='&' ){ 003113 zFile[iOut++] = '\0'; 003114 }else{ 003115 eState = 2; 003116 } 003117 c = 0; 003118 }else if( (eState==0 && c=='?') || (eState==2 && c=='&') ){ 003119 c = 0; 003120 eState = 1; 003121 } 003122 zFile[iOut++] = c; 003123 } 003124 if( eState==1 ) zFile[iOut++] = '\0'; 003125 memset(zFile+iOut, 0, 4); /* end-of-options + empty journal filenames */ 003126 003127 /* Check if there were any options specified that should be interpreted 003128 ** here. Options that are interpreted here include "vfs" and those that 003129 ** correspond to flags that may be passed to the sqlite3_open_v2() 003130 ** method. */ 003131 zOpt = &zFile[sqlite3Strlen30(zFile)+1]; 003132 while( zOpt[0] ){ 003133 int nOpt = sqlite3Strlen30(zOpt); 003134 char *zVal = &zOpt[nOpt+1]; 003135 int nVal = sqlite3Strlen30(zVal); 003136 003137 if( nOpt==3 && memcmp("vfs", zOpt, 3)==0 ){ 003138 zVfs = zVal; 003139 }else{ 003140 struct OpenMode { 003141 const char *z; 003142 int mode; 003143 } *aMode = 0; 003144 char *zModeType = 0; 003145 int mask = 0; 003146 int limit = 0; 003147 003148 if( nOpt==5 && memcmp("cache", zOpt, 5)==0 ){ 003149 static struct OpenMode aCacheMode[] = { 003150 { "shared", SQLITE_OPEN_SHAREDCACHE }, 003151 { "private", SQLITE_OPEN_PRIVATECACHE }, 003152 { 0, 0 } 003153 }; 003154 003155 mask = SQLITE_OPEN_SHAREDCACHE|SQLITE_OPEN_PRIVATECACHE; 003156 aMode = aCacheMode; 003157 limit = mask; 003158 zModeType = "cache"; 003159 } 003160 if( nOpt==4 && memcmp("mode", zOpt, 4)==0 ){ 003161 static struct OpenMode aOpenMode[] = { 003162 { "ro", SQLITE_OPEN_READONLY }, 003163 { "rw", SQLITE_OPEN_READWRITE }, 003164 { "rwc", SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE }, 003165 { "memory", SQLITE_OPEN_MEMORY }, 003166 { 0, 0 } 003167 }; 003168 003169 mask = SQLITE_OPEN_READONLY | SQLITE_OPEN_READWRITE 003170 | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY; 003171 aMode = aOpenMode; 003172 limit = mask & flags; 003173 zModeType = "access"; 003174 } 003175 003176 if( aMode ){ 003177 int i; 003178 int mode = 0; 003179 for(i=0; aMode[i].z; i++){ 003180 const char *z = aMode[i].z; 003181 if( nVal==sqlite3Strlen30(z) && 0==memcmp(zVal, z, nVal) ){ 003182 mode = aMode[i].mode; 003183 break; 003184 } 003185 } 003186 if( mode==0 ){ 003187 *pzErrMsg = sqlite3_mprintf("no such %s mode: %s", zModeType, zVal); 003188 rc = SQLITE_ERROR; 003189 goto parse_uri_out; 003190 } 003191 if( (mode & ~SQLITE_OPEN_MEMORY)>limit ){ 003192 *pzErrMsg = sqlite3_mprintf("%s mode not allowed: %s", 003193 zModeType, zVal); 003194 rc = SQLITE_PERM; 003195 goto parse_uri_out; 003196 } 003197 flags = (flags & ~mask) | mode; 003198 } 003199 } 003200 003201 zOpt = &zVal[nVal+1]; 003202 } 003203 003204 }else{ 003205 zFile = sqlite3_malloc64(nUri+8); 003206 if( !zFile ) return SQLITE_NOMEM_BKPT; 003207 memset(zFile, 0, 4); 003208 zFile += 4; 003209 if( nUri ){ 003210 memcpy(zFile, zUri, nUri); 003211 } 003212 memset(zFile+nUri, 0, 4); 003213 flags &= ~SQLITE_OPEN_URI; 003214 } 003215 003216 *ppVfs = sqlite3_vfs_find(zVfs); 003217 if( *ppVfs==0 ){ 003218 *pzErrMsg = sqlite3_mprintf("no such vfs: %s", zVfs); 003219 rc = SQLITE_ERROR; 003220 } 003221 parse_uri_out: 003222 if( rc!=SQLITE_OK ){ 003223 sqlite3_free_filename(zFile); 003224 zFile = 0; 003225 } 003226 *pFlags = flags; 003227 *pzFile = zFile; 003228 return rc; 003229 } 003230 003231 /* 003232 ** This routine does the core work of extracting URI parameters from a 003233 ** database filename for the sqlite3_uri_parameter() interface. 003234 */ 003235 static const char *uriParameter(const char *zFilename, const char *zParam){ 003236 zFilename += sqlite3Strlen30(zFilename) + 1; 003237 while( ALWAYS(zFilename!=0) && zFilename[0] ){ 003238 int x = strcmp(zFilename, zParam); 003239 zFilename += sqlite3Strlen30(zFilename) + 1; 003240 if( x==0 ) return zFilename; 003241 zFilename += sqlite3Strlen30(zFilename) + 1; 003242 } 003243 return 0; 003244 } 003245 003246 003247 003248 /* 003249 ** This routine does the work of opening a database on behalf of 003250 ** sqlite3_open() and sqlite3_open16(). The database filename "zFilename" 003251 ** is UTF-8 encoded. 003252 */ 003253 static int openDatabase( 003254 const char *zFilename, /* Database filename UTF-8 encoded */ 003255 sqlite3 **ppDb, /* OUT: Returned database handle */ 003256 unsigned int flags, /* Operational flags */ 003257 const char *zVfs /* Name of the VFS to use */ 003258 ){ 003259 sqlite3 *db; /* Store allocated handle here */ 003260 int rc; /* Return code */ 003261 int isThreadsafe; /* True for threadsafe connections */ 003262 char *zOpen = 0; /* Filename argument to pass to BtreeOpen() */ 003263 char *zErrMsg = 0; /* Error message from sqlite3ParseUri() */ 003264 int i; /* Loop counter */ 003265 003266 #ifdef SQLITE_ENABLE_API_ARMOR 003267 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 003268 #endif 003269 *ppDb = 0; 003270 #ifndef SQLITE_OMIT_AUTOINIT 003271 rc = sqlite3_initialize(); 003272 if( rc ) return rc; 003273 #endif 003274 003275 if( sqlite3GlobalConfig.bCoreMutex==0 ){ 003276 isThreadsafe = 0; 003277 }else if( flags & SQLITE_OPEN_NOMUTEX ){ 003278 isThreadsafe = 0; 003279 }else if( flags & SQLITE_OPEN_FULLMUTEX ){ 003280 isThreadsafe = 1; 003281 }else{ 003282 isThreadsafe = sqlite3GlobalConfig.bFullMutex; 003283 } 003284 003285 if( flags & SQLITE_OPEN_PRIVATECACHE ){ 003286 flags &= ~SQLITE_OPEN_SHAREDCACHE; 003287 }else if( sqlite3GlobalConfig.sharedCacheEnabled ){ 003288 flags |= SQLITE_OPEN_SHAREDCACHE; 003289 } 003290 003291 /* Remove harmful bits from the flags parameter 003292 ** 003293 ** The SQLITE_OPEN_NOMUTEX and SQLITE_OPEN_FULLMUTEX flags were 003294 ** dealt with in the previous code block. Besides these, the only 003295 ** valid input flags for sqlite3_open_v2() are SQLITE_OPEN_READONLY, 003296 ** SQLITE_OPEN_READWRITE, SQLITE_OPEN_CREATE, SQLITE_OPEN_SHAREDCACHE, 003297 ** SQLITE_OPEN_PRIVATECACHE, SQLITE_OPEN_EXRESCODE, and some reserved 003298 ** bits. Silently mask off all other flags. 003299 */ 003300 flags &= ~( SQLITE_OPEN_DELETEONCLOSE | 003301 SQLITE_OPEN_EXCLUSIVE | 003302 SQLITE_OPEN_MAIN_DB | 003303 SQLITE_OPEN_TEMP_DB | 003304 SQLITE_OPEN_TRANSIENT_DB | 003305 SQLITE_OPEN_MAIN_JOURNAL | 003306 SQLITE_OPEN_TEMP_JOURNAL | 003307 SQLITE_OPEN_SUBJOURNAL | 003308 SQLITE_OPEN_SUPER_JOURNAL | 003309 SQLITE_OPEN_NOMUTEX | 003310 SQLITE_OPEN_FULLMUTEX | 003311 SQLITE_OPEN_WAL 003312 ); 003313 003314 /* Allocate the sqlite data structure */ 003315 db = sqlite3MallocZero( sizeof(sqlite3) ); 003316 if( db==0 ) goto opendb_out; 003317 if( isThreadsafe 003318 #ifdef SQLITE_ENABLE_MULTITHREADED_CHECKS 003319 || sqlite3GlobalConfig.bCoreMutex 003320 #endif 003321 ){ 003322 db->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_RECURSIVE); 003323 if( db->mutex==0 ){ 003324 sqlite3_free(db); 003325 db = 0; 003326 goto opendb_out; 003327 } 003328 if( isThreadsafe==0 ){ 003329 sqlite3MutexWarnOnContention(db->mutex); 003330 } 003331 } 003332 sqlite3_mutex_enter(db->mutex); 003333 db->errMask = (flags & SQLITE_OPEN_EXRESCODE)!=0 ? 0xffffffff : 0xff; 003334 db->nDb = 2; 003335 db->eOpenState = SQLITE_STATE_BUSY; 003336 db->aDb = db->aDbStatic; 003337 db->lookaside.bDisable = 1; 003338 db->lookaside.sz = 0; 003339 003340 assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); 003341 memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); 003342 db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; 003343 db->autoCommit = 1; 003344 db->nextAutovac = -1; 003345 db->szMmap = sqlite3GlobalConfig.szMmap; 003346 db->nextPagesize = 0; 003347 db->init.azInit = sqlite3StdType; /* Any array of string ptrs will do */ 003348 #ifdef SQLITE_ENABLE_SORTER_MMAP 003349 /* Beginning with version 3.37.0, using the VFS xFetch() API to memory-map 003350 ** the temporary files used to do external sorts (see code in vdbesort.c) 003351 ** is disabled. It can still be used either by defining 003352 ** SQLITE_ENABLE_SORTER_MMAP at compile time or by using the 003353 ** SQLITE_TESTCTRL_SORTER_MMAP test-control at runtime. */ 003354 db->nMaxSorterMmap = 0x7FFFFFFF; 003355 #endif 003356 db->flags |= SQLITE_ShortColNames 003357 | SQLITE_EnableTrigger 003358 | SQLITE_EnableView 003359 | SQLITE_CacheSpill 003360 #if !defined(SQLITE_TRUSTED_SCHEMA) || SQLITE_TRUSTED_SCHEMA+0!=0 003361 | SQLITE_TrustedSchema 003362 #endif 003363 /* The SQLITE_DQS compile-time option determines the default settings 003364 ** for SQLITE_DBCONFIG_DQS_DDL and SQLITE_DBCONFIG_DQS_DML. 003365 ** 003366 ** SQLITE_DQS SQLITE_DBCONFIG_DQS_DDL SQLITE_DBCONFIG_DQS_DML 003367 ** ---------- ----------------------- ----------------------- 003368 ** undefined on on 003369 ** 3 on on 003370 ** 2 on off 003371 ** 1 off on 003372 ** 0 off off 003373 ** 003374 ** Legacy behavior is 3 (double-quoted string literals are allowed anywhere) 003375 ** and so that is the default. But developers are encouraged to use 003376 ** -DSQLITE_DQS=0 (best) or -DSQLITE_DQS=1 (second choice) if possible. 003377 */ 003378 #if !defined(SQLITE_DQS) 003379 # define SQLITE_DQS 3 003380 #endif 003381 #if (SQLITE_DQS&1)==1 003382 | SQLITE_DqsDML 003383 #endif 003384 #if (SQLITE_DQS&2)==2 003385 | SQLITE_DqsDDL 003386 #endif 003387 003388 #if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX 003389 | SQLITE_AutoIndex 003390 #endif 003391 #if SQLITE_DEFAULT_CKPTFULLFSYNC 003392 | SQLITE_CkptFullFSync 003393 #endif 003394 #if SQLITE_DEFAULT_FILE_FORMAT<4 003395 | SQLITE_LegacyFileFmt 003396 #endif 003397 #ifdef SQLITE_ENABLE_LOAD_EXTENSION 003398 | SQLITE_LoadExtension 003399 #endif 003400 #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS 003401 | SQLITE_RecTriggers 003402 #endif 003403 #if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS 003404 | SQLITE_ForeignKeys 003405 #endif 003406 #if defined(SQLITE_REVERSE_UNORDERED_SELECTS) 003407 | SQLITE_ReverseOrder 003408 #endif 003409 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) 003410 | SQLITE_CellSizeCk 003411 #endif 003412 #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) 003413 | SQLITE_Fts3Tokenizer 003414 #endif 003415 #if defined(SQLITE_ENABLE_QPSG) 003416 | SQLITE_EnableQPSG 003417 #endif 003418 #if defined(SQLITE_DEFAULT_DEFENSIVE) 003419 | SQLITE_Defensive 003420 #endif 003421 #if defined(SQLITE_DEFAULT_LEGACY_ALTER_TABLE) 003422 | SQLITE_LegacyAlter 003423 #endif 003424 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) 003425 | SQLITE_StmtScanStatus 003426 #endif 003427 ; 003428 sqlite3HashInit(&db->aCollSeq); 003429 #ifndef SQLITE_OMIT_VIRTUALTABLE 003430 sqlite3HashInit(&db->aModule); 003431 #endif 003432 003433 /* Add the default collation sequence BINARY. BINARY works for both UTF-8 003434 ** and UTF-16, so add a version for each to avoid any unnecessary 003435 ** conversions. The only error that can occur here is a malloc() failure. 003436 ** 003437 ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating 003438 ** functions: 003439 */ 003440 createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0); 003441 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0); 003442 createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0); 003443 createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0); 003444 createCollation(db, "RTRIM", SQLITE_UTF8, 0, rtrimCollFunc, 0); 003445 if( db->mallocFailed ){ 003446 goto opendb_out; 003447 } 003448 003449 #if SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) 003450 /* Process magic filenames ":localStorage:" and ":sessionStorage:" */ 003451 if( zFilename && zFilename[0]==':' ){ 003452 if( strcmp(zFilename, ":localStorage:")==0 ){ 003453 zFilename = "file:local?vfs=kvvfs"; 003454 flags |= SQLITE_OPEN_URI; 003455 }else if( strcmp(zFilename, ":sessionStorage:")==0 ){ 003456 zFilename = "file:session?vfs=kvvfs"; 003457 flags |= SQLITE_OPEN_URI; 003458 } 003459 } 003460 #endif /* SQLITE_OS_UNIX && defined(SQLITE_OS_KV_OPTIONAL) */ 003461 003462 /* Parse the filename/URI argument 003463 ** 003464 ** Only allow sensible combinations of bits in the flags argument. 003465 ** Throw an error if any non-sense combination is used. If we 003466 ** do not block illegal combinations here, it could trigger 003467 ** assert() statements in deeper layers. Sensible combinations 003468 ** are: 003469 ** 003470 ** 1: SQLITE_OPEN_READONLY 003471 ** 2: SQLITE_OPEN_READWRITE 003472 ** 6: SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE 003473 */ 003474 db->openFlags = flags; 003475 assert( SQLITE_OPEN_READONLY == 0x01 ); 003476 assert( SQLITE_OPEN_READWRITE == 0x02 ); 003477 assert( SQLITE_OPEN_CREATE == 0x04 ); 003478 testcase( (1<<(flags&7))==0x02 ); /* READONLY */ 003479 testcase( (1<<(flags&7))==0x04 ); /* READWRITE */ 003480 testcase( (1<<(flags&7))==0x40 ); /* READWRITE | CREATE */ 003481 if( ((1<<(flags&7)) & 0x46)==0 ){ 003482 rc = SQLITE_MISUSE_BKPT; /* IMP: R-18321-05872 */ 003483 }else{ 003484 rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg); 003485 } 003486 if( rc!=SQLITE_OK ){ 003487 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db); 003488 sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg); 003489 sqlite3_free(zErrMsg); 003490 goto opendb_out; 003491 } 003492 assert( db->pVfs!=0 ); 003493 #if SQLITE_OS_KV || defined(SQLITE_OS_KV_OPTIONAL) 003494 if( sqlite3_stricmp(db->pVfs->zName, "kvvfs")==0 ){ 003495 db->temp_store = 2; 003496 } 003497 #endif 003498 003499 /* Open the backend database driver */ 003500 rc = sqlite3BtreeOpen(db->pVfs, zOpen, db, &db->aDb[0].pBt, 0, 003501 flags | SQLITE_OPEN_MAIN_DB); 003502 if( rc!=SQLITE_OK ){ 003503 if( rc==SQLITE_IOERR_NOMEM ){ 003504 rc = SQLITE_NOMEM_BKPT; 003505 } 003506 sqlite3Error(db, rc); 003507 goto opendb_out; 003508 } 003509 sqlite3BtreeEnter(db->aDb[0].pBt); 003510 db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt); 003511 if( !db->mallocFailed ){ 003512 sqlite3SetTextEncoding(db, SCHEMA_ENC(db)); 003513 } 003514 sqlite3BtreeLeave(db->aDb[0].pBt); 003515 db->aDb[1].pSchema = sqlite3SchemaGet(db, 0); 003516 003517 /* The default safety_level for the main database is FULL; for the temp 003518 ** database it is OFF. This matches the pager layer defaults. 003519 */ 003520 db->aDb[0].zDbSName = "main"; 003521 db->aDb[0].safety_level = SQLITE_DEFAULT_SYNCHRONOUS+1; 003522 db->aDb[1].zDbSName = "temp"; 003523 db->aDb[1].safety_level = PAGER_SYNCHRONOUS_OFF; 003524 003525 db->eOpenState = SQLITE_STATE_OPEN; 003526 if( db->mallocFailed ){ 003527 goto opendb_out; 003528 } 003529 003530 /* Register all built-in functions, but do not attempt to read the 003531 ** database schema yet. This is delayed until the first time the database 003532 ** is accessed. 003533 */ 003534 sqlite3Error(db, SQLITE_OK); 003535 sqlite3RegisterPerConnectionBuiltinFunctions(db); 003536 rc = sqlite3_errcode(db); 003537 003538 003539 /* Load compiled-in extensions */ 003540 for(i=0; rc==SQLITE_OK && i<ArraySize(sqlite3BuiltinExtensions); i++){ 003541 rc = sqlite3BuiltinExtensions[i](db); 003542 } 003543 003544 /* Load automatic extensions - extensions that have been registered 003545 ** using the sqlite3_automatic_extension() API. 003546 */ 003547 if( rc==SQLITE_OK ){ 003548 sqlite3AutoLoadExtensions(db); 003549 rc = sqlite3_errcode(db); 003550 if( rc!=SQLITE_OK ){ 003551 goto opendb_out; 003552 } 003553 } 003554 003555 #ifdef SQLITE_ENABLE_INTERNAL_FUNCTIONS 003556 /* Testing use only!!! The -DSQLITE_ENABLE_INTERNAL_FUNCTIONS=1 compile-time 003557 ** option gives access to internal functions by default. 003558 ** Testing use only!!! */ 003559 db->mDbFlags |= DBFLAG_InternalFunc; 003560 #endif 003561 003562 /* -DSQLITE_DEFAULT_LOCKING_MODE=1 makes EXCLUSIVE the default locking 003563 ** mode. -DSQLITE_DEFAULT_LOCKING_MODE=0 make NORMAL the default locking 003564 ** mode. Doing nothing at all also makes NORMAL the default. 003565 */ 003566 #ifdef SQLITE_DEFAULT_LOCKING_MODE 003567 db->dfltLockMode = SQLITE_DEFAULT_LOCKING_MODE; 003568 sqlite3PagerLockingMode(sqlite3BtreePager(db->aDb[0].pBt), 003569 SQLITE_DEFAULT_LOCKING_MODE); 003570 #endif 003571 003572 if( rc ) sqlite3Error(db, rc); 003573 003574 /* Enable the lookaside-malloc subsystem */ 003575 setupLookaside(db, 0, sqlite3GlobalConfig.szLookaside, 003576 sqlite3GlobalConfig.nLookaside); 003577 003578 sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT); 003579 003580 opendb_out: 003581 if( db ){ 003582 assert( db->mutex!=0 || isThreadsafe==0 003583 || sqlite3GlobalConfig.bFullMutex==0 ); 003584 sqlite3_mutex_leave(db->mutex); 003585 } 003586 rc = sqlite3_errcode(db); 003587 assert( db!=0 || (rc&0xff)==SQLITE_NOMEM ); 003588 if( (rc&0xff)==SQLITE_NOMEM ){ 003589 sqlite3_close(db); 003590 db = 0; 003591 }else if( rc!=SQLITE_OK ){ 003592 db->eOpenState = SQLITE_STATE_SICK; 003593 } 003594 *ppDb = db; 003595 #ifdef SQLITE_ENABLE_SQLLOG 003596 if( sqlite3GlobalConfig.xSqllog ){ 003597 /* Opening a db handle. Fourth parameter is passed 0. */ 003598 void *pArg = sqlite3GlobalConfig.pSqllogArg; 003599 sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0); 003600 } 003601 #endif 003602 sqlite3_free_filename(zOpen); 003603 return rc; 003604 } 003605 003606 003607 /* 003608 ** Open a new database handle. 003609 */ 003610 int sqlite3_open( 003611 const char *zFilename, 003612 sqlite3 **ppDb 003613 ){ 003614 return openDatabase(zFilename, ppDb, 003615 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003616 } 003617 int sqlite3_open_v2( 003618 const char *filename, /* Database filename (UTF-8) */ 003619 sqlite3 **ppDb, /* OUT: SQLite db handle */ 003620 int flags, /* Flags */ 003621 const char *zVfs /* Name of VFS module to use */ 003622 ){ 003623 return openDatabase(filename, ppDb, (unsigned int)flags, zVfs); 003624 } 003625 003626 #ifndef SQLITE_OMIT_UTF16 003627 /* 003628 ** Open a new database handle. 003629 */ 003630 int sqlite3_open16( 003631 const void *zFilename, 003632 sqlite3 **ppDb 003633 ){ 003634 char const *zFilename8; /* zFilename encoded in UTF-8 instead of UTF-16 */ 003635 sqlite3_value *pVal; 003636 int rc; 003637 003638 #ifdef SQLITE_ENABLE_API_ARMOR 003639 if( ppDb==0 ) return SQLITE_MISUSE_BKPT; 003640 #endif 003641 *ppDb = 0; 003642 #ifndef SQLITE_OMIT_AUTOINIT 003643 rc = sqlite3_initialize(); 003644 if( rc ) return rc; 003645 #endif 003646 if( zFilename==0 ) zFilename = "\000\000"; 003647 pVal = sqlite3ValueNew(0); 003648 sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC); 003649 zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8); 003650 if( zFilename8 ){ 003651 rc = openDatabase(zFilename8, ppDb, 003652 SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0); 003653 assert( *ppDb || rc==SQLITE_NOMEM ); 003654 if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){ 003655 SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE; 003656 } 003657 }else{ 003658 rc = SQLITE_NOMEM_BKPT; 003659 } 003660 sqlite3ValueFree(pVal); 003661 003662 return rc & 0xff; 003663 } 003664 #endif /* SQLITE_OMIT_UTF16 */ 003665 003666 /* 003667 ** Register a new collation sequence with the database handle db. 003668 */ 003669 int sqlite3_create_collation( 003670 sqlite3* db, 003671 const char *zName, 003672 int enc, 003673 void* pCtx, 003674 int(*xCompare)(void*,int,const void*,int,const void*) 003675 ){ 003676 return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0); 003677 } 003678 003679 /* 003680 ** Register a new collation sequence with the database handle db. 003681 */ 003682 int sqlite3_create_collation_v2( 003683 sqlite3* db, 003684 const char *zName, 003685 int enc, 003686 void* pCtx, 003687 int(*xCompare)(void*,int,const void*,int,const void*), 003688 void(*xDel)(void*) 003689 ){ 003690 int rc; 003691 003692 #ifdef SQLITE_ENABLE_API_ARMOR 003693 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003694 #endif 003695 sqlite3_mutex_enter(db->mutex); 003696 assert( !db->mallocFailed ); 003697 rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel); 003698 rc = sqlite3ApiExit(db, rc); 003699 sqlite3_mutex_leave(db->mutex); 003700 return rc; 003701 } 003702 003703 #ifndef SQLITE_OMIT_UTF16 003704 /* 003705 ** Register a new collation sequence with the database handle db. 003706 */ 003707 int sqlite3_create_collation16( 003708 sqlite3* db, 003709 const void *zName, 003710 int enc, 003711 void* pCtx, 003712 int(*xCompare)(void*,int,const void*,int,const void*) 003713 ){ 003714 int rc = SQLITE_OK; 003715 char *zName8; 003716 003717 #ifdef SQLITE_ENABLE_API_ARMOR 003718 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; 003719 #endif 003720 sqlite3_mutex_enter(db->mutex); 003721 assert( !db->mallocFailed ); 003722 zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE); 003723 if( zName8 ){ 003724 rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0); 003725 sqlite3DbFree(db, zName8); 003726 } 003727 rc = sqlite3ApiExit(db, rc); 003728 sqlite3_mutex_leave(db->mutex); 003729 return rc; 003730 } 003731 #endif /* SQLITE_OMIT_UTF16 */ 003732 003733 /* 003734 ** Register a collation sequence factory callback with the database handle 003735 ** db. Replace any previously installed collation sequence factory. 003736 */ 003737 int sqlite3_collation_needed( 003738 sqlite3 *db, 003739 void *pCollNeededArg, 003740 void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*) 003741 ){ 003742 #ifdef SQLITE_ENABLE_API_ARMOR 003743 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003744 #endif 003745 sqlite3_mutex_enter(db->mutex); 003746 db->xCollNeeded = xCollNeeded; 003747 db->xCollNeeded16 = 0; 003748 db->pCollNeededArg = pCollNeededArg; 003749 sqlite3_mutex_leave(db->mutex); 003750 return SQLITE_OK; 003751 } 003752 003753 #ifndef SQLITE_OMIT_UTF16 003754 /* 003755 ** Register a collation sequence factory callback with the database handle 003756 ** db. Replace any previously installed collation sequence factory. 003757 */ 003758 int sqlite3_collation_needed16( 003759 sqlite3 *db, 003760 void *pCollNeededArg, 003761 void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*) 003762 ){ 003763 #ifdef SQLITE_ENABLE_API_ARMOR 003764 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 003765 #endif 003766 sqlite3_mutex_enter(db->mutex); 003767 db->xCollNeeded = 0; 003768 db->xCollNeeded16 = xCollNeeded16; 003769 db->pCollNeededArg = pCollNeededArg; 003770 sqlite3_mutex_leave(db->mutex); 003771 return SQLITE_OK; 003772 } 003773 #endif /* SQLITE_OMIT_UTF16 */ 003774 003775 /* 003776 ** Find existing client data. 003777 */ 003778 void *sqlite3_get_clientdata(sqlite3 *db, const char *zName){ 003779 DbClientData *p; 003780 sqlite3_mutex_enter(db->mutex); 003781 for(p=db->pDbData; p; p=p->pNext){ 003782 if( strcmp(p->zName, zName)==0 ){ 003783 void *pResult = p->pData; 003784 sqlite3_mutex_leave(db->mutex); 003785 return pResult; 003786 } 003787 } 003788 sqlite3_mutex_leave(db->mutex); 003789 return 0; 003790 } 003791 003792 /* 003793 ** Add new client data to a database connection. 003794 */ 003795 int sqlite3_set_clientdata( 003796 sqlite3 *db, /* Attach client data to this connection */ 003797 const char *zName, /* Name of the client data */ 003798 void *pData, /* The client data itself */ 003799 void (*xDestructor)(void*) /* Destructor */ 003800 ){ 003801 DbClientData *p, **pp; 003802 sqlite3_mutex_enter(db->mutex); 003803 pp = &db->pDbData; 003804 for(p=db->pDbData; p && strcmp(p->zName,zName); p=p->pNext){ 003805 pp = &p->pNext; 003806 } 003807 if( p ){ 003808 assert( p->pData!=0 ); 003809 if( p->xDestructor ) p->xDestructor(p->pData); 003810 if( pData==0 ){ 003811 *pp = p->pNext; 003812 sqlite3_free(p); 003813 sqlite3_mutex_leave(db->mutex); 003814 return SQLITE_OK; 003815 } 003816 }else if( pData==0 ){ 003817 sqlite3_mutex_leave(db->mutex); 003818 return SQLITE_OK; 003819 }else{ 003820 size_t n = strlen(zName); 003821 p = sqlite3_malloc64( sizeof(DbClientData)+n+1 ); 003822 if( p==0 ){ 003823 if( xDestructor ) xDestructor(pData); 003824 sqlite3_mutex_leave(db->mutex); 003825 return SQLITE_NOMEM; 003826 } 003827 memcpy(p->zName, zName, n+1); 003828 p->pNext = db->pDbData; 003829 db->pDbData = p; 003830 } 003831 p->pData = pData; 003832 p->xDestructor = xDestructor; 003833 sqlite3_mutex_leave(db->mutex); 003834 return SQLITE_OK; 003835 } 003836 003837 003838 #ifndef SQLITE_OMIT_DEPRECATED 003839 /* 003840 ** This function is now an anachronism. It used to be used to recover from a 003841 ** malloc() failure, but SQLite now does this automatically. 003842 */ 003843 int sqlite3_global_recover(void){ 003844 return SQLITE_OK; 003845 } 003846 #endif 003847 003848 /* 003849 ** Test to see whether or not the database connection is in autocommit 003850 ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on 003851 ** by default. Autocommit is disabled by a BEGIN statement and reenabled 003852 ** by the next COMMIT or ROLLBACK. 003853 */ 003854 int sqlite3_get_autocommit(sqlite3 *db){ 003855 #ifdef SQLITE_ENABLE_API_ARMOR 003856 if( !sqlite3SafetyCheckOk(db) ){ 003857 (void)SQLITE_MISUSE_BKPT; 003858 return 0; 003859 } 003860 #endif 003861 return db->autoCommit; 003862 } 003863 003864 /* 003865 ** The following routines are substitutes for constants SQLITE_CORRUPT, 003866 ** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_NOMEM and possibly other error 003867 ** constants. They serve two purposes: 003868 ** 003869 ** 1. Serve as a convenient place to set a breakpoint in a debugger 003870 ** to detect when version error conditions occurs. 003871 ** 003872 ** 2. Invoke sqlite3_log() to provide the source code location where 003873 ** a low-level error is first detected. 003874 */ 003875 int sqlite3ReportError(int iErr, int lineno, const char *zType){ 003876 sqlite3_log(iErr, "%s at line %d of [%.10s]", 003877 zType, lineno, 20+sqlite3_sourceid()); 003878 return iErr; 003879 } 003880 int sqlite3CorruptError(int lineno){ 003881 testcase( sqlite3GlobalConfig.xLog!=0 ); 003882 return sqlite3ReportError(SQLITE_CORRUPT, lineno, "database corruption"); 003883 } 003884 int sqlite3MisuseError(int lineno){ 003885 testcase( sqlite3GlobalConfig.xLog!=0 ); 003886 return sqlite3ReportError(SQLITE_MISUSE, lineno, "misuse"); 003887 } 003888 int sqlite3CantopenError(int lineno){ 003889 testcase( sqlite3GlobalConfig.xLog!=0 ); 003890 return sqlite3ReportError(SQLITE_CANTOPEN, lineno, "cannot open file"); 003891 } 003892 #if defined(SQLITE_DEBUG) || defined(SQLITE_ENABLE_CORRUPT_PGNO) 003893 int sqlite3CorruptPgnoError(int lineno, Pgno pgno){ 003894 char zMsg[100]; 003895 sqlite3_snprintf(sizeof(zMsg), zMsg, "database corruption page %d", pgno); 003896 testcase( sqlite3GlobalConfig.xLog!=0 ); 003897 return sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg); 003898 } 003899 #endif 003900 #ifdef SQLITE_DEBUG 003901 int sqlite3NomemError(int lineno){ 003902 testcase( sqlite3GlobalConfig.xLog!=0 ); 003903 return sqlite3ReportError(SQLITE_NOMEM, lineno, "OOM"); 003904 } 003905 int sqlite3IoerrnomemError(int lineno){ 003906 testcase( sqlite3GlobalConfig.xLog!=0 ); 003907 return sqlite3ReportError(SQLITE_IOERR_NOMEM, lineno, "I/O OOM error"); 003908 } 003909 #endif 003910 003911 #ifndef SQLITE_OMIT_DEPRECATED 003912 /* 003913 ** This is a convenience routine that makes sure that all thread-specific 003914 ** data for this thread has been deallocated. 003915 ** 003916 ** SQLite no longer uses thread-specific data so this routine is now a 003917 ** no-op. It is retained for historical compatibility. 003918 */ 003919 void sqlite3_thread_cleanup(void){ 003920 } 003921 #endif 003922 003923 /* 003924 ** Return meta information about a specific column of a database table. 003925 ** See comment in sqlite3.h (sqlite.h.in) for details. 003926 */ 003927 int sqlite3_table_column_metadata( 003928 sqlite3 *db, /* Connection handle */ 003929 const char *zDbName, /* Database name or NULL */ 003930 const char *zTableName, /* Table name */ 003931 const char *zColumnName, /* Column name */ 003932 char const **pzDataType, /* OUTPUT: Declared data type */ 003933 char const **pzCollSeq, /* OUTPUT: Collation sequence name */ 003934 int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */ 003935 int *pPrimaryKey, /* OUTPUT: True if column part of PK */ 003936 int *pAutoinc /* OUTPUT: True if column is auto-increment */ 003937 ){ 003938 int rc; 003939 char *zErrMsg = 0; 003940 Table *pTab = 0; 003941 Column *pCol = 0; 003942 int iCol = 0; 003943 char const *zDataType = 0; 003944 char const *zCollSeq = 0; 003945 int notnull = 0; 003946 int primarykey = 0; 003947 int autoinc = 0; 003948 003949 003950 #ifdef SQLITE_ENABLE_API_ARMOR 003951 if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){ 003952 return SQLITE_MISUSE_BKPT; 003953 } 003954 #endif 003955 003956 /* Ensure the database schema has been loaded */ 003957 sqlite3_mutex_enter(db->mutex); 003958 sqlite3BtreeEnterAll(db); 003959 rc = sqlite3Init(db, &zErrMsg); 003960 if( SQLITE_OK!=rc ){ 003961 goto error_out; 003962 } 003963 003964 /* Locate the table in question */ 003965 pTab = sqlite3FindTable(db, zTableName, zDbName); 003966 if( !pTab || IsView(pTab) ){ 003967 pTab = 0; 003968 goto error_out; 003969 } 003970 003971 /* Find the column for which info is requested */ 003972 if( zColumnName==0 ){ 003973 /* Query for existence of table only */ 003974 }else{ 003975 for(iCol=0; iCol<pTab->nCol; iCol++){ 003976 pCol = &pTab->aCol[iCol]; 003977 if( 0==sqlite3StrICmp(pCol->zCnName, zColumnName) ){ 003978 break; 003979 } 003980 } 003981 if( iCol==pTab->nCol ){ 003982 if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){ 003983 iCol = pTab->iPKey; 003984 pCol = iCol>=0 ? &pTab->aCol[iCol] : 0; 003985 }else{ 003986 pTab = 0; 003987 goto error_out; 003988 } 003989 } 003990 } 003991 003992 /* The following block stores the meta information that will be returned 003993 ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey 003994 ** and autoinc. At this point there are two possibilities: 003995 ** 003996 ** 1. The specified column name was rowid", "oid" or "_rowid_" 003997 ** and there is no explicitly declared IPK column. 003998 ** 003999 ** 2. The table is not a view and the column name identified an 004000 ** explicitly declared column. Copy meta information from *pCol. 004001 */ 004002 if( pCol ){ 004003 zDataType = sqlite3ColumnType(pCol,0); 004004 zCollSeq = sqlite3ColumnColl(pCol); 004005 notnull = pCol->notNull!=0; 004006 primarykey = (pCol->colFlags & COLFLAG_PRIMKEY)!=0; 004007 autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0; 004008 }else{ 004009 zDataType = "INTEGER"; 004010 primarykey = 1; 004011 } 004012 if( !zCollSeq ){ 004013 zCollSeq = sqlite3StrBINARY; 004014 } 004015 004016 error_out: 004017 sqlite3BtreeLeaveAll(db); 004018 004019 /* Whether the function call succeeded or failed, set the output parameters 004020 ** to whatever their local counterparts contain. If an error did occur, 004021 ** this has the effect of zeroing all output parameters. 004022 */ 004023 if( pzDataType ) *pzDataType = zDataType; 004024 if( pzCollSeq ) *pzCollSeq = zCollSeq; 004025 if( pNotNull ) *pNotNull = notnull; 004026 if( pPrimaryKey ) *pPrimaryKey = primarykey; 004027 if( pAutoinc ) *pAutoinc = autoinc; 004028 004029 if( SQLITE_OK==rc && !pTab ){ 004030 sqlite3DbFree(db, zErrMsg); 004031 zErrMsg = sqlite3MPrintf(db, "no such table column: %s.%s", zTableName, 004032 zColumnName); 004033 rc = SQLITE_ERROR; 004034 } 004035 sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg); 004036 sqlite3DbFree(db, zErrMsg); 004037 rc = sqlite3ApiExit(db, rc); 004038 sqlite3_mutex_leave(db->mutex); 004039 return rc; 004040 } 004041 004042 /* 004043 ** Sleep for a little while. Return the amount of time slept. 004044 */ 004045 int sqlite3_sleep(int ms){ 004046 sqlite3_vfs *pVfs; 004047 int rc; 004048 pVfs = sqlite3_vfs_find(0); 004049 if( pVfs==0 ) return 0; 004050 004051 /* This function works in milliseconds, but the underlying OsSleep() 004052 ** API uses microseconds. Hence the 1000's. 004053 */ 004054 rc = (sqlite3OsSleep(pVfs, ms<0 ? 0 : 1000*ms)/1000); 004055 return rc; 004056 } 004057 004058 /* 004059 ** Enable or disable the extended result codes. 004060 */ 004061 int sqlite3_extended_result_codes(sqlite3 *db, int onoff){ 004062 #ifdef SQLITE_ENABLE_API_ARMOR 004063 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 004064 #endif 004065 sqlite3_mutex_enter(db->mutex); 004066 db->errMask = onoff ? 0xffffffff : 0xff; 004067 sqlite3_mutex_leave(db->mutex); 004068 return SQLITE_OK; 004069 } 004070 004071 /* 004072 ** Invoke the xFileControl method on a particular database. 004073 */ 004074 int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){ 004075 int rc = SQLITE_ERROR; 004076 Btree *pBtree; 004077 004078 #ifdef SQLITE_ENABLE_API_ARMOR 004079 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; 004080 #endif 004081 sqlite3_mutex_enter(db->mutex); 004082 pBtree = sqlite3DbNameToBtree(db, zDbName); 004083 if( pBtree ){ 004084 Pager *pPager; 004085 sqlite3_file *fd; 004086 sqlite3BtreeEnter(pBtree); 004087 pPager = sqlite3BtreePager(pBtree); 004088 assert( pPager!=0 ); 004089 fd = sqlite3PagerFile(pPager); 004090 assert( fd!=0 ); 004091 if( op==SQLITE_FCNTL_FILE_POINTER ){ 004092 *(sqlite3_file**)pArg = fd; 004093 rc = SQLITE_OK; 004094 }else if( op==SQLITE_FCNTL_VFS_POINTER ){ 004095 *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager); 004096 rc = SQLITE_OK; 004097 }else if( op==SQLITE_FCNTL_JOURNAL_POINTER ){ 004098 *(sqlite3_file**)pArg = sqlite3PagerJrnlFile(pPager); 004099 rc = SQLITE_OK; 004100 }else if( op==SQLITE_FCNTL_DATA_VERSION ){ 004101 *(unsigned int*)pArg = sqlite3PagerDataVersion(pPager); 004102 rc = SQLITE_OK; 004103 }else if( op==SQLITE_FCNTL_RESERVE_BYTES ){ 004104 int iNew = *(int*)pArg; 004105 *(int*)pArg = sqlite3BtreeGetRequestedReserve(pBtree); 004106 if( iNew>=0 && iNew<=255 ){ 004107 sqlite3BtreeSetPageSize(pBtree, 0, iNew, 0); 004108 } 004109 rc = SQLITE_OK; 004110 }else if( op==SQLITE_FCNTL_RESET_CACHE ){ 004111 sqlite3BtreeClearCache(pBtree); 004112 rc = SQLITE_OK; 004113 }else{ 004114 int nSave = db->busyHandler.nBusy; 004115 rc = sqlite3OsFileControl(fd, op, pArg); 004116 db->busyHandler.nBusy = nSave; 004117 } 004118 sqlite3BtreeLeave(pBtree); 004119 } 004120 sqlite3_mutex_leave(db->mutex); 004121 return rc; 004122 } 004123 004124 /* 004125 ** Interface to the testing logic. 004126 */ 004127 int sqlite3_test_control(int op, ...){ 004128 int rc = 0; 004129 #ifdef SQLITE_UNTESTABLE 004130 UNUSED_PARAMETER(op); 004131 #else 004132 va_list ap; 004133 va_start(ap, op); 004134 switch( op ){ 004135 004136 /* 004137 ** Save the current state of the PRNG. 004138 */ 004139 case SQLITE_TESTCTRL_PRNG_SAVE: { 004140 sqlite3PrngSaveState(); 004141 break; 004142 } 004143 004144 /* 004145 ** Restore the state of the PRNG to the last state saved using 004146 ** PRNG_SAVE. If PRNG_SAVE has never before been called, then 004147 ** this verb acts like PRNG_RESET. 004148 */ 004149 case SQLITE_TESTCTRL_PRNG_RESTORE: { 004150 sqlite3PrngRestoreState(); 004151 break; 004152 } 004153 004154 /* sqlite3_test_control(SQLITE_TESTCTRL_PRNG_SEED, int x, sqlite3 *db); 004155 ** 004156 ** Control the seed for the pseudo-random number generator (PRNG) that 004157 ** is built into SQLite. Cases: 004158 ** 004159 ** x!=0 && db!=0 Seed the PRNG to the current value of the 004160 ** schema cookie in the main database for db, or 004161 ** x if the schema cookie is zero. This case 004162 ** is convenient to use with database fuzzers 004163 ** as it allows the fuzzer some control over the 004164 ** the PRNG seed. 004165 ** 004166 ** x!=0 && db==0 Seed the PRNG to the value of x. 004167 ** 004168 ** x==0 && db==0 Revert to default behavior of using the 004169 ** xRandomness method on the primary VFS. 004170 ** 004171 ** This test-control also resets the PRNG so that the new seed will 004172 ** be used for the next call to sqlite3_randomness(). 004173 */ 004174 #ifndef SQLITE_OMIT_WSD 004175 case SQLITE_TESTCTRL_PRNG_SEED: { 004176 int x = va_arg(ap, int); 004177 int y; 004178 sqlite3 *db = va_arg(ap, sqlite3*); 004179 assert( db==0 || db->aDb[0].pSchema!=0 ); 004180 if( db && (y = db->aDb[0].pSchema->schema_cookie)!=0 ){ x = y; } 004181 sqlite3Config.iPrngSeed = x; 004182 sqlite3_randomness(0,0); 004183 break; 004184 } 004185 #endif 004186 004187 /* sqlite3_test_control(SQLITE_TESTCTRL_FK_NO_ACTION, sqlite3 *db, int b); 004188 ** 004189 ** If b is true, then activate the SQLITE_FkNoAction setting. If b is 004190 ** false then clearn that setting. If the SQLITE_FkNoAction setting is 004191 ** abled, all foreign key ON DELETE and ON UPDATE actions behave as if 004192 ** they were NO ACTION, regardless of how they are defined. 004193 ** 004194 ** NB: One must usually run "PRAGMA writable_schema=RESET" after 004195 ** using this test-control, before it will take full effect. failing 004196 ** to reset the schema can result in some unexpected behavior. 004197 */ 004198 case SQLITE_TESTCTRL_FK_NO_ACTION: { 004199 sqlite3 *db = va_arg(ap, sqlite3*); 004200 int b = va_arg(ap, int); 004201 if( b ){ 004202 db->flags |= SQLITE_FkNoAction; 004203 }else{ 004204 db->flags &= ~SQLITE_FkNoAction; 004205 } 004206 break; 004207 } 004208 004209 /* 004210 ** sqlite3_test_control(BITVEC_TEST, size, program) 004211 ** 004212 ** Run a test against a Bitvec object of size. The program argument 004213 ** is an array of integers that defines the test. Return -1 on a 004214 ** memory allocation error, 0 on success, or non-zero for an error. 004215 ** See the sqlite3BitvecBuiltinTest() for additional information. 004216 */ 004217 case SQLITE_TESTCTRL_BITVEC_TEST: { 004218 int sz = va_arg(ap, int); 004219 int *aProg = va_arg(ap, int*); 004220 rc = sqlite3BitvecBuiltinTest(sz, aProg); 004221 break; 004222 } 004223 004224 /* 004225 ** sqlite3_test_control(FAULT_INSTALL, xCallback) 004226 ** 004227 ** Arrange to invoke xCallback() whenever sqlite3FaultSim() is called, 004228 ** if xCallback is not NULL. 004229 ** 004230 ** As a test of the fault simulator mechanism itself, sqlite3FaultSim(0) 004231 ** is called immediately after installing the new callback and the return 004232 ** value from sqlite3FaultSim(0) becomes the return from 004233 ** sqlite3_test_control(). 004234 */ 004235 case SQLITE_TESTCTRL_FAULT_INSTALL: { 004236 /* A bug in MSVC prevents it from understanding pointers to functions 004237 ** types in the second argument to va_arg(). Work around the problem 004238 ** using a typedef. 004239 ** http://support.microsoft.com/kb/47961 <-- dead hyperlink 004240 ** Search at http://web.archive.org/ to find the 2015-03-16 archive 004241 ** of the link above to see the original text. 004242 ** sqlite3GlobalConfig.xTestCallback = va_arg(ap, int(*)(int)); 004243 */ 004244 typedef int(*sqlite3FaultFuncType)(int); 004245 sqlite3GlobalConfig.xTestCallback = va_arg(ap, sqlite3FaultFuncType); 004246 rc = sqlite3FaultSim(0); 004247 break; 004248 } 004249 004250 /* 004251 ** sqlite3_test_control(BENIGN_MALLOC_HOOKS, xBegin, xEnd) 004252 ** 004253 ** Register hooks to call to indicate which malloc() failures 004254 ** are benign. 004255 */ 004256 case SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS: { 004257 typedef void (*void_function)(void); 004258 void_function xBenignBegin; 004259 void_function xBenignEnd; 004260 xBenignBegin = va_arg(ap, void_function); 004261 xBenignEnd = va_arg(ap, void_function); 004262 sqlite3BenignMallocHooks(xBenignBegin, xBenignEnd); 004263 break; 004264 } 004265 004266 /* 004267 ** sqlite3_test_control(SQLITE_TESTCTRL_PENDING_BYTE, unsigned int X) 004268 ** 004269 ** Set the PENDING byte to the value in the argument, if X>0. 004270 ** Make no changes if X==0. Return the value of the pending byte 004271 ** as it existing before this routine was called. 004272 ** 004273 ** IMPORTANT: Changing the PENDING byte from 0x40000000 results in 004274 ** an incompatible database file format. Changing the PENDING byte 004275 ** while any database connection is open results in undefined and 004276 ** deleterious behavior. 004277 */ 004278 case SQLITE_TESTCTRL_PENDING_BYTE: { 004279 rc = PENDING_BYTE; 004280 #ifndef SQLITE_OMIT_WSD 004281 { 004282 unsigned int newVal = va_arg(ap, unsigned int); 004283 if( newVal ) sqlite3PendingByte = newVal; 004284 } 004285 #endif 004286 break; 004287 } 004288 004289 /* 004290 ** sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, int X) 004291 ** 004292 ** This action provides a run-time test to see whether or not 004293 ** assert() was enabled at compile-time. If X is true and assert() 004294 ** is enabled, then the return value is true. If X is true and 004295 ** assert() is disabled, then the return value is zero. If X is 004296 ** false and assert() is enabled, then the assertion fires and the 004297 ** process aborts. If X is false and assert() is disabled, then the 004298 ** return value is zero. 004299 */ 004300 case SQLITE_TESTCTRL_ASSERT: { 004301 volatile int x = 0; 004302 assert( /*side-effects-ok*/ (x = va_arg(ap,int))!=0 ); 004303 rc = x; 004304 #if defined(SQLITE_DEBUG) 004305 /* Invoke these debugging routines so that the compiler does not 004306 ** issue "defined but not used" warnings. */ 004307 if( x==9999 ){ 004308 sqlite3ShowExpr(0); 004309 sqlite3ShowExpr(0); 004310 sqlite3ShowExprList(0); 004311 sqlite3ShowIdList(0); 004312 sqlite3ShowSrcList(0); 004313 sqlite3ShowWith(0); 004314 sqlite3ShowUpsert(0); 004315 #ifndef SQLITE_OMIT_TRIGGER 004316 sqlite3ShowTriggerStep(0); 004317 sqlite3ShowTriggerStepList(0); 004318 sqlite3ShowTrigger(0); 004319 sqlite3ShowTriggerList(0); 004320 #endif 004321 #ifndef SQLITE_OMIT_WINDOWFUNC 004322 sqlite3ShowWindow(0); 004323 sqlite3ShowWinFunc(0); 004324 #endif 004325 sqlite3ShowSelect(0); 004326 } 004327 #endif 004328 break; 004329 } 004330 004331 004332 /* 004333 ** sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, int X) 004334 ** 004335 ** This action provides a run-time test to see how the ALWAYS and 004336 ** NEVER macros were defined at compile-time. 004337 ** 004338 ** The return value is ALWAYS(X) if X is true, or 0 if X is false. 004339 ** 004340 ** The recommended test is X==2. If the return value is 2, that means 004341 ** ALWAYS() and NEVER() are both no-op pass-through macros, which is the 004342 ** default setting. If the return value is 1, then ALWAYS() is either 004343 ** hard-coded to true or else it asserts if its argument is false. 004344 ** The first behavior (hard-coded to true) is the case if 004345 ** SQLITE_TESTCTRL_ASSERT shows that assert() is disabled and the second 004346 ** behavior (assert if the argument to ALWAYS() is false) is the case if 004347 ** SQLITE_TESTCTRL_ASSERT shows that assert() is enabled. 004348 ** 004349 ** The run-time test procedure might look something like this: 004350 ** 004351 ** if( sqlite3_test_control(SQLITE_TESTCTRL_ALWAYS, 2)==2 ){ 004352 ** // ALWAYS() and NEVER() are no-op pass-through macros 004353 ** }else if( sqlite3_test_control(SQLITE_TESTCTRL_ASSERT, 1) ){ 004354 ** // ALWAYS(x) asserts that x is true. NEVER(x) asserts x is false. 004355 ** }else{ 004356 ** // ALWAYS(x) is a constant 1. NEVER(x) is a constant 0. 004357 ** } 004358 */ 004359 case SQLITE_TESTCTRL_ALWAYS: { 004360 int x = va_arg(ap,int); 004361 rc = x ? ALWAYS(x) : 0; 004362 break; 004363 } 004364 004365 /* 004366 ** sqlite3_test_control(SQLITE_TESTCTRL_BYTEORDER); 004367 ** 004368 ** The integer returned reveals the byte-order of the computer on which 004369 ** SQLite is running: 004370 ** 004371 ** 1 big-endian, determined at run-time 004372 ** 10 little-endian, determined at run-time 004373 ** 432101 big-endian, determined at compile-time 004374 ** 123410 little-endian, determined at compile-time 004375 */ 004376 case SQLITE_TESTCTRL_BYTEORDER: { 004377 rc = SQLITE_BYTEORDER*100 + SQLITE_LITTLEENDIAN*10 + SQLITE_BIGENDIAN; 004378 break; 004379 } 004380 004381 /* sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS, sqlite3 *db, int N) 004382 ** 004383 ** Enable or disable various optimizations for testing purposes. The 004384 ** argument N is a bitmask of optimizations to be disabled. For normal 004385 ** operation N should be 0. The idea is that a test program (like the 004386 ** SQL Logic Test or SLT test module) can run the same SQL multiple times 004387 ** with various optimizations disabled to verify that the same answer 004388 ** is obtained in every case. 004389 */ 004390 case SQLITE_TESTCTRL_OPTIMIZATIONS: { 004391 sqlite3 *db = va_arg(ap, sqlite3*); 004392 db->dbOptFlags = va_arg(ap, u32); 004393 break; 004394 } 004395 004396 /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, onoff, xAlt); 004397 ** 004398 ** If parameter onoff is 1, subsequent calls to localtime() fail. 004399 ** If 2, then invoke xAlt() instead of localtime(). If 0, normal 004400 ** processing. 004401 ** 004402 ** xAlt arguments are void pointers, but they really want to be: 004403 ** 004404 ** int xAlt(const time_t*, struct tm*); 004405 ** 004406 ** xAlt should write results in to struct tm object of its 2nd argument 004407 ** and return zero on success, or return non-zero on failure. 004408 */ 004409 case SQLITE_TESTCTRL_LOCALTIME_FAULT: { 004410 sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); 004411 if( sqlite3GlobalConfig.bLocaltimeFault==2 ){ 004412 typedef int(*sqlite3LocaltimeType)(const void*,void*); 004413 sqlite3GlobalConfig.xAltLocaltime = va_arg(ap, sqlite3LocaltimeType); 004414 }else{ 004415 sqlite3GlobalConfig.xAltLocaltime = 0; 004416 } 004417 break; 004418 } 004419 004420 /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCTIONS, sqlite3*); 004421 ** 004422 ** Toggle the ability to use internal functions on or off for 004423 ** the database connection given in the argument. 004424 */ 004425 case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { 004426 sqlite3 *db = va_arg(ap, sqlite3*); 004427 db->mDbFlags ^= DBFLAG_InternalFunc; 004428 break; 004429 } 004430 004431 /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); 004432 ** 004433 ** Set or clear a flag that indicates that the database file is always well- 004434 ** formed and never corrupt. This flag is clear by default, indicating that 004435 ** database files might have arbitrary corruption. Setting the flag during 004436 ** testing causes certain assert() statements in the code to be activated 004437 ** that demonstrate invariants on well-formed database files. 004438 */ 004439 case SQLITE_TESTCTRL_NEVER_CORRUPT: { 004440 sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); 004441 break; 004442 } 004443 004444 /* sqlite3_test_control(SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS, int); 004445 ** 004446 ** Set or clear a flag that causes SQLite to verify that type, name, 004447 ** and tbl_name fields of the sqlite_schema table. This is normally 004448 ** on, but it is sometimes useful to turn it off for testing. 004449 ** 004450 ** 2020-07-22: Disabling EXTRA_SCHEMA_CHECKS also disables the 004451 ** verification of rootpage numbers when parsing the schema. This 004452 ** is useful to make it easier to reach strange internal error states 004453 ** during testing. The EXTRA_SCHEMA_CHECKS setting is always enabled 004454 ** in production. 004455 */ 004456 case SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS: { 004457 sqlite3GlobalConfig.bExtraSchemaChecks = va_arg(ap, int); 004458 break; 004459 } 004460 004461 /* Set the threshold at which OP_Once counters reset back to zero. 004462 ** By default this is 0x7ffffffe (over 2 billion), but that value is 004463 ** too big to test in a reasonable amount of time, so this control is 004464 ** provided to set a small and easily reachable reset value. 004465 */ 004466 case SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD: { 004467 sqlite3GlobalConfig.iOnceResetThreshold = va_arg(ap, int); 004468 break; 004469 } 004470 004471 /* sqlite3_test_control(SQLITE_TESTCTRL_VDBE_COVERAGE, xCallback, ptr); 004472 ** 004473 ** Set the VDBE coverage callback function to xCallback with context 004474 ** pointer ptr. 004475 */ 004476 case SQLITE_TESTCTRL_VDBE_COVERAGE: { 004477 #ifdef SQLITE_VDBE_COVERAGE 004478 typedef void (*branch_callback)(void*,unsigned int, 004479 unsigned char,unsigned char); 004480 sqlite3GlobalConfig.xVdbeBranch = va_arg(ap,branch_callback); 004481 sqlite3GlobalConfig.pVdbeBranchArg = va_arg(ap,void*); 004482 #endif 004483 break; 004484 } 004485 004486 /* sqlite3_test_control(SQLITE_TESTCTRL_SORTER_MMAP, db, nMax); */ 004487 case SQLITE_TESTCTRL_SORTER_MMAP: { 004488 sqlite3 *db = va_arg(ap, sqlite3*); 004489 db->nMaxSorterMmap = va_arg(ap, int); 004490 break; 004491 } 004492 004493 /* sqlite3_test_control(SQLITE_TESTCTRL_ISINIT); 004494 ** 004495 ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if 004496 ** not. 004497 */ 004498 case SQLITE_TESTCTRL_ISINIT: { 004499 if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR; 004500 break; 004501 } 004502 004503 /* sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum); 004504 ** 004505 ** This test control is used to create imposter tables. "db" is a pointer 004506 ** to the database connection. dbName is the database name (ex: "main" or 004507 ** "temp") which will receive the imposter. "onOff" turns imposter mode on 004508 ** or off. "tnum" is the root page of the b-tree to which the imposter 004509 ** table should connect. 004510 ** 004511 ** Enable imposter mode only when the schema has already been parsed. Then 004512 ** run a single CREATE TABLE statement to construct the imposter table in 004513 ** the parsed schema. Then turn imposter mode back off again. 004514 ** 004515 ** If onOff==0 and tnum>0 then reset the schema for all databases, causing 004516 ** the schema to be reparsed the next time it is needed. This has the 004517 ** effect of erasing all imposter tables. 004518 */ 004519 case SQLITE_TESTCTRL_IMPOSTER: { 004520 sqlite3 *db = va_arg(ap, sqlite3*); 004521 int iDb; 004522 sqlite3_mutex_enter(db->mutex); 004523 iDb = sqlite3FindDbName(db, va_arg(ap,const char*)); 004524 if( iDb>=0 ){ 004525 db->init.iDb = iDb; 004526 db->init.busy = db->init.imposterTable = va_arg(ap,int); 004527 db->init.newTnum = va_arg(ap,int); 004528 if( db->init.busy==0 && db->init.newTnum>0 ){ 004529 sqlite3ResetAllSchemasOfConnection(db); 004530 } 004531 } 004532 sqlite3_mutex_leave(db->mutex); 004533 break; 004534 } 004535 004536 #if defined(YYCOVERAGE) 004537 /* sqlite3_test_control(SQLITE_TESTCTRL_PARSER_COVERAGE, FILE *out) 004538 ** 004539 ** This test control (only available when SQLite is compiled with 004540 ** -DYYCOVERAGE) writes a report onto "out" that shows all 004541 ** state/lookahead combinations in the parser state machine 004542 ** which are never exercised. If any state is missed, make the 004543 ** return code SQLITE_ERROR. 004544 */ 004545 case SQLITE_TESTCTRL_PARSER_COVERAGE: { 004546 FILE *out = va_arg(ap, FILE*); 004547 if( sqlite3ParserCoverage(out) ) rc = SQLITE_ERROR; 004548 break; 004549 } 004550 #endif /* defined(YYCOVERAGE) */ 004551 004552 /* sqlite3_test_control(SQLITE_TESTCTRL_RESULT_INTREAL, sqlite3_context*); 004553 ** 004554 ** This test-control causes the most recent sqlite3_result_int64() value 004555 ** to be interpreted as a MEM_IntReal instead of as an MEM_Int. Normally, 004556 ** MEM_IntReal values only arise during an INSERT operation of integer 004557 ** values into a REAL column, so they can be challenging to test. This 004558 ** test-control enables us to write an intreal() SQL function that can 004559 ** inject an intreal() value at arbitrary places in an SQL statement, 004560 ** for testing purposes. 004561 */ 004562 case SQLITE_TESTCTRL_RESULT_INTREAL: { 004563 sqlite3_context *pCtx = va_arg(ap, sqlite3_context*); 004564 sqlite3ResultIntReal(pCtx); 004565 break; 004566 } 004567 004568 /* sqlite3_test_control(SQLITE_TESTCTRL_SEEK_COUNT, 004569 ** sqlite3 *db, // Database connection 004570 ** u64 *pnSeek // Write seek count here 004571 ** ); 004572 ** 004573 ** This test-control queries the seek-counter on the "main" database 004574 ** file. The seek-counter is written into *pnSeek and is then reset. 004575 ** The seek-count is only available if compiled with SQLITE_DEBUG. 004576 */ 004577 case SQLITE_TESTCTRL_SEEK_COUNT: { 004578 sqlite3 *db = va_arg(ap, sqlite3*); 004579 u64 *pn = va_arg(ap, sqlite3_uint64*); 004580 *pn = sqlite3BtreeSeekCount(db->aDb->pBt); 004581 (void)db; /* Silence harmless unused variable warning */ 004582 break; 004583 } 004584 004585 /* sqlite3_test_control(SQLITE_TESTCTRL_TRACEFLAGS, op, ptr) 004586 ** 004587 ** "ptr" is a pointer to a u32. 004588 ** 004589 ** op==0 Store the current sqlite3TreeTrace in *ptr 004590 ** op==1 Set sqlite3TreeTrace to the value *ptr 004591 ** op==2 Store the current sqlite3WhereTrace in *ptr 004592 ** op==3 Set sqlite3WhereTrace to the value *ptr 004593 */ 004594 case SQLITE_TESTCTRL_TRACEFLAGS: { 004595 int opTrace = va_arg(ap, int); 004596 u32 *ptr = va_arg(ap, u32*); 004597 switch( opTrace ){ 004598 case 0: *ptr = sqlite3TreeTrace; break; 004599 case 1: sqlite3TreeTrace = *ptr; break; 004600 case 2: *ptr = sqlite3WhereTrace; break; 004601 case 3: sqlite3WhereTrace = *ptr; break; 004602 } 004603 break; 004604 } 004605 004606 /* sqlite3_test_control(SQLITE_TESTCTRL_LOGEST, 004607 ** double fIn, // Input value 004608 ** int *pLogEst, // sqlite3LogEstFromDouble(fIn) 004609 ** u64 *pInt, // sqlite3LogEstToInt(*pLogEst) 004610 ** int *pLogEst2 // sqlite3LogEst(*pInt) 004611 ** ); 004612 ** 004613 ** Test access for the LogEst conversion routines. 004614 */ 004615 case SQLITE_TESTCTRL_LOGEST: { 004616 double rIn = va_arg(ap, double); 004617 LogEst rLogEst = sqlite3LogEstFromDouble(rIn); 004618 int *pI1 = va_arg(ap,int*); 004619 u64 *pU64 = va_arg(ap,u64*); 004620 int *pI2 = va_arg(ap,int*); 004621 *pI1 = rLogEst; 004622 *pU64 = sqlite3LogEstToInt(rLogEst); 004623 *pI2 = sqlite3LogEst(*pU64); 004624 break; 004625 } 004626 004627 #if !defined(SQLITE_OMIT_WSD) 004628 /* sqlite3_test_control(SQLITE_TESTCTRL_USELONGDOUBLE, int X); 004629 ** 004630 ** X<0 Make no changes to the bUseLongDouble. Just report value. 004631 ** X==0 Disable bUseLongDouble 004632 ** X==1 Enable bUseLongDouble 004633 ** X>=2 Set bUseLongDouble to its default value for this platform 004634 */ 004635 case SQLITE_TESTCTRL_USELONGDOUBLE: { 004636 int b = va_arg(ap, int); 004637 if( b>=2 ) b = hasHighPrecisionDouble(b); 004638 if( b>=0 ) sqlite3Config.bUseLongDouble = b>0; 004639 rc = sqlite3Config.bUseLongDouble!=0; 004640 break; 004641 } 004642 #endif 004643 004644 004645 #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) 004646 /* sqlite3_test_control(SQLITE_TESTCTRL_TUNE, id, *piValue) 004647 ** 004648 ** If "id" is an integer between 1 and SQLITE_NTUNE then set the value 004649 ** of the id-th tuning parameter to *piValue. If "id" is between -1 004650 ** and -SQLITE_NTUNE, then write the current value of the (-id)-th 004651 ** tuning parameter into *piValue. 004652 ** 004653 ** Tuning parameters are for use during transient development builds, 004654 ** to help find the best values for constants in the query planner. 004655 ** Access tuning parameters using the Tuning(ID) macro. Set the 004656 ** parameters in the CLI using ".testctrl tune ID VALUE". 004657 ** 004658 ** Transient use only. Tuning parameters should not be used in 004659 ** checked-in code. 004660 */ 004661 case SQLITE_TESTCTRL_TUNE: { 004662 int id = va_arg(ap, int); 004663 int *piValue = va_arg(ap, int*); 004664 if( id>0 && id<=SQLITE_NTUNE ){ 004665 Tuning(id) = *piValue; 004666 }else if( id<0 && id>=-SQLITE_NTUNE ){ 004667 *piValue = Tuning(-id); 004668 }else{ 004669 rc = SQLITE_NOTFOUND; 004670 } 004671 break; 004672 } 004673 #endif 004674 004675 /* sqlite3_test_control(SQLITE_TESTCTRL_JSON_SELFCHECK, &onOff); 004676 ** 004677 ** Activate or deactivate validation of JSONB that is generated from 004678 ** text. Off by default, as the validation is slow. Validation is 004679 ** only available if compiled using SQLITE_DEBUG. 004680 ** 004681 ** If onOff is initially 1, then turn it on. If onOff is initially 004682 ** off, turn it off. If onOff is initially -1, then change onOff 004683 ** to be the current setting. 004684 */ 004685 case SQLITE_TESTCTRL_JSON_SELFCHECK: { 004686 #if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_WSD) 004687 int *pOnOff = va_arg(ap, int*); 004688 if( *pOnOff<0 ){ 004689 *pOnOff = sqlite3Config.bJsonSelfcheck; 004690 }else{ 004691 sqlite3Config.bJsonSelfcheck = (u8)((*pOnOff)&0xff); 004692 } 004693 #endif 004694 break; 004695 } 004696 } 004697 va_end(ap); 004698 #endif /* SQLITE_UNTESTABLE */ 004699 return rc; 004700 } 004701 004702 /* 004703 ** The Pager stores the Database filename, Journal filename, and WAL filename 004704 ** consecutively in memory, in that order. The database filename is prefixed 004705 ** by four zero bytes. Locate the start of the database filename by searching 004706 ** backwards for the first byte following four consecutive zero bytes. 004707 ** 004708 ** This only works if the filename passed in was obtained from the Pager. 004709 */ 004710 static const char *databaseName(const char *zName){ 004711 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 004712 zName--; 004713 } 004714 return zName; 004715 } 004716 004717 /* 004718 ** Append text z[] to the end of p[]. Return a pointer to the first 004719 ** character after then zero terminator on the new text in p[]. 004720 */ 004721 static char *appendText(char *p, const char *z){ 004722 size_t n = strlen(z); 004723 memcpy(p, z, n+1); 004724 return p+n+1; 004725 } 004726 004727 /* 004728 ** Allocate memory to hold names for a database, journal file, WAL file, 004729 ** and query parameters. The pointer returned is valid for use by 004730 ** sqlite3_filename_database() and sqlite3_uri_parameter() and related 004731 ** functions. 004732 ** 004733 ** Memory layout must be compatible with that generated by the pager 004734 ** and expected by sqlite3_uri_parameter() and databaseName(). 004735 */ 004736 const char *sqlite3_create_filename( 004737 const char *zDatabase, 004738 const char *zJournal, 004739 const char *zWal, 004740 int nParam, 004741 const char **azParam 004742 ){ 004743 sqlite3_int64 nByte; 004744 int i; 004745 char *pResult, *p; 004746 nByte = strlen(zDatabase) + strlen(zJournal) + strlen(zWal) + 10; 004747 for(i=0; i<nParam*2; i++){ 004748 nByte += strlen(azParam[i])+1; 004749 } 004750 pResult = p = sqlite3_malloc64( nByte ); 004751 if( p==0 ) return 0; 004752 memset(p, 0, 4); 004753 p += 4; 004754 p = appendText(p, zDatabase); 004755 for(i=0; i<nParam*2; i++){ 004756 p = appendText(p, azParam[i]); 004757 } 004758 *(p++) = 0; 004759 p = appendText(p, zJournal); 004760 p = appendText(p, zWal); 004761 *(p++) = 0; 004762 *(p++) = 0; 004763 assert( (sqlite3_int64)(p - pResult)==nByte ); 004764 return pResult + 4; 004765 } 004766 004767 /* 004768 ** Free memory obtained from sqlite3_create_filename(). It is a severe 004769 ** error to call this routine with any parameter other than a pointer 004770 ** previously obtained from sqlite3_create_filename() or a NULL pointer. 004771 */ 004772 void sqlite3_free_filename(const char *p){ 004773 if( p==0 ) return; 004774 p = databaseName(p); 004775 sqlite3_free((char*)p - 4); 004776 } 004777 004778 004779 /* 004780 ** This is a utility routine, useful to VFS implementations, that checks 004781 ** to see if a database file was a URI that contained a specific query 004782 ** parameter, and if so obtains the value of the query parameter. 004783 ** 004784 ** The zFilename argument is the filename pointer passed into the xOpen() 004785 ** method of a VFS implementation. The zParam argument is the name of the 004786 ** query parameter we seek. This routine returns the value of the zParam 004787 ** parameter if it exists. If the parameter does not exist, this routine 004788 ** returns a NULL pointer. 004789 */ 004790 const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){ 004791 if( zFilename==0 || zParam==0 ) return 0; 004792 zFilename = databaseName(zFilename); 004793 return uriParameter(zFilename, zParam); 004794 } 004795 004796 /* 004797 ** Return a pointer to the name of Nth query parameter of the filename. 004798 */ 004799 const char *sqlite3_uri_key(const char *zFilename, int N){ 004800 if( zFilename==0 || N<0 ) return 0; 004801 zFilename = databaseName(zFilename); 004802 zFilename += sqlite3Strlen30(zFilename) + 1; 004803 while( ALWAYS(zFilename) && zFilename[0] && (N--)>0 ){ 004804 zFilename += sqlite3Strlen30(zFilename) + 1; 004805 zFilename += sqlite3Strlen30(zFilename) + 1; 004806 } 004807 return zFilename[0] ? zFilename : 0; 004808 } 004809 004810 /* 004811 ** Return a boolean value for a query parameter. 004812 */ 004813 int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){ 004814 const char *z = sqlite3_uri_parameter(zFilename, zParam); 004815 bDflt = bDflt!=0; 004816 return z ? sqlite3GetBoolean(z, bDflt) : bDflt; 004817 } 004818 004819 /* 004820 ** Return a 64-bit integer value for a query parameter. 004821 */ 004822 sqlite3_int64 sqlite3_uri_int64( 004823 const char *zFilename, /* Filename as passed to xOpen */ 004824 const char *zParam, /* URI parameter sought */ 004825 sqlite3_int64 bDflt /* return if parameter is missing */ 004826 ){ 004827 const char *z = sqlite3_uri_parameter(zFilename, zParam); 004828 sqlite3_int64 v; 004829 if( z && sqlite3DecOrHexToI64(z, &v)==0 ){ 004830 bDflt = v; 004831 } 004832 return bDflt; 004833 } 004834 004835 /* 004836 ** Translate a filename that was handed to a VFS routine into the corresponding 004837 ** database, journal, or WAL file. 004838 ** 004839 ** It is an error to pass this routine a filename string that was not 004840 ** passed into the VFS from the SQLite core. Doing so is similar to 004841 ** passing free() a pointer that was not obtained from malloc() - it is 004842 ** an error that we cannot easily detect but that will likely cause memory 004843 ** corruption. 004844 */ 004845 const char *sqlite3_filename_database(const char *zFilename){ 004846 if( zFilename==0 ) return 0; 004847 return databaseName(zFilename); 004848 } 004849 const char *sqlite3_filename_journal(const char *zFilename){ 004850 if( zFilename==0 ) return 0; 004851 zFilename = databaseName(zFilename); 004852 zFilename += sqlite3Strlen30(zFilename) + 1; 004853 while( ALWAYS(zFilename) && zFilename[0] ){ 004854 zFilename += sqlite3Strlen30(zFilename) + 1; 004855 zFilename += sqlite3Strlen30(zFilename) + 1; 004856 } 004857 return zFilename + 1; 004858 } 004859 const char *sqlite3_filename_wal(const char *zFilename){ 004860 #ifdef SQLITE_OMIT_WAL 004861 return 0; 004862 #else 004863 zFilename = sqlite3_filename_journal(zFilename); 004864 if( zFilename ) zFilename += sqlite3Strlen30(zFilename) + 1; 004865 return zFilename; 004866 #endif 004867 } 004868 004869 /* 004870 ** Return the Btree pointer identified by zDbName. Return NULL if not found. 004871 */ 004872 Btree *sqlite3DbNameToBtree(sqlite3 *db, const char *zDbName){ 004873 int iDb = zDbName ? sqlite3FindDbName(db, zDbName) : 0; 004874 return iDb<0 ? 0 : db->aDb[iDb].pBt; 004875 } 004876 004877 /* 004878 ** Return the name of the N-th database schema. Return NULL if N is out 004879 ** of range. 004880 */ 004881 const char *sqlite3_db_name(sqlite3 *db, int N){ 004882 #ifdef SQLITE_ENABLE_API_ARMOR 004883 if( !sqlite3SafetyCheckOk(db) ){ 004884 (void)SQLITE_MISUSE_BKPT; 004885 return 0; 004886 } 004887 #endif 004888 if( N<0 || N>=db->nDb ){ 004889 return 0; 004890 }else{ 004891 return db->aDb[N].zDbSName; 004892 } 004893 } 004894 004895 /* 004896 ** Return the filename of the database associated with a database 004897 ** connection. 004898 */ 004899 const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){ 004900 Btree *pBt; 004901 #ifdef SQLITE_ENABLE_API_ARMOR 004902 if( !sqlite3SafetyCheckOk(db) ){ 004903 (void)SQLITE_MISUSE_BKPT; 004904 return 0; 004905 } 004906 #endif 004907 pBt = sqlite3DbNameToBtree(db, zDbName); 004908 return pBt ? sqlite3BtreeGetFilename(pBt) : 0; 004909 } 004910 004911 /* 004912 ** Return 1 if database is read-only or 0 if read/write. Return -1 if 004913 ** no such database exists. 004914 */ 004915 int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){ 004916 Btree *pBt; 004917 #ifdef SQLITE_ENABLE_API_ARMOR 004918 if( !sqlite3SafetyCheckOk(db) ){ 004919 (void)SQLITE_MISUSE_BKPT; 004920 return -1; 004921 } 004922 #endif 004923 pBt = sqlite3DbNameToBtree(db, zDbName); 004924 return pBt ? sqlite3BtreeIsReadonly(pBt) : -1; 004925 } 004926 004927 #ifdef SQLITE_ENABLE_SNAPSHOT 004928 /* 004929 ** Obtain a snapshot handle for the snapshot of database zDb currently 004930 ** being read by handle db. 004931 */ 004932 int sqlite3_snapshot_get( 004933 sqlite3 *db, 004934 const char *zDb, 004935 sqlite3_snapshot **ppSnapshot 004936 ){ 004937 int rc = SQLITE_ERROR; 004938 #ifndef SQLITE_OMIT_WAL 004939 004940 #ifdef SQLITE_ENABLE_API_ARMOR 004941 if( !sqlite3SafetyCheckOk(db) ){ 004942 return SQLITE_MISUSE_BKPT; 004943 } 004944 #endif 004945 sqlite3_mutex_enter(db->mutex); 004946 004947 if( db->autoCommit==0 ){ 004948 int iDb = sqlite3FindDbName(db, zDb); 004949 if( iDb==0 || iDb>1 ){ 004950 Btree *pBt = db->aDb[iDb].pBt; 004951 if( SQLITE_TXN_WRITE!=sqlite3BtreeTxnState(pBt) ){ 004952 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 004953 if( rc==SQLITE_OK ){ 004954 rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot); 004955 } 004956 } 004957 } 004958 } 004959 004960 sqlite3_mutex_leave(db->mutex); 004961 #endif /* SQLITE_OMIT_WAL */ 004962 return rc; 004963 } 004964 004965 /* 004966 ** Open a read-transaction on the snapshot identified by pSnapshot. 004967 */ 004968 int sqlite3_snapshot_open( 004969 sqlite3 *db, 004970 const char *zDb, 004971 sqlite3_snapshot *pSnapshot 004972 ){ 004973 int rc = SQLITE_ERROR; 004974 #ifndef SQLITE_OMIT_WAL 004975 004976 #ifdef SQLITE_ENABLE_API_ARMOR 004977 if( !sqlite3SafetyCheckOk(db) ){ 004978 return SQLITE_MISUSE_BKPT; 004979 } 004980 #endif 004981 sqlite3_mutex_enter(db->mutex); 004982 if( db->autoCommit==0 ){ 004983 int iDb; 004984 iDb = sqlite3FindDbName(db, zDb); 004985 if( iDb==0 || iDb>1 ){ 004986 Btree *pBt = db->aDb[iDb].pBt; 004987 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE ){ 004988 Pager *pPager = sqlite3BtreePager(pBt); 004989 int bUnlock = 0; 004990 if( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_NONE ){ 004991 if( db->nVdbeActive==0 ){ 004992 rc = sqlite3PagerSnapshotCheck(pPager, pSnapshot); 004993 if( rc==SQLITE_OK ){ 004994 bUnlock = 1; 004995 rc = sqlite3BtreeCommit(pBt); 004996 } 004997 } 004998 }else{ 004999 rc = SQLITE_OK; 005000 } 005001 if( rc==SQLITE_OK ){ 005002 rc = sqlite3PagerSnapshotOpen(pPager, pSnapshot); 005003 } 005004 if( rc==SQLITE_OK ){ 005005 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 005006 sqlite3PagerSnapshotOpen(pPager, 0); 005007 } 005008 if( bUnlock ){ 005009 sqlite3PagerSnapshotUnlock(pPager); 005010 } 005011 } 005012 } 005013 } 005014 005015 sqlite3_mutex_leave(db->mutex); 005016 #endif /* SQLITE_OMIT_WAL */ 005017 return rc; 005018 } 005019 005020 /* 005021 ** Recover as many snapshots as possible from the wal file associated with 005022 ** schema zDb of database db. 005023 */ 005024 int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb){ 005025 int rc = SQLITE_ERROR; 005026 #ifndef SQLITE_OMIT_WAL 005027 int iDb; 005028 005029 #ifdef SQLITE_ENABLE_API_ARMOR 005030 if( !sqlite3SafetyCheckOk(db) ){ 005031 return SQLITE_MISUSE_BKPT; 005032 } 005033 #endif 005034 005035 sqlite3_mutex_enter(db->mutex); 005036 iDb = sqlite3FindDbName(db, zDb); 005037 if( iDb==0 || iDb>1 ){ 005038 Btree *pBt = db->aDb[iDb].pBt; 005039 if( SQLITE_TXN_NONE==sqlite3BtreeTxnState(pBt) ){ 005040 rc = sqlite3BtreeBeginTrans(pBt, 0, 0); 005041 if( rc==SQLITE_OK ){ 005042 rc = sqlite3PagerSnapshotRecover(sqlite3BtreePager(pBt)); 005043 sqlite3BtreeCommit(pBt); 005044 } 005045 } 005046 } 005047 sqlite3_mutex_leave(db->mutex); 005048 #endif /* SQLITE_OMIT_WAL */ 005049 return rc; 005050 } 005051 005052 /* 005053 ** Free a snapshot handle obtained from sqlite3_snapshot_get(). 005054 */ 005055 void sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){ 005056 sqlite3_free(pSnapshot); 005057 } 005058 #endif /* SQLITE_ENABLE_SNAPSHOT */ 005059 005060 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS 005061 /* 005062 ** Given the name of a compile-time option, return true if that option 005063 ** was used and false if not. 005064 ** 005065 ** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix 005066 ** is not required for a match. 005067 */ 005068 int sqlite3_compileoption_used(const char *zOptName){ 005069 int i, n; 005070 int nOpt; 005071 const char **azCompileOpt; 005072 005073 #ifdef SQLITE_ENABLE_API_ARMOR 005074 if( zOptName==0 ){ 005075 (void)SQLITE_MISUSE_BKPT; 005076 return 0; 005077 } 005078 #endif 005079 005080 azCompileOpt = sqlite3CompileOptions(&nOpt); 005081 005082 if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7; 005083 n = sqlite3Strlen30(zOptName); 005084 005085 /* Since nOpt is normally in single digits, a linear search is 005086 ** adequate. No need for a binary search. */ 005087 for(i=0; i<nOpt; i++){ 005088 if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0 005089 && sqlite3IsIdChar((unsigned char)azCompileOpt[i][n])==0 005090 ){ 005091 return 1; 005092 } 005093 } 005094 return 0; 005095 } 005096 005097 /* 005098 ** Return the N-th compile-time option string. If N is out of range, 005099 ** return a NULL pointer. 005100 */ 005101 const char *sqlite3_compileoption_get(int N){ 005102 int nOpt; 005103 const char **azCompileOpt; 005104 azCompileOpt = sqlite3CompileOptions(&nOpt); 005105 if( N>=0 && N<nOpt ){ 005106 return azCompileOpt[N]; 005107 } 005108 return 0; 005109 } 005110 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */