000001 /* 000002 ** 2001 September 15 000003 ** 000004 ** The author disclaims copyright to this source code. In place of 000005 ** a legal notice, here is a blessing: 000006 ** 000007 ** May you do good and not evil. 000008 ** May you find forgiveness for yourself and forgive others. 000009 ** May you share freely, never taking more than you give. 000010 ** 000011 ************************************************************************* 000012 ** This file contains C code routines that are called by the parser 000013 ** to handle INSERT statements in SQLite. 000014 */ 000015 #include "sqliteInt.h" 000016 000017 /* 000018 ** Generate code that will 000019 ** 000020 ** (1) acquire a lock for table pTab then 000021 ** (2) open pTab as cursor iCur. 000022 ** 000023 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index 000024 ** for that table that is actually opened. 000025 */ 000026 void sqlite3OpenTable( 000027 Parse *pParse, /* Generate code into this VDBE */ 000028 int iCur, /* The cursor number of the table */ 000029 int iDb, /* The database index in sqlite3.aDb[] */ 000030 Table *pTab, /* The table to be opened */ 000031 int opcode /* OP_OpenRead or OP_OpenWrite */ 000032 ){ 000033 Vdbe *v; 000034 assert( !IsVirtual(pTab) ); 000035 assert( pParse->pVdbe!=0 ); 000036 v = pParse->pVdbe; 000037 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); 000038 if( !pParse->db->noSharedCache ){ 000039 sqlite3TableLock(pParse, iDb, pTab->tnum, 000040 (opcode==OP_OpenWrite)?1:0, pTab->zName); 000041 } 000042 if( HasRowid(pTab) ){ 000043 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol); 000044 VdbeComment((v, "%s", pTab->zName)); 000045 }else{ 000046 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 000047 assert( pPk!=0 ); 000048 assert( pPk->tnum==pTab->tnum || CORRUPT_DB ); 000049 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); 000050 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 000051 VdbeComment((v, "%s", pTab->zName)); 000052 } 000053 } 000054 000055 /* 000056 ** Return a pointer to the column affinity string associated with index 000057 ** pIdx. A column affinity string has one character for each column in 000058 ** the table, according to the affinity of the column: 000059 ** 000060 ** Character Column affinity 000061 ** ------------------------------ 000062 ** 'A' BLOB 000063 ** 'B' TEXT 000064 ** 'C' NUMERIC 000065 ** 'D' INTEGER 000066 ** 'F' REAL 000067 ** 000068 ** An extra 'D' is appended to the end of the string to cover the 000069 ** rowid that appears as the last column in every index. 000070 ** 000071 ** Memory for the buffer containing the column index affinity string 000072 ** is managed along with the rest of the Index structure. It will be 000073 ** released when sqlite3DeleteIndex() is called. 000074 */ 000075 static SQLITE_NOINLINE const char *computeIndexAffStr(sqlite3 *db, Index *pIdx){ 000076 /* The first time a column affinity string for a particular index is 000077 ** required, it is allocated and populated here. It is then stored as 000078 ** a member of the Index structure for subsequent use. 000079 ** 000080 ** The column affinity string will eventually be deleted by 000081 ** sqliteDeleteIndex() when the Index structure itself is cleaned 000082 ** up. 000083 */ 000084 int n; 000085 Table *pTab = pIdx->pTable; 000086 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); 000087 if( !pIdx->zColAff ){ 000088 sqlite3OomFault(db); 000089 return 0; 000090 } 000091 for(n=0; n<pIdx->nColumn; n++){ 000092 i16 x = pIdx->aiColumn[n]; 000093 char aff; 000094 if( x>=0 ){ 000095 aff = pTab->aCol[x].affinity; 000096 }else if( x==XN_ROWID ){ 000097 aff = SQLITE_AFF_INTEGER; 000098 }else{ 000099 assert( x==XN_EXPR ); 000100 assert( pIdx->bHasExpr ); 000101 assert( pIdx->aColExpr!=0 ); 000102 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); 000103 } 000104 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB; 000105 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC; 000106 pIdx->zColAff[n] = aff; 000107 } 000108 pIdx->zColAff[n] = 0; 000109 return pIdx->zColAff; 000110 } 000111 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){ 000112 if( !pIdx->zColAff ) return computeIndexAffStr(db, pIdx); 000113 return pIdx->zColAff; 000114 } 000115 000116 000117 /* 000118 ** Compute an affinity string for a table. Space is obtained 000119 ** from sqlite3DbMalloc(). The caller is responsible for freeing 000120 ** the space when done. 000121 */ 000122 char *sqlite3TableAffinityStr(sqlite3 *db, const Table *pTab){ 000123 char *zColAff; 000124 zColAff = (char *)sqlite3DbMallocRaw(db, pTab->nCol+1); 000125 if( zColAff ){ 000126 int i, j; 000127 for(i=j=0; i<pTab->nCol; i++){ 000128 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){ 000129 zColAff[j++] = pTab->aCol[i].affinity; 000130 } 000131 } 000132 do{ 000133 zColAff[j--] = 0; 000134 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB ); 000135 } 000136 return zColAff; 000137 } 000138 000139 /* 000140 ** Make changes to the evolving bytecode to do affinity transformations 000141 ** of values that are about to be gathered into a row for table pTab. 000142 ** 000143 ** For ordinary (legacy, non-strict) tables: 000144 ** ----------------------------------------- 000145 ** 000146 ** Compute the affinity string for table pTab, if it has not already been 000147 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities. 000148 ** 000149 ** If the affinity string is empty (because it was all SQLITE_AFF_BLOB entries 000150 ** which were then optimized out) then this routine becomes a no-op. 000151 ** 000152 ** Otherwise if iReg>0 then code an OP_Affinity opcode that will set the 000153 ** affinities for register iReg and following. Or if iReg==0, 000154 ** then just set the P4 operand of the previous opcode (which should be 000155 ** an OP_MakeRecord) to the affinity string. 000156 ** 000157 ** A column affinity string has one character per column: 000158 ** 000159 ** Character Column affinity 000160 ** --------- --------------- 000161 ** 'A' BLOB 000162 ** 'B' TEXT 000163 ** 'C' NUMERIC 000164 ** 'D' INTEGER 000165 ** 'E' REAL 000166 ** 000167 ** For STRICT tables: 000168 ** ------------------ 000169 ** 000170 ** Generate an appropriate OP_TypeCheck opcode that will verify the 000171 ** datatypes against the column definitions in pTab. If iReg==0, that 000172 ** means an OP_MakeRecord opcode has already been generated and should be 000173 ** the last opcode generated. The new OP_TypeCheck needs to be inserted 000174 ** before the OP_MakeRecord. The new OP_TypeCheck should use the same 000175 ** register set as the OP_MakeRecord. If iReg>0 then register iReg is 000176 ** the first of a series of registers that will form the new record. 000177 ** Apply the type checking to that array of registers. 000178 */ 000179 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ 000180 int i; 000181 char *zColAff; 000182 if( pTab->tabFlags & TF_Strict ){ 000183 if( iReg==0 ){ 000184 /* Move the previous opcode (which should be OP_MakeRecord) forward 000185 ** by one slot and insert a new OP_TypeCheck where the current 000186 ** OP_MakeRecord is found */ 000187 VdbeOp *pPrev; 000188 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000189 pPrev = sqlite3VdbeGetLastOp(v); 000190 assert( pPrev!=0 ); 000191 assert( pPrev->opcode==OP_MakeRecord || sqlite3VdbeDb(v)->mallocFailed ); 000192 pPrev->opcode = OP_TypeCheck; 000193 sqlite3VdbeAddOp3(v, OP_MakeRecord, pPrev->p1, pPrev->p2, pPrev->p3); 000194 }else{ 000195 /* Insert an isolated OP_Typecheck */ 000196 sqlite3VdbeAddOp2(v, OP_TypeCheck, iReg, pTab->nNVCol); 000197 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 000198 } 000199 return; 000200 } 000201 zColAff = pTab->zColAff; 000202 if( zColAff==0 ){ 000203 zColAff = sqlite3TableAffinityStr(0, pTab); 000204 if( !zColAff ){ 000205 sqlite3OomFault(sqlite3VdbeDb(v)); 000206 return; 000207 } 000208 pTab->zColAff = zColAff; 000209 } 000210 assert( zColAff!=0 ); 000211 i = sqlite3Strlen30NN(zColAff); 000212 if( i ){ 000213 if( iReg ){ 000214 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); 000215 }else{ 000216 assert( sqlite3VdbeGetLastOp(v)->opcode==OP_MakeRecord 000217 || sqlite3VdbeDb(v)->mallocFailed ); 000218 sqlite3VdbeChangeP4(v, -1, zColAff, i); 000219 } 000220 } 000221 } 000222 000223 /* 000224 ** Return non-zero if the table pTab in database iDb or any of its indices 000225 ** have been opened at any point in the VDBE program. This is used to see if 000226 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can 000227 ** run without using a temporary table for the results of the SELECT. 000228 */ 000229 static int readsTable(Parse *p, int iDb, Table *pTab){ 000230 Vdbe *v = sqlite3GetVdbe(p); 000231 int i; 000232 int iEnd = sqlite3VdbeCurrentAddr(v); 000233 #ifndef SQLITE_OMIT_VIRTUALTABLE 000234 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; 000235 #endif 000236 000237 for(i=1; i<iEnd; i++){ 000238 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); 000239 assert( pOp!=0 ); 000240 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ 000241 Index *pIndex; 000242 Pgno tnum = pOp->p2; 000243 if( tnum==pTab->tnum ){ 000244 return 1; 000245 } 000246 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ 000247 if( tnum==pIndex->tnum ){ 000248 return 1; 000249 } 000250 } 000251 } 000252 #ifndef SQLITE_OMIT_VIRTUALTABLE 000253 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ 000254 assert( pOp->p4.pVtab!=0 ); 000255 assert( pOp->p4type==P4_VTAB ); 000256 return 1; 000257 } 000258 #endif 000259 } 000260 return 0; 000261 } 000262 000263 /* This walker callback will compute the union of colFlags flags for all 000264 ** referenced columns in a CHECK constraint or generated column expression. 000265 */ 000266 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){ 000267 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){ 000268 assert( pExpr->iColumn < pWalker->u.pTab->nCol ); 000269 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags; 000270 } 000271 return WRC_Continue; 000272 } 000273 000274 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 000275 /* 000276 ** All regular columns for table pTab have been puts into registers 000277 ** starting with iRegStore. The registers that correspond to STORED 000278 ** or VIRTUAL columns have not yet been initialized. This routine goes 000279 ** back and computes the values for those columns based on the previously 000280 ** computed normal columns. 000281 */ 000282 void sqlite3ComputeGeneratedColumns( 000283 Parse *pParse, /* Parsing context */ 000284 int iRegStore, /* Register holding the first column */ 000285 Table *pTab /* The table */ 000286 ){ 000287 int i; 000288 Walker w; 000289 Column *pRedo; 000290 int eProgress; 000291 VdbeOp *pOp; 000292 000293 assert( pTab->tabFlags & TF_HasGenerated ); 000294 testcase( pTab->tabFlags & TF_HasVirtual ); 000295 testcase( pTab->tabFlags & TF_HasStored ); 000296 000297 /* Before computing generated columns, first go through and make sure 000298 ** that appropriate affinity has been applied to the regular columns 000299 */ 000300 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore); 000301 if( (pTab->tabFlags & TF_HasStored)!=0 ){ 000302 pOp = sqlite3VdbeGetLastOp(pParse->pVdbe); 000303 if( pOp->opcode==OP_Affinity ){ 000304 /* Change the OP_Affinity argument to '@' (NONE) for all stored 000305 ** columns. '@' is the no-op affinity and those columns have not 000306 ** yet been computed. */ 000307 int ii, jj; 000308 char *zP4 = pOp->p4.z; 000309 assert( zP4!=0 ); 000310 assert( pOp->p4type==P4_DYNAMIC ); 000311 for(ii=jj=0; zP4[jj]; ii++){ 000312 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){ 000313 continue; 000314 } 000315 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){ 000316 zP4[jj] = SQLITE_AFF_NONE; 000317 } 000318 jj++; 000319 } 000320 }else if( pOp->opcode==OP_TypeCheck ){ 000321 /* If an OP_TypeCheck was generated because the table is STRICT, 000322 ** then set the P3 operand to indicate that generated columns should 000323 ** not be checked */ 000324 pOp->p3 = 1; 000325 } 000326 } 000327 000328 /* Because there can be multiple generated columns that refer to one another, 000329 ** this is a two-pass algorithm. On the first pass, mark all generated 000330 ** columns as "not available". 000331 */ 000332 for(i=0; i<pTab->nCol; i++){ 000333 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 000334 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 000335 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 000336 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL; 000337 } 000338 } 000339 000340 w.u.pTab = pTab; 000341 w.xExprCallback = exprColumnFlagUnion; 000342 w.xSelectCallback = 0; 000343 w.xSelectCallback2 = 0; 000344 000345 /* On the second pass, compute the value of each NOT-AVAILABLE column. 000346 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will 000347 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as 000348 ** they are needed. 000349 */ 000350 pParse->iSelfTab = -iRegStore; 000351 do{ 000352 eProgress = 0; 000353 pRedo = 0; 000354 for(i=0; i<pTab->nCol; i++){ 000355 Column *pCol = pTab->aCol + i; 000356 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){ 000357 int x; 000358 pCol->colFlags |= COLFLAG_BUSY; 000359 w.eCode = 0; 000360 sqlite3WalkExpr(&w, sqlite3ColumnExpr(pTab, pCol)); 000361 pCol->colFlags &= ~COLFLAG_BUSY; 000362 if( w.eCode & COLFLAG_NOTAVAIL ){ 000363 pRedo = pCol; 000364 continue; 000365 } 000366 eProgress = 1; 000367 assert( pCol->colFlags & COLFLAG_GENERATED ); 000368 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore; 000369 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, x); 000370 pCol->colFlags &= ~COLFLAG_NOTAVAIL; 000371 } 000372 } 000373 }while( pRedo && eProgress ); 000374 if( pRedo ){ 000375 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zCnName); 000376 } 000377 pParse->iSelfTab = 0; 000378 } 000379 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */ 000380 000381 000382 #ifndef SQLITE_OMIT_AUTOINCREMENT 000383 /* 000384 ** Locate or create an AutoincInfo structure associated with table pTab 000385 ** which is in database iDb. Return the register number for the register 000386 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT 000387 ** table. (Also return zero when doing a VACUUM since we do not want to 000388 ** update the AUTOINCREMENT counters during a VACUUM.) 000389 ** 000390 ** There is at most one AutoincInfo structure per table even if the 000391 ** same table is autoincremented multiple times due to inserts within 000392 ** triggers. A new AutoincInfo structure is created if this is the 000393 ** first use of table pTab. On 2nd and subsequent uses, the original 000394 ** AutoincInfo structure is used. 000395 ** 000396 ** Four consecutive registers are allocated: 000397 ** 000398 ** (1) The name of the pTab table. 000399 ** (2) The maximum ROWID of pTab. 000400 ** (3) The rowid in sqlite_sequence of pTab 000401 ** (4) The original value of the max ROWID in pTab, or NULL if none 000402 ** 000403 ** The 2nd register is the one that is returned. That is all the 000404 ** insert routine needs to know about. 000405 */ 000406 static int autoIncBegin( 000407 Parse *pParse, /* Parsing context */ 000408 int iDb, /* Index of the database holding pTab */ 000409 Table *pTab /* The table we are writing to */ 000410 ){ 000411 int memId = 0; /* Register holding maximum rowid */ 000412 assert( pParse->db->aDb[iDb].pSchema!=0 ); 000413 if( (pTab->tabFlags & TF_Autoincrement)!=0 000414 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0 000415 ){ 000416 Parse *pToplevel = sqlite3ParseToplevel(pParse); 000417 AutoincInfo *pInfo; 000418 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab; 000419 000420 /* Verify that the sqlite_sequence table exists and is an ordinary 000421 ** rowid table with exactly two columns. 000422 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */ 000423 if( pSeqTab==0 000424 || !HasRowid(pSeqTab) 000425 || NEVER(IsVirtual(pSeqTab)) 000426 || pSeqTab->nCol!=2 000427 ){ 000428 pParse->nErr++; 000429 pParse->rc = SQLITE_CORRUPT_SEQUENCE; 000430 return 0; 000431 } 000432 000433 pInfo = pToplevel->pAinc; 000434 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } 000435 if( pInfo==0 ){ 000436 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo)); 000437 sqlite3ParserAddCleanup(pToplevel, sqlite3DbFree, pInfo); 000438 testcase( pParse->earlyCleanup ); 000439 if( pParse->db->mallocFailed ) return 0; 000440 pInfo->pNext = pToplevel->pAinc; 000441 pToplevel->pAinc = pInfo; 000442 pInfo->pTab = pTab; 000443 pInfo->iDb = iDb; 000444 pToplevel->nMem++; /* Register to hold name of table */ 000445 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ 000446 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */ 000447 } 000448 memId = pInfo->regCtr; 000449 } 000450 return memId; 000451 } 000452 000453 /* 000454 ** This routine generates code that will initialize all of the 000455 ** register used by the autoincrement tracker. 000456 */ 000457 void sqlite3AutoincrementBegin(Parse *pParse){ 000458 AutoincInfo *p; /* Information about an AUTOINCREMENT */ 000459 sqlite3 *db = pParse->db; /* The database connection */ 000460 Db *pDb; /* Database only autoinc table */ 000461 int memId; /* Register holding max rowid */ 000462 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 000463 000464 /* This routine is never called during trigger-generation. It is 000465 ** only called from the top-level */ 000466 assert( pParse->pTriggerTab==0 ); 000467 assert( sqlite3IsToplevel(pParse) ); 000468 000469 assert( v ); /* We failed long ago if this is not so */ 000470 for(p = pParse->pAinc; p; p = p->pNext){ 000471 static const int iLn = VDBE_OFFSET_LINENO(2); 000472 static const VdbeOpList autoInc[] = { 000473 /* 0 */ {OP_Null, 0, 0, 0}, 000474 /* 1 */ {OP_Rewind, 0, 10, 0}, 000475 /* 2 */ {OP_Column, 0, 0, 0}, 000476 /* 3 */ {OP_Ne, 0, 9, 0}, 000477 /* 4 */ {OP_Rowid, 0, 0, 0}, 000478 /* 5 */ {OP_Column, 0, 1, 0}, 000479 /* 6 */ {OP_AddImm, 0, 0, 0}, 000480 /* 7 */ {OP_Copy, 0, 0, 0}, 000481 /* 8 */ {OP_Goto, 0, 11, 0}, 000482 /* 9 */ {OP_Next, 0, 2, 0}, 000483 /* 10 */ {OP_Integer, 0, 0, 0}, 000484 /* 11 */ {OP_Close, 0, 0, 0} 000485 }; 000486 VdbeOp *aOp; 000487 pDb = &db->aDb[p->iDb]; 000488 memId = p->regCtr; 000489 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000490 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); 000491 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName); 000492 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn); 000493 if( aOp==0 ) break; 000494 aOp[0].p2 = memId; 000495 aOp[0].p3 = memId+2; 000496 aOp[2].p3 = memId; 000497 aOp[3].p1 = memId-1; 000498 aOp[3].p3 = memId; 000499 aOp[3].p5 = SQLITE_JUMPIFNULL; 000500 aOp[4].p2 = memId+1; 000501 aOp[5].p3 = memId; 000502 aOp[6].p1 = memId; 000503 aOp[7].p2 = memId+2; 000504 aOp[7].p1 = memId; 000505 aOp[10].p2 = memId; 000506 if( pParse->nTab==0 ) pParse->nTab = 1; 000507 } 000508 } 000509 000510 /* 000511 ** Update the maximum rowid for an autoincrement calculation. 000512 ** 000513 ** This routine should be called when the regRowid register holds a 000514 ** new rowid that is about to be inserted. If that new rowid is 000515 ** larger than the maximum rowid in the memId memory cell, then the 000516 ** memory cell is updated. 000517 */ 000518 static void autoIncStep(Parse *pParse, int memId, int regRowid){ 000519 if( memId>0 ){ 000520 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); 000521 } 000522 } 000523 000524 /* 000525 ** This routine generates the code needed to write autoincrement 000526 ** maximum rowid values back into the sqlite_sequence register. 000527 ** Every statement that might do an INSERT into an autoincrement 000528 ** table (either directly or through triggers) needs to call this 000529 ** routine just before the "exit" code. 000530 */ 000531 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){ 000532 AutoincInfo *p; 000533 Vdbe *v = pParse->pVdbe; 000534 sqlite3 *db = pParse->db; 000535 000536 assert( v ); 000537 for(p = pParse->pAinc; p; p = p->pNext){ 000538 static const int iLn = VDBE_OFFSET_LINENO(2); 000539 static const VdbeOpList autoIncEnd[] = { 000540 /* 0 */ {OP_NotNull, 0, 2, 0}, 000541 /* 1 */ {OP_NewRowid, 0, 0, 0}, 000542 /* 2 */ {OP_MakeRecord, 0, 2, 0}, 000543 /* 3 */ {OP_Insert, 0, 0, 0}, 000544 /* 4 */ {OP_Close, 0, 0, 0} 000545 }; 000546 VdbeOp *aOp; 000547 Db *pDb = &db->aDb[p->iDb]; 000548 int iRec; 000549 int memId = p->regCtr; 000550 000551 iRec = sqlite3GetTempReg(pParse); 000552 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); 000553 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId); 000554 VdbeCoverage(v); 000555 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); 000556 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn); 000557 if( aOp==0 ) break; 000558 aOp[0].p1 = memId+1; 000559 aOp[1].p2 = memId+1; 000560 aOp[2].p1 = memId-1; 000561 aOp[2].p3 = iRec; 000562 aOp[3].p2 = iRec; 000563 aOp[3].p3 = memId+1; 000564 aOp[3].p5 = OPFLAG_APPEND; 000565 sqlite3ReleaseTempReg(pParse, iRec); 000566 } 000567 } 000568 void sqlite3AutoincrementEnd(Parse *pParse){ 000569 if( pParse->pAinc ) autoIncrementEnd(pParse); 000570 } 000571 #else 000572 /* 000573 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines 000574 ** above are all no-ops 000575 */ 000576 # define autoIncBegin(A,B,C) (0) 000577 # define autoIncStep(A,B,C) 000578 #endif /* SQLITE_OMIT_AUTOINCREMENT */ 000579 000580 /* 000581 ** If argument pVal is a Select object returned by an sqlite3MultiValues() 000582 ** that was able to use the co-routine optimization, finish coding the 000583 ** co-routine. 000584 */ 000585 void sqlite3MultiValuesEnd(Parse *pParse, Select *pVal){ 000586 if( ALWAYS(pVal) && pVal->pSrc->nSrc>0 ){ 000587 SrcItem *pItem = &pVal->pSrc->a[0]; 000588 sqlite3VdbeEndCoroutine(pParse->pVdbe, pItem->regReturn); 000589 sqlite3VdbeJumpHere(pParse->pVdbe, pItem->addrFillSub - 1); 000590 } 000591 } 000592 000593 /* 000594 ** Return true if all expressions in the expression-list passed as the 000595 ** only argument are constant. 000596 */ 000597 static int exprListIsConstant(Parse *pParse, ExprList *pRow){ 000598 int ii; 000599 for(ii=0; ii<pRow->nExpr; ii++){ 000600 if( 0==sqlite3ExprIsConstant(pParse, pRow->a[ii].pExpr) ) return 0; 000601 } 000602 return 1; 000603 } 000604 000605 /* 000606 ** Return true if all expressions in the expression-list passed as the 000607 ** only argument are both constant and have no affinity. 000608 */ 000609 static int exprListIsNoAffinity(Parse *pParse, ExprList *pRow){ 000610 int ii; 000611 if( exprListIsConstant(pParse,pRow)==0 ) return 0; 000612 for(ii=0; ii<pRow->nExpr; ii++){ 000613 Expr *pExpr = pRow->a[ii].pExpr; 000614 assert( pExpr->op!=TK_RAISE ); 000615 assert( pExpr->affExpr==0 ); 000616 if( 0!=sqlite3ExprAffinity(pExpr) ) return 0; 000617 } 000618 return 1; 000619 000620 } 000621 000622 /* 000623 ** This function is called by the parser for the second and subsequent 000624 ** rows of a multi-row VALUES clause. Argument pLeft is the part of 000625 ** the VALUES clause already parsed, argument pRow is the vector of values 000626 ** for the new row. The Select object returned represents the complete 000627 ** VALUES clause, including the new row. 000628 ** 000629 ** There are two ways in which this may be achieved - by incremental 000630 ** coding of a co-routine (the "co-routine" method) or by returning a 000631 ** Select object equivalent to the following (the "UNION ALL" method): 000632 ** 000633 ** "pLeft UNION ALL SELECT pRow" 000634 ** 000635 ** If the VALUES clause contains a lot of rows, this compound Select 000636 ** object may consume a lot of memory. 000637 ** 000638 ** When the co-routine method is used, each row that will be returned 000639 ** by the VALUES clause is coded into part of a co-routine as it is 000640 ** passed to this function. The returned Select object is equivalent to: 000641 ** 000642 ** SELECT * FROM ( 000643 ** Select object to read co-routine 000644 ** ) 000645 ** 000646 ** The co-routine method is used in most cases. Exceptions are: 000647 ** 000648 ** a) If the current statement has a WITH clause. This is to avoid 000649 ** statements like: 000650 ** 000651 ** WITH cte AS ( VALUES('x'), ('y') ... ) 000652 ** SELECT * FROM cte AS a, cte AS b; 000653 ** 000654 ** This will not work, as the co-routine uses a hard-coded register 000655 ** for its OP_Yield instructions, and so it is not possible for two 000656 ** cursors to iterate through it concurrently. 000657 ** 000658 ** b) The schema is currently being parsed (i.e. the VALUES clause is part 000659 ** of a schema item like a VIEW or TRIGGER). In this case there is no VM 000660 ** being generated when parsing is taking place, and so generating 000661 ** a co-routine is not possible. 000662 ** 000663 ** c) There are non-constant expressions in the VALUES clause (e.g. 000664 ** the VALUES clause is part of a correlated sub-query). 000665 ** 000666 ** d) One or more of the values in the first row of the VALUES clause 000667 ** has an affinity (i.e. is a CAST expression). This causes problems 000668 ** because the complex rules SQLite uses (see function 000669 ** sqlite3SubqueryColumnTypes() in select.c) to determine the effective 000670 ** affinity of such a column for all rows require access to all values in 000671 ** the column simultaneously. 000672 */ 000673 Select *sqlite3MultiValues(Parse *pParse, Select *pLeft, ExprList *pRow){ 000674 000675 if( pParse->bHasWith /* condition (a) above */ 000676 || pParse->db->init.busy /* condition (b) above */ 000677 || exprListIsConstant(pParse,pRow)==0 /* condition (c) above */ 000678 || (pLeft->pSrc->nSrc==0 && 000679 exprListIsNoAffinity(pParse,pLeft->pEList)==0) /* condition (d) above */ 000680 || IN_SPECIAL_PARSE 000681 ){ 000682 /* The co-routine method cannot be used. Fall back to UNION ALL. */ 000683 Select *pSelect = 0; 000684 int f = SF_Values | SF_MultiValue; 000685 if( pLeft->pSrc->nSrc ){ 000686 sqlite3MultiValuesEnd(pParse, pLeft); 000687 f = SF_Values; 000688 }else if( pLeft->pPrior ){ 000689 /* In this case set the SF_MultiValue flag only if it was set on pLeft */ 000690 f = (f & pLeft->selFlags); 000691 } 000692 pSelect = sqlite3SelectNew(pParse, pRow, 0, 0, 0, 0, 0, f, 0); 000693 pLeft->selFlags &= ~SF_MultiValue; 000694 if( pSelect ){ 000695 pSelect->op = TK_ALL; 000696 pSelect->pPrior = pLeft; 000697 pLeft = pSelect; 000698 } 000699 }else{ 000700 SrcItem *p = 0; /* SrcItem that reads from co-routine */ 000701 000702 if( pLeft->pSrc->nSrc==0 ){ 000703 /* Co-routine has not yet been started and the special Select object 000704 ** that accesses the co-routine has not yet been created. This block 000705 ** does both those things. */ 000706 Vdbe *v = sqlite3GetVdbe(pParse); 000707 Select *pRet = sqlite3SelectNew(pParse, 0, 0, 0, 0, 0, 0, 0, 0); 000708 000709 /* Ensure the database schema has been read. This is to ensure we have 000710 ** the correct text encoding. */ 000711 if( (pParse->db->mDbFlags & DBFLAG_SchemaKnownOk)==0 ){ 000712 sqlite3ReadSchema(pParse); 000713 } 000714 000715 if( pRet ){ 000716 SelectDest dest; 000717 pRet->pSrc->nSrc = 1; 000718 pRet->pPrior = pLeft->pPrior; 000719 pRet->op = pLeft->op; 000720 if( pRet->pPrior ) pRet->selFlags |= SF_Values; 000721 pLeft->pPrior = 0; 000722 pLeft->op = TK_SELECT; 000723 assert( pLeft->pNext==0 ); 000724 assert( pRet->pNext==0 ); 000725 p = &pRet->pSrc->a[0]; 000726 p->pSelect = pLeft; 000727 p->fg.viaCoroutine = 1; 000728 p->addrFillSub = sqlite3VdbeCurrentAddr(v) + 1; 000729 p->regReturn = ++pParse->nMem; 000730 p->iCursor = -1; 000731 p->u1.nRow = 2; 000732 sqlite3VdbeAddOp3(v,OP_InitCoroutine,p->regReturn,0,p->addrFillSub); 000733 sqlite3SelectDestInit(&dest, SRT_Coroutine, p->regReturn); 000734 000735 /* Allocate registers for the output of the co-routine. Do so so 000736 ** that there are two unused registers immediately before those 000737 ** used by the co-routine. This allows the code in sqlite3Insert() 000738 ** to use these registers directly, instead of copying the output 000739 ** of the co-routine to a separate array for processing. */ 000740 dest.iSdst = pParse->nMem + 3; 000741 dest.nSdst = pLeft->pEList->nExpr; 000742 pParse->nMem += 2 + dest.nSdst; 000743 000744 pLeft->selFlags |= SF_MultiValue; 000745 sqlite3Select(pParse, pLeft, &dest); 000746 p->regResult = dest.iSdst; 000747 assert( pParse->nErr || dest.iSdst>0 ); 000748 pLeft = pRet; 000749 } 000750 }else{ 000751 p = &pLeft->pSrc->a[0]; 000752 assert( !p->fg.isTabFunc && !p->fg.isIndexedBy ); 000753 p->u1.nRow++; 000754 } 000755 000756 if( pParse->nErr==0 ){ 000757 assert( p!=0 ); 000758 if( p->pSelect->pEList->nExpr!=pRow->nExpr ){ 000759 sqlite3SelectWrongNumTermsError(pParse, p->pSelect); 000760 }else{ 000761 sqlite3ExprCodeExprList(pParse, pRow, p->regResult, 0, 0); 000762 sqlite3VdbeAddOp1(pParse->pVdbe, OP_Yield, p->regReturn); 000763 } 000764 } 000765 sqlite3ExprListDelete(pParse->db, pRow); 000766 } 000767 000768 return pLeft; 000769 } 000770 000771 /* Forward declaration */ 000772 static int xferOptimization( 000773 Parse *pParse, /* Parser context */ 000774 Table *pDest, /* The table we are inserting into */ 000775 Select *pSelect, /* A SELECT statement to use as the data source */ 000776 int onError, /* How to handle constraint errors */ 000777 int iDbDest /* The database of pDest */ 000778 ); 000779 000780 /* 000781 ** This routine is called to handle SQL of the following forms: 000782 ** 000783 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),... 000784 ** insert into TABLE (IDLIST) select 000785 ** insert into TABLE (IDLIST) default values 000786 ** 000787 ** The IDLIST following the table name is always optional. If omitted, 000788 ** then a list of all (non-hidden) columns for the table is substituted. 000789 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST 000790 ** is omitted. 000791 ** 000792 ** For the pSelect parameter holds the values to be inserted for the 000793 ** first two forms shown above. A VALUES clause is really just short-hand 000794 ** for a SELECT statement that omits the FROM clause and everything else 000795 ** that follows. If the pSelect parameter is NULL, that means that the 000796 ** DEFAULT VALUES form of the INSERT statement is intended. 000797 ** 000798 ** The code generated follows one of four templates. For a simple 000799 ** insert with data coming from a single-row VALUES clause, the code executes 000800 ** once straight down through. Pseudo-code follows (we call this 000801 ** the "1st template"): 000802 ** 000803 ** open write cursor to <table> and its indices 000804 ** put VALUES clause expressions into registers 000805 ** write the resulting record into <table> 000806 ** cleanup 000807 ** 000808 ** The three remaining templates assume the statement is of the form 000809 ** 000810 ** INSERT INTO <table> SELECT ... 000811 ** 000812 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - 000813 ** in other words if the SELECT pulls all columns from a single table 000814 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and 000815 ** if <table2> and <table1> are distinct tables but have identical 000816 ** schemas, including all the same indices, then a special optimization 000817 ** is invoked that copies raw records from <table2> over to <table1>. 000818 ** See the xferOptimization() function for the implementation of this 000819 ** template. This is the 2nd template. 000820 ** 000821 ** open a write cursor to <table> 000822 ** open read cursor on <table2> 000823 ** transfer all records in <table2> over to <table> 000824 ** close cursors 000825 ** foreach index on <table> 000826 ** open a write cursor on the <table> index 000827 ** open a read cursor on the corresponding <table2> index 000828 ** transfer all records from the read to the write cursors 000829 ** close cursors 000830 ** end foreach 000831 ** 000832 ** The 3rd template is for when the second template does not apply 000833 ** and the SELECT clause does not read from <table> at any time. 000834 ** The generated code follows this template: 000835 ** 000836 ** X <- A 000837 ** goto B 000838 ** A: setup for the SELECT 000839 ** loop over the rows in the SELECT 000840 ** load values into registers R..R+n 000841 ** yield X 000842 ** end loop 000843 ** cleanup after the SELECT 000844 ** end-coroutine X 000845 ** B: open write cursor to <table> and its indices 000846 ** C: yield X, at EOF goto D 000847 ** insert the select result into <table> from R..R+n 000848 ** goto C 000849 ** D: cleanup 000850 ** 000851 ** The 4th template is used if the insert statement takes its 000852 ** values from a SELECT but the data is being inserted into a table 000853 ** that is also read as part of the SELECT. In the third form, 000854 ** we have to use an intermediate table to store the results of 000855 ** the select. The template is like this: 000856 ** 000857 ** X <- A 000858 ** goto B 000859 ** A: setup for the SELECT 000860 ** loop over the tables in the SELECT 000861 ** load value into register R..R+n 000862 ** yield X 000863 ** end loop 000864 ** cleanup after the SELECT 000865 ** end co-routine R 000866 ** B: open temp table 000867 ** L: yield X, at EOF goto M 000868 ** insert row from R..R+n into temp table 000869 ** goto L 000870 ** M: open write cursor to <table> and its indices 000871 ** rewind temp table 000872 ** C: loop over rows of intermediate table 000873 ** transfer values form intermediate table into <table> 000874 ** end loop 000875 ** D: cleanup 000876 */ 000877 void sqlite3Insert( 000878 Parse *pParse, /* Parser context */ 000879 SrcList *pTabList, /* Name of table into which we are inserting */ 000880 Select *pSelect, /* A SELECT statement to use as the data source */ 000881 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */ 000882 int onError, /* How to handle constraint errors */ 000883 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */ 000884 ){ 000885 sqlite3 *db; /* The main database structure */ 000886 Table *pTab; /* The table to insert into. aka TABLE */ 000887 int i, j; /* Loop counters */ 000888 Vdbe *v; /* Generate code into this virtual machine */ 000889 Index *pIdx; /* For looping over indices of the table */ 000890 int nColumn; /* Number of columns in the data */ 000891 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ 000892 int iDataCur = 0; /* VDBE cursor that is the main data repository */ 000893 int iIdxCur = 0; /* First index cursor */ 000894 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ 000895 int endOfLoop; /* Label for the end of the insertion loop */ 000896 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ 000897 int addrInsTop = 0; /* Jump to label "D" */ 000898 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ 000899 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ 000900 int iDb; /* Index of database holding TABLE */ 000901 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ 000902 u8 appendFlag = 0; /* True if the insert is likely to be an append */ 000903 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ 000904 u8 bIdListInOrder; /* True if IDLIST is in table order */ 000905 ExprList *pList = 0; /* List of VALUES() to be inserted */ 000906 int iRegStore; /* Register in which to store next column */ 000907 000908 /* Register allocations */ 000909 int regFromSelect = 0;/* Base register for data coming from SELECT */ 000910 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ 000911 int regRowCount = 0; /* Memory cell used for the row counter */ 000912 int regIns; /* Block of regs holding rowid+data being inserted */ 000913 int regRowid; /* registers holding insert rowid */ 000914 int regData; /* register holding first column to insert */ 000915 int *aRegIdx = 0; /* One register allocated to each index */ 000916 000917 #ifndef SQLITE_OMIT_TRIGGER 000918 int isView; /* True if attempting to insert into a view */ 000919 Trigger *pTrigger; /* List of triggers on pTab, if required */ 000920 int tmask; /* Mask of trigger times */ 000921 #endif 000922 000923 db = pParse->db; 000924 assert( db->pParse==pParse ); 000925 if( pParse->nErr ){ 000926 goto insert_cleanup; 000927 } 000928 assert( db->mallocFailed==0 ); 000929 dest.iSDParm = 0; /* Suppress a harmless compiler warning */ 000930 000931 /* If the Select object is really just a simple VALUES() list with a 000932 ** single row (the common case) then keep that one row of values 000933 ** and discard the other (unused) parts of the pSelect object 000934 */ 000935 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ 000936 pList = pSelect->pEList; 000937 pSelect->pEList = 0; 000938 sqlite3SelectDelete(db, pSelect); 000939 pSelect = 0; 000940 } 000941 000942 /* Locate the table into which we will be inserting new information. 000943 */ 000944 assert( pTabList->nSrc==1 ); 000945 pTab = sqlite3SrcListLookup(pParse, pTabList); 000946 if( pTab==0 ){ 000947 goto insert_cleanup; 000948 } 000949 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000950 assert( iDb<db->nDb ); 000951 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, 000952 db->aDb[iDb].zDbSName) ){ 000953 goto insert_cleanup; 000954 } 000955 withoutRowid = !HasRowid(pTab); 000956 000957 /* Figure out if we have any triggers and if the table being 000958 ** inserted into is a view 000959 */ 000960 #ifndef SQLITE_OMIT_TRIGGER 000961 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); 000962 isView = IsView(pTab); 000963 #else 000964 # define pTrigger 0 000965 # define tmask 0 000966 # define isView 0 000967 #endif 000968 #ifdef SQLITE_OMIT_VIEW 000969 # undef isView 000970 # define isView 0 000971 #endif 000972 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); 000973 000974 #if TREETRACE_ENABLED 000975 if( sqlite3TreeTrace & 0x10000 ){ 000976 sqlite3TreeViewLine(0, "In sqlite3Insert() at %s:%d", __FILE__, __LINE__); 000977 sqlite3TreeViewInsert(pParse->pWith, pTabList, pColumn, pSelect, pList, 000978 onError, pUpsert, pTrigger); 000979 } 000980 #endif 000981 000982 /* If pTab is really a view, make sure it has been initialized. 000983 ** ViewGetColumnNames() is a no-op if pTab is not a view. 000984 */ 000985 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ 000986 goto insert_cleanup; 000987 } 000988 000989 /* Cannot insert into a read-only table. 000990 */ 000991 if( sqlite3IsReadOnly(pParse, pTab, pTrigger) ){ 000992 goto insert_cleanup; 000993 } 000994 000995 /* Allocate a VDBE 000996 */ 000997 v = sqlite3GetVdbe(pParse); 000998 if( v==0 ) goto insert_cleanup; 000999 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); 001000 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); 001001 001002 #ifndef SQLITE_OMIT_XFER_OPT 001003 /* If the statement is of the form 001004 ** 001005 ** INSERT INTO <table1> SELECT * FROM <table2>; 001006 ** 001007 ** Then special optimizations can be applied that make the transfer 001008 ** very fast and which reduce fragmentation of indices. 001009 ** 001010 ** This is the 2nd template. 001011 */ 001012 if( pColumn==0 001013 && pSelect!=0 001014 && pTrigger==0 001015 && xferOptimization(pParse, pTab, pSelect, onError, iDb) 001016 ){ 001017 assert( !pTrigger ); 001018 assert( pList==0 ); 001019 goto insert_end; 001020 } 001021 #endif /* SQLITE_OMIT_XFER_OPT */ 001022 001023 /* If this is an AUTOINCREMENT table, look up the sequence number in the 001024 ** sqlite_sequence table and store it in memory cell regAutoinc. 001025 */ 001026 regAutoinc = autoIncBegin(pParse, iDb, pTab); 001027 001028 /* Allocate a block registers to hold the rowid and the values 001029 ** for all columns of the new row. 001030 */ 001031 regRowid = regIns = pParse->nMem+1; 001032 pParse->nMem += pTab->nCol + 1; 001033 if( IsVirtual(pTab) ){ 001034 regRowid++; 001035 pParse->nMem++; 001036 } 001037 regData = regRowid+1; 001038 001039 /* If the INSERT statement included an IDLIST term, then make sure 001040 ** all elements of the IDLIST really are columns of the table and 001041 ** remember the column indices. 001042 ** 001043 ** If the table has an INTEGER PRIMARY KEY column and that column 001044 ** is named in the IDLIST, then record in the ipkColumn variable 001045 ** the index into IDLIST of the primary key column. ipkColumn is 001046 ** the index of the primary key as it appears in IDLIST, not as 001047 ** is appears in the original table. (The index of the INTEGER 001048 ** PRIMARY KEY in the original table is pTab->iPKey.) After this 001049 ** loop, if ipkColumn==(-1), that means that integer primary key 001050 ** is unspecified, and hence the table is either WITHOUT ROWID or 001051 ** it will automatically generated an integer primary key. 001052 ** 001053 ** bIdListInOrder is true if the columns in IDLIST are in storage 001054 ** order. This enables an optimization that avoids shuffling the 001055 ** columns into storage order. False negatives are harmless, 001056 ** but false positives will cause database corruption. 001057 */ 001058 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0; 001059 if( pColumn ){ 001060 assert( pColumn->eU4!=EU4_EXPR ); 001061 pColumn->eU4 = EU4_IDX; 001062 for(i=0; i<pColumn->nId; i++){ 001063 pColumn->a[i].u4.idx = -1; 001064 } 001065 for(i=0; i<pColumn->nId; i++){ 001066 for(j=0; j<pTab->nCol; j++){ 001067 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zCnName)==0 ){ 001068 pColumn->a[i].u4.idx = j; 001069 if( i!=j ) bIdListInOrder = 0; 001070 if( j==pTab->iPKey ){ 001071 ipkColumn = i; assert( !withoutRowid ); 001072 } 001073 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001074 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){ 001075 sqlite3ErrorMsg(pParse, 001076 "cannot INSERT into generated column \"%s\"", 001077 pTab->aCol[j].zCnName); 001078 goto insert_cleanup; 001079 } 001080 #endif 001081 break; 001082 } 001083 } 001084 if( j>=pTab->nCol ){ 001085 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ 001086 ipkColumn = i; 001087 bIdListInOrder = 0; 001088 }else{ 001089 sqlite3ErrorMsg(pParse, "table %S has no column named %s", 001090 pTabList->a, pColumn->a[i].zName); 001091 pParse->checkSchema = 1; 001092 goto insert_cleanup; 001093 } 001094 } 001095 } 001096 } 001097 001098 /* Figure out how many columns of data are supplied. If the data 001099 ** is coming from a SELECT statement, then generate a co-routine that 001100 ** produces a single row of the SELECT on each invocation. The 001101 ** co-routine is the common header to the 3rd and 4th templates. 001102 */ 001103 if( pSelect ){ 001104 /* Data is coming from a SELECT or from a multi-row VALUES clause. 001105 ** Generate a co-routine to run the SELECT. */ 001106 int rc; /* Result code */ 001107 001108 if( pSelect->pSrc->nSrc==1 001109 && pSelect->pSrc->a[0].fg.viaCoroutine 001110 && pSelect->pPrior==0 001111 ){ 001112 SrcItem *pItem = &pSelect->pSrc->a[0]; 001113 dest.iSDParm = pItem->regReturn; 001114 regFromSelect = pItem->regResult; 001115 nColumn = pItem->pSelect->pEList->nExpr; 001116 ExplainQueryPlan((pParse, 0, "SCAN %S", pItem)); 001117 if( bIdListInOrder && nColumn==pTab->nCol ){ 001118 regData = regFromSelect; 001119 regRowid = regData - 1; 001120 regIns = regRowid - (IsVirtual(pTab) ? 1 : 0); 001121 } 001122 }else{ 001123 int addrTop; /* Top of the co-routine */ 001124 int regYield = ++pParse->nMem; 001125 addrTop = sqlite3VdbeCurrentAddr(v) + 1; 001126 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); 001127 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); 001128 dest.iSdst = bIdListInOrder ? regData : 0; 001129 dest.nSdst = pTab->nCol; 001130 rc = sqlite3Select(pParse, pSelect, &dest); 001131 regFromSelect = dest.iSdst; 001132 assert( db->pParse==pParse ); 001133 if( rc || pParse->nErr ) goto insert_cleanup; 001134 assert( db->mallocFailed==0 ); 001135 sqlite3VdbeEndCoroutine(v, regYield); 001136 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ 001137 assert( pSelect->pEList ); 001138 nColumn = pSelect->pEList->nExpr; 001139 } 001140 001141 /* Set useTempTable to TRUE if the result of the SELECT statement 001142 ** should be written into a temporary table (template 4). Set to 001143 ** FALSE if each output row of the SELECT can be written directly into 001144 ** the destination table (template 3). 001145 ** 001146 ** A temp table must be used if the table being updated is also one 001147 ** of the tables being read by the SELECT statement. Also use a 001148 ** temp table in the case of row triggers. 001149 */ 001150 if( pTrigger || readsTable(pParse, iDb, pTab) ){ 001151 useTempTable = 1; 001152 } 001153 001154 if( useTempTable ){ 001155 /* Invoke the coroutine to extract information from the SELECT 001156 ** and add it to a transient table srcTab. The code generated 001157 ** here is from the 4th template: 001158 ** 001159 ** B: open temp table 001160 ** L: yield X, goto M at EOF 001161 ** insert row from R..R+n into temp table 001162 ** goto L 001163 ** M: ... 001164 */ 001165 int regRec; /* Register to hold packed record */ 001166 int regTempRowid; /* Register to hold temp table ROWID */ 001167 int addrL; /* Label "L" */ 001168 001169 srcTab = pParse->nTab++; 001170 regRec = sqlite3GetTempReg(pParse); 001171 regTempRowid = sqlite3GetTempReg(pParse); 001172 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); 001173 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); 001174 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); 001175 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); 001176 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); 001177 sqlite3VdbeGoto(v, addrL); 001178 sqlite3VdbeJumpHere(v, addrL); 001179 sqlite3ReleaseTempReg(pParse, regRec); 001180 sqlite3ReleaseTempReg(pParse, regTempRowid); 001181 } 001182 }else{ 001183 /* This is the case if the data for the INSERT is coming from a 001184 ** single-row VALUES clause 001185 */ 001186 NameContext sNC; 001187 memset(&sNC, 0, sizeof(sNC)); 001188 sNC.pParse = pParse; 001189 srcTab = -1; 001190 assert( useTempTable==0 ); 001191 if( pList ){ 001192 nColumn = pList->nExpr; 001193 if( sqlite3ResolveExprListNames(&sNC, pList) ){ 001194 goto insert_cleanup; 001195 } 001196 }else{ 001197 nColumn = 0; 001198 } 001199 } 001200 001201 /* If there is no IDLIST term but the table has an integer primary 001202 ** key, the set the ipkColumn variable to the integer primary key 001203 ** column index in the original table definition. 001204 */ 001205 if( pColumn==0 && nColumn>0 ){ 001206 ipkColumn = pTab->iPKey; 001207 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001208 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 001209 testcase( pTab->tabFlags & TF_HasVirtual ); 001210 testcase( pTab->tabFlags & TF_HasStored ); 001211 for(i=ipkColumn-1; i>=0; i--){ 001212 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){ 001213 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ); 001214 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED ); 001215 ipkColumn--; 001216 } 001217 } 001218 } 001219 #endif 001220 001221 /* Make sure the number of columns in the source data matches the number 001222 ** of columns to be inserted into the table. 001223 */ 001224 assert( TF_HasHidden==COLFLAG_HIDDEN ); 001225 assert( TF_HasGenerated==COLFLAG_GENERATED ); 001226 assert( COLFLAG_NOINSERT==(COLFLAG_GENERATED|COLFLAG_HIDDEN) ); 001227 if( (pTab->tabFlags & (TF_HasGenerated|TF_HasHidden))!=0 ){ 001228 for(i=0; i<pTab->nCol; i++){ 001229 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++; 001230 } 001231 } 001232 if( nColumn!=(pTab->nCol-nHidden) ){ 001233 sqlite3ErrorMsg(pParse, 001234 "table %S has %d columns but %d values were supplied", 001235 pTabList->a, pTab->nCol-nHidden, nColumn); 001236 goto insert_cleanup; 001237 } 001238 } 001239 if( pColumn!=0 && nColumn!=pColumn->nId ){ 001240 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); 001241 goto insert_cleanup; 001242 } 001243 001244 /* Initialize the count of rows to be inserted 001245 */ 001246 if( (db->flags & SQLITE_CountRows)!=0 001247 && !pParse->nested 001248 && !pParse->pTriggerTab 001249 && !pParse->bReturning 001250 ){ 001251 regRowCount = ++pParse->nMem; 001252 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); 001253 } 001254 001255 /* If this is not a view, open the table and and all indices */ 001256 if( !isView ){ 001257 int nIdx; 001258 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0, 001259 &iDataCur, &iIdxCur); 001260 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2)); 001261 if( aRegIdx==0 ){ 001262 goto insert_cleanup; 001263 } 001264 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){ 001265 assert( pIdx ); 001266 aRegIdx[i] = ++pParse->nMem; 001267 pParse->nMem += pIdx->nColumn; 001268 } 001269 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */ 001270 } 001271 #ifndef SQLITE_OMIT_UPSERT 001272 if( pUpsert ){ 001273 Upsert *pNx; 001274 if( IsVirtual(pTab) ){ 001275 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"", 001276 pTab->zName); 001277 goto insert_cleanup; 001278 } 001279 if( IsView(pTab) ){ 001280 sqlite3ErrorMsg(pParse, "cannot UPSERT a view"); 001281 goto insert_cleanup; 001282 } 001283 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){ 001284 goto insert_cleanup; 001285 } 001286 pTabList->a[0].iCursor = iDataCur; 001287 pNx = pUpsert; 001288 do{ 001289 pNx->pUpsertSrc = pTabList; 001290 pNx->regData = regData; 001291 pNx->iDataCur = iDataCur; 001292 pNx->iIdxCur = iIdxCur; 001293 if( pNx->pUpsertTarget ){ 001294 if( sqlite3UpsertAnalyzeTarget(pParse, pTabList, pNx, pUpsert) ){ 001295 goto insert_cleanup; 001296 } 001297 } 001298 pNx = pNx->pNextUpsert; 001299 }while( pNx!=0 ); 001300 } 001301 #endif 001302 001303 001304 /* This is the top of the main insertion loop */ 001305 if( useTempTable ){ 001306 /* This block codes the top of loop only. The complete loop is the 001307 ** following pseudocode (template 4): 001308 ** 001309 ** rewind temp table, if empty goto D 001310 ** C: loop over rows of intermediate table 001311 ** transfer values form intermediate table into <table> 001312 ** end loop 001313 ** D: ... 001314 */ 001315 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); 001316 addrCont = sqlite3VdbeCurrentAddr(v); 001317 }else if( pSelect ){ 001318 /* This block codes the top of loop only. The complete loop is the 001319 ** following pseudocode (template 3): 001320 ** 001321 ** C: yield X, at EOF goto D 001322 ** insert the select result into <table> from R..R+n 001323 ** goto C 001324 ** D: ... 001325 */ 001326 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0); 001327 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); 001328 VdbeCoverage(v); 001329 if( ipkColumn>=0 ){ 001330 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the 001331 ** SELECT, go ahead and copy the value into the rowid slot now, so that 001332 ** the value does not get overwritten by a NULL at tag-20191021-002. */ 001333 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); 001334 } 001335 } 001336 001337 /* Compute data for ordinary columns of the new entry. Values 001338 ** are written in storage order into registers starting with regData. 001339 ** Only ordinary columns are computed in this loop. The rowid 001340 ** (if there is one) is computed later and generated columns are 001341 ** computed after the rowid since they might depend on the value 001342 ** of the rowid. 001343 */ 001344 nHidden = 0; 001345 iRegStore = regData; assert( regData==regRowid+1 ); 001346 for(i=0; i<pTab->nCol; i++, iRegStore++){ 001347 int k; 001348 u32 colFlags; 001349 assert( i>=nHidden ); 001350 if( i==pTab->iPKey ){ 001351 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled 001352 ** using the rowid. So put a NULL in the IPK slot of the record to avoid 001353 ** using excess space. The file format definition requires this extra 001354 ** NULL - we cannot optimize further by skipping the column completely */ 001355 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001356 continue; 001357 } 001358 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){ 001359 nHidden++; 001360 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){ 001361 /* Virtual columns do not participate in OP_MakeRecord. So back up 001362 ** iRegStore by one slot to compensate for the iRegStore++ in the 001363 ** outer for() loop */ 001364 iRegStore--; 001365 continue; 001366 }else if( (colFlags & COLFLAG_STORED)!=0 ){ 001367 /* Stored columns are computed later. But if there are BEFORE 001368 ** triggers, the slots used for stored columns will be OP_Copy-ed 001369 ** to a second block of registers, so the register needs to be 001370 ** initialized to NULL to avoid an uninitialized register read */ 001371 if( tmask & TRIGGER_BEFORE ){ 001372 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); 001373 } 001374 continue; 001375 }else if( pColumn==0 ){ 001376 /* Hidden columns that are not explicitly named in the INSERT 001377 ** get there default value */ 001378 sqlite3ExprCodeFactorable(pParse, 001379 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001380 iRegStore); 001381 continue; 001382 } 001383 } 001384 if( pColumn ){ 001385 assert( pColumn->eU4==EU4_IDX ); 001386 for(j=0; j<pColumn->nId && pColumn->a[j].u4.idx!=i; j++){} 001387 if( j>=pColumn->nId ){ 001388 /* A column not named in the insert column list gets its 001389 ** default value */ 001390 sqlite3ExprCodeFactorable(pParse, 001391 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001392 iRegStore); 001393 continue; 001394 } 001395 k = j; 001396 }else if( nColumn==0 ){ 001397 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */ 001398 sqlite3ExprCodeFactorable(pParse, 001399 sqlite3ColumnExpr(pTab, &pTab->aCol[i]), 001400 iRegStore); 001401 continue; 001402 }else{ 001403 k = i - nHidden; 001404 } 001405 001406 if( useTempTable ){ 001407 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore); 001408 }else if( pSelect ){ 001409 if( regFromSelect!=regData ){ 001410 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore); 001411 } 001412 }else{ 001413 Expr *pX = pList->a[k].pExpr; 001414 int y = sqlite3ExprCodeTarget(pParse, pX, iRegStore); 001415 if( y!=iRegStore ){ 001416 sqlite3VdbeAddOp2(v, 001417 ExprHasProperty(pX, EP_Subquery) ? OP_Copy : OP_SCopy, y, iRegStore); 001418 } 001419 } 001420 } 001421 001422 001423 /* Run the BEFORE and INSTEAD OF triggers, if there are any 001424 */ 001425 endOfLoop = sqlite3VdbeMakeLabel(pParse); 001426 if( tmask & TRIGGER_BEFORE ){ 001427 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); 001428 001429 /* build the NEW.* reference row. Note that if there is an INTEGER 001430 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be 001431 ** translated into a unique ID for the row. But on a BEFORE trigger, 001432 ** we do not know what the unique ID will be (because the insert has 001433 ** not happened yet) so we substitute a rowid of -1 001434 */ 001435 if( ipkColumn<0 ){ 001436 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001437 }else{ 001438 int addr1; 001439 assert( !withoutRowid ); 001440 if( useTempTable ){ 001441 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); 001442 }else{ 001443 assert( pSelect==0 ); /* Otherwise useTempTable is true */ 001444 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); 001445 } 001446 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); 001447 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); 001448 sqlite3VdbeJumpHere(v, addr1); 001449 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); 001450 } 001451 001452 /* Copy the new data already generated. */ 001453 assert( pTab->nNVCol>0 || pParse->nErr>0 ); 001454 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1); 001455 001456 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001457 /* Compute the new value for generated columns after all other 001458 ** columns have already been computed. This must be done after 001459 ** computing the ROWID in case one of the generated columns 001460 ** refers to the ROWID. */ 001461 if( pTab->tabFlags & TF_HasGenerated ){ 001462 testcase( pTab->tabFlags & TF_HasVirtual ); 001463 testcase( pTab->tabFlags & TF_HasStored ); 001464 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab); 001465 } 001466 #endif 001467 001468 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, 001469 ** do not attempt any conversions before assembling the record. 001470 ** If this is a real table, attempt conversions as required by the 001471 ** table column affinities. 001472 */ 001473 if( !isView ){ 001474 sqlite3TableAffinity(v, pTab, regCols+1); 001475 } 001476 001477 /* Fire BEFORE or INSTEAD OF triggers */ 001478 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, 001479 pTab, regCols-pTab->nCol-1, onError, endOfLoop); 001480 001481 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); 001482 } 001483 001484 if( !isView ){ 001485 if( IsVirtual(pTab) ){ 001486 /* The row that the VUpdate opcode will delete: none */ 001487 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); 001488 } 001489 if( ipkColumn>=0 ){ 001490 /* Compute the new rowid */ 001491 if( useTempTable ){ 001492 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); 001493 }else if( pSelect ){ 001494 /* Rowid already initialized at tag-20191021-001 */ 001495 }else{ 001496 Expr *pIpk = pList->a[ipkColumn].pExpr; 001497 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){ 001498 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001499 appendFlag = 1; 001500 }else{ 001501 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); 001502 } 001503 } 001504 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid 001505 ** to generate a unique primary key value. 001506 */ 001507 if( !appendFlag ){ 001508 int addr1; 001509 if( !IsVirtual(pTab) ){ 001510 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); 001511 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001512 sqlite3VdbeJumpHere(v, addr1); 001513 }else{ 001514 addr1 = sqlite3VdbeCurrentAddr(v); 001515 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v); 001516 } 001517 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); 001518 } 001519 }else if( IsVirtual(pTab) || withoutRowid ){ 001520 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); 001521 }else{ 001522 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); 001523 appendFlag = 1; 001524 } 001525 autoIncStep(pParse, regAutoinc, regRowid); 001526 001527 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 001528 /* Compute the new value for generated columns after all other 001529 ** columns have already been computed. This must be done after 001530 ** computing the ROWID in case one of the generated columns 001531 ** is derived from the INTEGER PRIMARY KEY. */ 001532 if( pTab->tabFlags & TF_HasGenerated ){ 001533 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab); 001534 } 001535 #endif 001536 001537 /* Generate code to check constraints and generate index keys and 001538 ** do the insertion. 001539 */ 001540 #ifndef SQLITE_OMIT_VIRTUALTABLE 001541 if( IsVirtual(pTab) ){ 001542 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 001543 sqlite3VtabMakeWritable(pParse, pTab); 001544 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); 001545 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); 001546 sqlite3MayAbort(pParse); 001547 }else 001548 #endif 001549 { 001550 int isReplace = 0;/* Set to true if constraints may cause a replace */ 001551 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */ 001552 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, 001553 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert 001554 ); 001555 if( db->flags & SQLITE_ForeignKeys ){ 001556 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); 001557 } 001558 001559 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE 001560 ** constraints or (b) there are no triggers and this table is not a 001561 ** parent table in a foreign key constraint. It is safe to set the 001562 ** flag in the second case as if any REPLACE constraint is hit, an 001563 ** OP_Delete or OP_IdxDelete instruction will be executed on each 001564 ** cursor that is disturbed. And these instructions both clear the 001565 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT 001566 ** functionality. */ 001567 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v)); 001568 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, 001569 regIns, aRegIdx, 0, appendFlag, bUseSeek 001570 ); 001571 } 001572 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 001573 }else if( pParse->bReturning ){ 001574 /* If there is a RETURNING clause, populate the rowid register with 001575 ** constant value -1, in case one or more of the returned expressions 001576 ** refer to the "rowid" of the view. */ 001577 sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); 001578 #endif 001579 } 001580 001581 /* Update the count of rows that are inserted 001582 */ 001583 if( regRowCount ){ 001584 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); 001585 } 001586 001587 if( pTrigger ){ 001588 /* Code AFTER triggers */ 001589 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, 001590 pTab, regData-2-pTab->nCol, onError, endOfLoop); 001591 } 001592 001593 /* The bottom of the main insertion loop, if the data source 001594 ** is a SELECT statement. 001595 */ 001596 sqlite3VdbeResolveLabel(v, endOfLoop); 001597 if( useTempTable ){ 001598 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); 001599 sqlite3VdbeJumpHere(v, addrInsTop); 001600 sqlite3VdbeAddOp1(v, OP_Close, srcTab); 001601 }else if( pSelect ){ 001602 sqlite3VdbeGoto(v, addrCont); 001603 #ifdef SQLITE_DEBUG 001604 /* If we are jumping back to an OP_Yield that is preceded by an 001605 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the 001606 ** OP_ReleaseReg will be included in the loop. */ 001607 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){ 001608 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield ); 001609 sqlite3VdbeChangeP5(v, 1); 001610 } 001611 #endif 001612 sqlite3VdbeJumpHere(v, addrInsTop); 001613 } 001614 001615 #ifndef SQLITE_OMIT_XFER_OPT 001616 insert_end: 001617 #endif /* SQLITE_OMIT_XFER_OPT */ 001618 /* Update the sqlite_sequence table by storing the content of the 001619 ** maximum rowid counter values recorded while inserting into 001620 ** autoincrement tables. 001621 */ 001622 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ 001623 sqlite3AutoincrementEnd(pParse); 001624 } 001625 001626 /* 001627 ** Return the number of rows inserted. If this routine is 001628 ** generating code because of a call to sqlite3NestedParse(), do not 001629 ** invoke the callback function. 001630 */ 001631 if( regRowCount ){ 001632 sqlite3CodeChangeCount(v, regRowCount, "rows inserted"); 001633 } 001634 001635 insert_cleanup: 001636 sqlite3SrcListDelete(db, pTabList); 001637 sqlite3ExprListDelete(db, pList); 001638 sqlite3UpsertDelete(db, pUpsert); 001639 sqlite3SelectDelete(db, pSelect); 001640 sqlite3IdListDelete(db, pColumn); 001641 if( aRegIdx ) sqlite3DbNNFreeNN(db, aRegIdx); 001642 } 001643 001644 /* Make sure "isView" and other macros defined above are undefined. Otherwise 001645 ** they may interfere with compilation of other functions in this file 001646 ** (or in another file, if this file becomes part of the amalgamation). */ 001647 #ifdef isView 001648 #undef isView 001649 #endif 001650 #ifdef pTrigger 001651 #undef pTrigger 001652 #endif 001653 #ifdef tmask 001654 #undef tmask 001655 #endif 001656 001657 /* 001658 ** Meanings of bits in of pWalker->eCode for 001659 ** sqlite3ExprReferencesUpdatedColumn() 001660 */ 001661 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ 001662 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ 001663 001664 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). 001665 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this 001666 ** expression node references any of the 001667 ** columns that are being modified by an UPDATE statement. 001668 */ 001669 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ 001670 if( pExpr->op==TK_COLUMN ){ 001671 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); 001672 if( pExpr->iColumn>=0 ){ 001673 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ 001674 pWalker->eCode |= CKCNSTRNT_COLUMN; 001675 } 001676 }else{ 001677 pWalker->eCode |= CKCNSTRNT_ROWID; 001678 } 001679 } 001680 return WRC_Continue; 001681 } 001682 001683 /* 001684 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The 001685 ** only columns that are modified by the UPDATE are those for which 001686 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. 001687 ** 001688 ** Return true if CHECK constraint pExpr uses any of the 001689 ** changing columns (or the rowid if it is changing). In other words, 001690 ** return true if this CHECK constraint must be validated for 001691 ** the new row in the UPDATE statement. 001692 ** 001693 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. 001694 ** The operation of this routine is the same - return true if an only if 001695 ** the expression uses one or more of columns identified by the second and 001696 ** third arguments. 001697 */ 001698 int sqlite3ExprReferencesUpdatedColumn( 001699 Expr *pExpr, /* The expression to be checked */ 001700 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ 001701 int chngRowid /* True if UPDATE changes the rowid */ 001702 ){ 001703 Walker w; 001704 memset(&w, 0, sizeof(w)); 001705 w.eCode = 0; 001706 w.xExprCallback = checkConstraintExprNode; 001707 w.u.aiCol = aiChng; 001708 sqlite3WalkExpr(&w, pExpr); 001709 if( !chngRowid ){ 001710 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); 001711 w.eCode &= ~CKCNSTRNT_ROWID; 001712 } 001713 testcase( w.eCode==0 ); 001714 testcase( w.eCode==CKCNSTRNT_COLUMN ); 001715 testcase( w.eCode==CKCNSTRNT_ROWID ); 001716 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); 001717 return w.eCode!=0; 001718 } 001719 001720 /* 001721 ** The sqlite3GenerateConstraintChecks() routine usually wants to visit 001722 ** the indexes of a table in the order provided in the Table->pIndex list. 001723 ** However, sometimes (rarely - when there is an upsert) it wants to visit 001724 ** the indexes in a different order. The following data structures accomplish 001725 ** this. 001726 ** 001727 ** The IndexIterator object is used to walk through all of the indexes 001728 ** of a table in either Index.pNext order, or in some other order established 001729 ** by an array of IndexListTerm objects. 001730 */ 001731 typedef struct IndexListTerm IndexListTerm; 001732 typedef struct IndexIterator IndexIterator; 001733 struct IndexIterator { 001734 int eType; /* 0 for Index.pNext list. 1 for an array of IndexListTerm */ 001735 int i; /* Index of the current item from the list */ 001736 union { 001737 struct { /* Use this object for eType==0: A Index.pNext list */ 001738 Index *pIdx; /* The current Index */ 001739 } lx; 001740 struct { /* Use this object for eType==1; Array of IndexListTerm */ 001741 int nIdx; /* Size of the array */ 001742 IndexListTerm *aIdx; /* Array of IndexListTerms */ 001743 } ax; 001744 } u; 001745 }; 001746 001747 /* When IndexIterator.eType==1, then each index is an array of instances 001748 ** of the following object 001749 */ 001750 struct IndexListTerm { 001751 Index *p; /* The index */ 001752 int ix; /* Which entry in the original Table.pIndex list is this index*/ 001753 }; 001754 001755 /* Return the first index on the list */ 001756 static Index *indexIteratorFirst(IndexIterator *pIter, int *pIx){ 001757 assert( pIter->i==0 ); 001758 if( pIter->eType ){ 001759 *pIx = pIter->u.ax.aIdx[0].ix; 001760 return pIter->u.ax.aIdx[0].p; 001761 }else{ 001762 *pIx = 0; 001763 return pIter->u.lx.pIdx; 001764 } 001765 } 001766 001767 /* Return the next index from the list. Return NULL when out of indexes */ 001768 static Index *indexIteratorNext(IndexIterator *pIter, int *pIx){ 001769 if( pIter->eType ){ 001770 int i = ++pIter->i; 001771 if( i>=pIter->u.ax.nIdx ){ 001772 *pIx = i; 001773 return 0; 001774 } 001775 *pIx = pIter->u.ax.aIdx[i].ix; 001776 return pIter->u.ax.aIdx[i].p; 001777 }else{ 001778 ++(*pIx); 001779 pIter->u.lx.pIdx = pIter->u.lx.pIdx->pNext; 001780 return pIter->u.lx.pIdx; 001781 } 001782 } 001783 001784 /* 001785 ** Generate code to do constraint checks prior to an INSERT or an UPDATE 001786 ** on table pTab. 001787 ** 001788 ** The regNewData parameter is the first register in a range that contains 001789 ** the data to be inserted or the data after the update. There will be 001790 ** pTab->nCol+1 registers in this range. The first register (the one 001791 ** that regNewData points to) will contain the new rowid, or NULL in the 001792 ** case of a WITHOUT ROWID table. The second register in the range will 001793 ** contain the content of the first table column. The third register will 001794 ** contain the content of the second table column. And so forth. 001795 ** 001796 ** The regOldData parameter is similar to regNewData except that it contains 001797 ** the data prior to an UPDATE rather than afterwards. regOldData is zero 001798 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by 001799 ** checking regOldData for zero. 001800 ** 001801 ** For an UPDATE, the pkChng boolean is true if the true primary key (the 001802 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) 001803 ** might be modified by the UPDATE. If pkChng is false, then the key of 001804 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. 001805 ** 001806 ** For an INSERT, the pkChng boolean indicates whether or not the rowid 001807 ** was explicitly specified as part of the INSERT statement. If pkChng 001808 ** is zero, it means that the either rowid is computed automatically or 001809 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, 001810 ** pkChng will only be true if the INSERT statement provides an integer 001811 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. 001812 ** 001813 ** The code generated by this routine will store new index entries into 001814 ** registers identified by aRegIdx[]. No index entry is created for 001815 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is 001816 ** the same as the order of indices on the linked list of indices 001817 ** at pTab->pIndex. 001818 ** 001819 ** (2019-05-07) The generated code also creates a new record for the 001820 ** main table, if pTab is a rowid table, and stores that record in the 001821 ** register identified by aRegIdx[nIdx] - in other words in the first 001822 ** entry of aRegIdx[] past the last index. It is important that the 001823 ** record be generated during constraint checks to avoid affinity changes 001824 ** to the register content that occur after constraint checks but before 001825 ** the new record is inserted. 001826 ** 001827 ** The caller must have already opened writeable cursors on the main 001828 ** table and all applicable indices (that is to say, all indices for which 001829 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when 001830 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY 001831 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor 001832 ** for the first index in the pTab->pIndex list. Cursors for other indices 001833 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. 001834 ** 001835 ** This routine also generates code to check constraints. NOT NULL, 001836 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, 001837 ** then the appropriate action is performed. There are five possible 001838 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. 001839 ** 001840 ** Constraint type Action What Happens 001841 ** --------------- ---------- ---------------------------------------- 001842 ** any ROLLBACK The current transaction is rolled back and 001843 ** sqlite3_step() returns immediately with a 001844 ** return code of SQLITE_CONSTRAINT. 001845 ** 001846 ** any ABORT Back out changes from the current command 001847 ** only (do not do a complete rollback) then 001848 ** cause sqlite3_step() to return immediately 001849 ** with SQLITE_CONSTRAINT. 001850 ** 001851 ** any FAIL Sqlite3_step() returns immediately with a 001852 ** return code of SQLITE_CONSTRAINT. The 001853 ** transaction is not rolled back and any 001854 ** changes to prior rows are retained. 001855 ** 001856 ** any IGNORE The attempt in insert or update the current 001857 ** row is skipped, without throwing an error. 001858 ** Processing continues with the next row. 001859 ** (There is an immediate jump to ignoreDest.) 001860 ** 001861 ** NOT NULL REPLACE The NULL value is replace by the default 001862 ** value for that column. If the default value 001863 ** is NULL, the action is the same as ABORT. 001864 ** 001865 ** UNIQUE REPLACE The other row that conflicts with the row 001866 ** being inserted is removed. 001867 ** 001868 ** CHECK REPLACE Illegal. The results in an exception. 001869 ** 001870 ** Which action to take is determined by the overrideError parameter. 001871 ** Or if overrideError==OE_Default, then the pParse->onError parameter 001872 ** is used. Or if pParse->onError==OE_Default then the onError value 001873 ** for the constraint is used. 001874 */ 001875 void sqlite3GenerateConstraintChecks( 001876 Parse *pParse, /* The parser context */ 001877 Table *pTab, /* The table being inserted or updated */ 001878 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ 001879 int iDataCur, /* Canonical data cursor (main table or PK index) */ 001880 int iIdxCur, /* First index cursor */ 001881 int regNewData, /* First register in a range holding values to insert */ 001882 int regOldData, /* Previous content. 0 for INSERTs */ 001883 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ 001884 u8 overrideError, /* Override onError to this if not OE_Default */ 001885 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ 001886 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */ 001887 int *aiChng, /* column i is unchanged if aiChng[i]<0 */ 001888 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */ 001889 ){ 001890 Vdbe *v; /* VDBE under construction */ 001891 Index *pIdx; /* Pointer to one of the indices */ 001892 Index *pPk = 0; /* The PRIMARY KEY index for WITHOUT ROWID tables */ 001893 sqlite3 *db; /* Database connection */ 001894 int i; /* loop counter */ 001895 int ix; /* Index loop counter */ 001896 int nCol; /* Number of columns */ 001897 int onError; /* Conflict resolution strategy */ 001898 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ 001899 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ 001900 Upsert *pUpsertClause = 0; /* The specific ON CONFLICT clause for pIdx */ 001901 u8 isUpdate; /* True if this is an UPDATE operation */ 001902 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ 001903 int upsertIpkReturn = 0; /* Address of Goto at end of IPK uniqueness check */ 001904 int upsertIpkDelay = 0; /* Address of Goto to bypass initial IPK check */ 001905 int ipkTop = 0; /* Top of the IPK uniqueness check */ 001906 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */ 001907 /* Variables associated with retesting uniqueness constraints after 001908 ** replace triggers fire have run */ 001909 int regTrigCnt; /* Register used to count replace trigger invocations */ 001910 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */ 001911 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */ 001912 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */ 001913 int nReplaceTrig = 0; /* Number of replace triggers coded */ 001914 IndexIterator sIdxIter; /* Index iterator */ 001915 001916 isUpdate = regOldData!=0; 001917 db = pParse->db; 001918 v = pParse->pVdbe; 001919 assert( v!=0 ); 001920 assert( !IsView(pTab) ); /* This table is not a VIEW */ 001921 nCol = pTab->nCol; 001922 001923 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for 001924 ** normal rowid tables. nPkField is the number of key fields in the 001925 ** pPk index or 1 for a rowid table. In other words, nPkField is the 001926 ** number of fields in the true primary key of the table. */ 001927 if( HasRowid(pTab) ){ 001928 pPk = 0; 001929 nPkField = 1; 001930 }else{ 001931 pPk = sqlite3PrimaryKeyIndex(pTab); 001932 nPkField = pPk->nKeyCol; 001933 } 001934 001935 /* Record that this module has started */ 001936 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", 001937 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); 001938 001939 /* Test all NOT NULL constraints. 001940 */ 001941 if( pTab->tabFlags & TF_HasNotNull ){ 001942 int b2ndPass = 0; /* True if currently running 2nd pass */ 001943 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */ 001944 int nGenerated = 0; /* Number of generated columns with NOT NULL */ 001945 while(1){ /* Make 2 passes over columns. Exit loop via "break" */ 001946 for(i=0; i<nCol; i++){ 001947 int iReg; /* Register holding column value */ 001948 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */ 001949 int isGenerated; /* non-zero if column is generated */ 001950 onError = pCol->notNull; 001951 if( onError==OE_None ) continue; /* No NOT NULL on this column */ 001952 if( i==pTab->iPKey ){ 001953 continue; /* ROWID is never NULL */ 001954 } 001955 isGenerated = pCol->colFlags & COLFLAG_GENERATED; 001956 if( isGenerated && !b2ndPass ){ 001957 nGenerated++; 001958 continue; /* Generated columns processed on 2nd pass */ 001959 } 001960 if( aiChng && aiChng[i]<0 && !isGenerated ){ 001961 /* Do not check NOT NULL on columns that do not change */ 001962 continue; 001963 } 001964 if( overrideError!=OE_Default ){ 001965 onError = overrideError; 001966 }else if( onError==OE_Default ){ 001967 onError = OE_Abort; 001968 } 001969 if( onError==OE_Replace ){ 001970 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */ 001971 || pCol->iDflt==0 /* REPLACE is ABORT if no DEFAULT value */ 001972 ){ 001973 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001974 testcase( pCol->colFlags & COLFLAG_STORED ); 001975 testcase( pCol->colFlags & COLFLAG_GENERATED ); 001976 onError = OE_Abort; 001977 }else{ 001978 assert( !isGenerated ); 001979 } 001980 }else if( b2ndPass && !isGenerated ){ 001981 continue; 001982 } 001983 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 001984 || onError==OE_Ignore || onError==OE_Replace ); 001985 testcase( i!=sqlite3TableColumnToStorage(pTab, i) ); 001986 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1; 001987 switch( onError ){ 001988 case OE_Replace: { 001989 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg); 001990 VdbeCoverage(v); 001991 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 ); 001992 nSeenReplace++; 001993 sqlite3ExprCodeCopy(pParse, 001994 sqlite3ColumnExpr(pTab, pCol), iReg); 001995 sqlite3VdbeJumpHere(v, addr1); 001996 break; 001997 } 001998 case OE_Abort: 001999 sqlite3MayAbort(pParse); 002000 /* no break */ deliberate_fall_through 002001 case OE_Rollback: 002002 case OE_Fail: { 002003 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, 002004 pCol->zCnName); 002005 testcase( zMsg==0 && db->mallocFailed==0 ); 002006 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, 002007 onError, iReg); 002008 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC); 002009 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); 002010 VdbeCoverage(v); 002011 break; 002012 } 002013 default: { 002014 assert( onError==OE_Ignore ); 002015 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest); 002016 VdbeCoverage(v); 002017 break; 002018 } 002019 } /* end switch(onError) */ 002020 } /* end loop i over columns */ 002021 if( nGenerated==0 && nSeenReplace==0 ){ 002022 /* If there are no generated columns with NOT NULL constraints 002023 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single 002024 ** pass is sufficient */ 002025 break; 002026 } 002027 if( b2ndPass ) break; /* Never need more than 2 passes */ 002028 b2ndPass = 1; 002029 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 002030 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){ 002031 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the 002032 ** first pass, recomputed values for all generated columns, as 002033 ** those values might depend on columns affected by the REPLACE. 002034 */ 002035 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab); 002036 } 002037 #endif 002038 } /* end of 2-pass loop */ 002039 } /* end if( has-not-null-constraints ) */ 002040 002041 /* Test all CHECK constraints 002042 */ 002043 #ifndef SQLITE_OMIT_CHECK 002044 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ 002045 ExprList *pCheck = pTab->pCheck; 002046 pParse->iSelfTab = -(regNewData+1); 002047 onError = overrideError!=OE_Default ? overrideError : OE_Abort; 002048 for(i=0; i<pCheck->nExpr; i++){ 002049 int allOk; 002050 Expr *pCopy; 002051 Expr *pExpr = pCheck->a[i].pExpr; 002052 if( aiChng 002053 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) 002054 ){ 002055 /* The check constraints do not reference any of the columns being 002056 ** updated so there is no point it verifying the check constraint */ 002057 continue; 002058 } 002059 if( bAffinityDone==0 ){ 002060 sqlite3TableAffinity(v, pTab, regNewData+1); 002061 bAffinityDone = 1; 002062 } 002063 allOk = sqlite3VdbeMakeLabel(pParse); 002064 sqlite3VdbeVerifyAbortable(v, onError); 002065 pCopy = sqlite3ExprDup(db, pExpr, 0); 002066 if( !db->mallocFailed ){ 002067 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL); 002068 } 002069 sqlite3ExprDelete(db, pCopy); 002070 if( onError==OE_Ignore ){ 002071 sqlite3VdbeGoto(v, ignoreDest); 002072 }else{ 002073 char *zName = pCheck->a[i].zEName; 002074 assert( zName!=0 || pParse->db->mallocFailed ); 002075 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */ 002076 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, 002077 onError, zName, P4_TRANSIENT, 002078 P5_ConstraintCheck); 002079 } 002080 sqlite3VdbeResolveLabel(v, allOk); 002081 } 002082 pParse->iSelfTab = 0; 002083 } 002084 #endif /* !defined(SQLITE_OMIT_CHECK) */ 002085 002086 /* UNIQUE and PRIMARY KEY constraints should be handled in the following 002087 ** order: 002088 ** 002089 ** (1) OE_Update 002090 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore 002091 ** (3) OE_Replace 002092 ** 002093 ** OE_Fail and OE_Ignore must happen before any changes are made. 002094 ** OE_Update guarantees that only a single row will change, so it 002095 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback 002096 ** could happen in any order, but they are grouped up front for 002097 ** convenience. 002098 ** 002099 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43 002100 ** The order of constraints used to have OE_Update as (2) and OE_Abort 002101 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update 002102 ** constraint before any others, so it had to be moved. 002103 ** 002104 ** Constraint checking code is generated in this order: 002105 ** (A) The rowid constraint 002106 ** (B) Unique index constraints that do not have OE_Replace as their 002107 ** default conflict resolution strategy 002108 ** (C) Unique index that do use OE_Replace by default. 002109 ** 002110 ** The ordering of (2) and (3) is accomplished by making sure the linked 002111 ** list of indexes attached to a table puts all OE_Replace indexes last 002112 ** in the list. See sqlite3CreateIndex() for where that happens. 002113 */ 002114 sIdxIter.eType = 0; 002115 sIdxIter.i = 0; 002116 sIdxIter.u.ax.aIdx = 0; /* Silence harmless compiler warning */ 002117 sIdxIter.u.lx.pIdx = pTab->pIndex; 002118 if( pUpsert ){ 002119 if( pUpsert->pUpsertTarget==0 ){ 002120 /* There is just on ON CONFLICT clause and it has no constraint-target */ 002121 assert( pUpsert->pNextUpsert==0 ); 002122 if( pUpsert->isDoUpdate==0 ){ 002123 /* A single ON CONFLICT DO NOTHING clause, without a constraint-target. 002124 ** Make all unique constraint resolution be OE_Ignore */ 002125 overrideError = OE_Ignore; 002126 pUpsert = 0; 002127 }else{ 002128 /* A single ON CONFLICT DO UPDATE. Make all resolutions OE_Update */ 002129 overrideError = OE_Update; 002130 } 002131 }else if( pTab->pIndex!=0 ){ 002132 /* Otherwise, we'll need to run the IndexListTerm array version of the 002133 ** iterator to ensure that all of the ON CONFLICT conditions are 002134 ** checked first and in order. */ 002135 int nIdx, jj; 002136 u64 nByte; 002137 Upsert *pTerm; 002138 u8 *bUsed; 002139 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){ 002140 assert( aRegIdx[nIdx]>0 ); 002141 } 002142 sIdxIter.eType = 1; 002143 sIdxIter.u.ax.nIdx = nIdx; 002144 nByte = (sizeof(IndexListTerm)+1)*nIdx + nIdx; 002145 sIdxIter.u.ax.aIdx = sqlite3DbMallocZero(db, nByte); 002146 if( sIdxIter.u.ax.aIdx==0 ) return; /* OOM */ 002147 bUsed = (u8*)&sIdxIter.u.ax.aIdx[nIdx]; 002148 pUpsert->pToFree = sIdxIter.u.ax.aIdx; 002149 for(i=0, pTerm=pUpsert; pTerm; pTerm=pTerm->pNextUpsert){ 002150 if( pTerm->pUpsertTarget==0 ) break; 002151 if( pTerm->pUpsertIdx==0 ) continue; /* Skip ON CONFLICT for the IPK */ 002152 jj = 0; 002153 pIdx = pTab->pIndex; 002154 while( ALWAYS(pIdx!=0) && pIdx!=pTerm->pUpsertIdx ){ 002155 pIdx = pIdx->pNext; 002156 jj++; 002157 } 002158 if( bUsed[jj] ) continue; /* Duplicate ON CONFLICT clause ignored */ 002159 bUsed[jj] = 1; 002160 sIdxIter.u.ax.aIdx[i].p = pIdx; 002161 sIdxIter.u.ax.aIdx[i].ix = jj; 002162 i++; 002163 } 002164 for(jj=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, jj++){ 002165 if( bUsed[jj] ) continue; 002166 sIdxIter.u.ax.aIdx[i].p = pIdx; 002167 sIdxIter.u.ax.aIdx[i].ix = jj; 002168 i++; 002169 } 002170 assert( i==nIdx ); 002171 } 002172 } 002173 002174 /* Determine if it is possible that triggers (either explicitly coded 002175 ** triggers or FK resolution actions) might run as a result of deletes 002176 ** that happen when OE_Replace conflict resolution occurs. (Call these 002177 ** "replace triggers".) If any replace triggers run, we will need to 002178 ** recheck all of the uniqueness constraints after they have all run. 002179 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace. 002180 ** 002181 ** If replace triggers are a possibility, then 002182 ** 002183 ** (1) Allocate register regTrigCnt and initialize it to zero. 002184 ** That register will count the number of replace triggers that 002185 ** fire. Constraint recheck only occurs if the number is positive. 002186 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab. 002187 ** (3) Initialize addrRecheck and lblRecheckOk 002188 ** 002189 ** The uniqueness rechecking code will create a series of tests to run 002190 ** in a second pass. The addrRecheck and lblRecheckOk variables are 002191 ** used to link together these tests which are separated from each other 002192 ** in the generate bytecode. 002193 */ 002194 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){ 002195 /* There are not DELETE triggers nor FK constraints. No constraint 002196 ** rechecks are needed. */ 002197 pTrigger = 0; 002198 regTrigCnt = 0; 002199 }else{ 002200 if( db->flags&SQLITE_RecTriggers ){ 002201 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); 002202 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0); 002203 }else{ 002204 pTrigger = 0; 002205 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0); 002206 } 002207 if( regTrigCnt ){ 002208 /* Replace triggers might exist. Allocate the counter and 002209 ** initialize it to zero. */ 002210 regTrigCnt = ++pParse->nMem; 002211 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt); 002212 VdbeComment((v, "trigger count")); 002213 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002214 addrRecheck = lblRecheckOk; 002215 } 002216 } 002217 002218 /* If rowid is changing, make sure the new rowid does not previously 002219 ** exist in the table. 002220 */ 002221 if( pkChng && pPk==0 ){ 002222 int addrRowidOk = sqlite3VdbeMakeLabel(pParse); 002223 002224 /* Figure out what action to take in case of a rowid collision */ 002225 onError = pTab->keyConf; 002226 if( overrideError!=OE_Default ){ 002227 onError = overrideError; 002228 }else if( onError==OE_Default ){ 002229 onError = OE_Abort; 002230 } 002231 002232 /* figure out whether or not upsert applies in this case */ 002233 if( pUpsert ){ 002234 pUpsertClause = sqlite3UpsertOfIndex(pUpsert,0); 002235 if( pUpsertClause!=0 ){ 002236 if( pUpsertClause->isDoUpdate==0 ){ 002237 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002238 }else{ 002239 onError = OE_Update; /* DO UPDATE */ 002240 } 002241 } 002242 if( pUpsertClause!=pUpsert ){ 002243 /* The first ON CONFLICT clause has a conflict target other than 002244 ** the IPK. We have to jump ahead to that first ON CONFLICT clause 002245 ** and then come back here and deal with the IPK afterwards */ 002246 upsertIpkDelay = sqlite3VdbeAddOp0(v, OP_Goto); 002247 } 002248 } 002249 002250 /* If the response to a rowid conflict is REPLACE but the response 002251 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need 002252 ** to defer the running of the rowid conflict checking until after 002253 ** the UNIQUE constraints have run. 002254 */ 002255 if( onError==OE_Replace /* IPK rule is REPLACE */ 002256 && onError!=overrideError /* Rules for other constraints are different */ 002257 && pTab->pIndex /* There exist other constraints */ 002258 && !upsertIpkDelay /* IPK check already deferred by UPSERT */ 002259 ){ 002260 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1; 002261 VdbeComment((v, "defer IPK REPLACE until last")); 002262 } 002263 002264 if( isUpdate ){ 002265 /* pkChng!=0 does not mean that the rowid has changed, only that 002266 ** it might have changed. Skip the conflict logic below if the rowid 002267 ** is unchanged. */ 002268 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); 002269 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002270 VdbeCoverage(v); 002271 } 002272 002273 /* Check to see if the new rowid already exists in the table. Skip 002274 ** the following conflict logic if it does not. */ 002275 VdbeNoopComment((v, "uniqueness check for ROWID")); 002276 sqlite3VdbeVerifyAbortable(v, onError); 002277 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); 002278 VdbeCoverage(v); 002279 002280 switch( onError ){ 002281 default: { 002282 onError = OE_Abort; 002283 /* no break */ deliberate_fall_through 002284 } 002285 case OE_Rollback: 002286 case OE_Abort: 002287 case OE_Fail: { 002288 testcase( onError==OE_Rollback ); 002289 testcase( onError==OE_Abort ); 002290 testcase( onError==OE_Fail ); 002291 sqlite3RowidConstraint(pParse, onError, pTab); 002292 break; 002293 } 002294 case OE_Replace: { 002295 /* If there are DELETE triggers on this table and the 002296 ** recursive-triggers flag is set, call GenerateRowDelete() to 002297 ** remove the conflicting row from the table. This will fire 002298 ** the triggers and remove both the table and index b-tree entries. 002299 ** 002300 ** Otherwise, if there are no triggers or the recursive-triggers 002301 ** flag is not set, but the table has one or more indexes, call 002302 ** GenerateRowIndexDelete(). This removes the index b-tree entries 002303 ** only. The table b-tree entry will be replaced by the new entry 002304 ** when it is inserted. 002305 ** 002306 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, 002307 ** also invoke MultiWrite() to indicate that this VDBE may require 002308 ** statement rollback (if the statement is aborted after the delete 002309 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, 002310 ** but being more selective here allows statements like: 002311 ** 002312 ** REPLACE INTO t(rowid) VALUES($newrowid) 002313 ** 002314 ** to run without a statement journal if there are no indexes on the 002315 ** table. 002316 */ 002317 if( regTrigCnt ){ 002318 sqlite3MultiWrite(pParse); 002319 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002320 regNewData, 1, 0, OE_Replace, 1, -1); 002321 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002322 nReplaceTrig++; 002323 }else{ 002324 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002325 assert( HasRowid(pTab) ); 002326 /* This OP_Delete opcode fires the pre-update-hook only. It does 002327 ** not modify the b-tree. It is more efficient to let the coming 002328 ** OP_Insert replace the existing entry than it is to delete the 002329 ** existing entry and then insert a new one. */ 002330 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP); 002331 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002332 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */ 002333 if( pTab->pIndex ){ 002334 sqlite3MultiWrite(pParse); 002335 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1); 002336 } 002337 } 002338 seenReplace = 1; 002339 break; 002340 } 002341 #ifndef SQLITE_OMIT_UPSERT 002342 case OE_Update: { 002343 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur); 002344 /* no break */ deliberate_fall_through 002345 } 002346 #endif 002347 case OE_Ignore: { 002348 testcase( onError==OE_Ignore ); 002349 sqlite3VdbeGoto(v, ignoreDest); 002350 break; 002351 } 002352 } 002353 sqlite3VdbeResolveLabel(v, addrRowidOk); 002354 if( pUpsert && pUpsertClause!=pUpsert ){ 002355 upsertIpkReturn = sqlite3VdbeAddOp0(v, OP_Goto); 002356 }else if( ipkTop ){ 002357 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); 002358 sqlite3VdbeJumpHere(v, ipkTop-1); 002359 } 002360 } 002361 002362 /* Test all UNIQUE constraints by creating entries for each UNIQUE 002363 ** index and making sure that duplicate entries do not already exist. 002364 ** Compute the revised record entries for indices as we go. 002365 ** 002366 ** This loop also handles the case of the PRIMARY KEY index for a 002367 ** WITHOUT ROWID table. 002368 */ 002369 for(pIdx = indexIteratorFirst(&sIdxIter, &ix); 002370 pIdx; 002371 pIdx = indexIteratorNext(&sIdxIter, &ix) 002372 ){ 002373 int regIdx; /* Range of registers holding content for pIdx */ 002374 int regR; /* Range of registers holding conflicting PK */ 002375 int iThisCur; /* Cursor for this UNIQUE index */ 002376 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ 002377 int addrConflictCk; /* First opcode in the conflict check logic */ 002378 002379 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ 002380 if( pUpsert ){ 002381 pUpsertClause = sqlite3UpsertOfIndex(pUpsert, pIdx); 002382 if( upsertIpkDelay && pUpsertClause==pUpsert ){ 002383 sqlite3VdbeJumpHere(v, upsertIpkDelay); 002384 } 002385 } 002386 addrUniqueOk = sqlite3VdbeMakeLabel(pParse); 002387 if( bAffinityDone==0 ){ 002388 sqlite3TableAffinity(v, pTab, regNewData+1); 002389 bAffinityDone = 1; 002390 } 002391 VdbeNoopComment((v, "prep index %s", pIdx->zName)); 002392 iThisCur = iIdxCur+ix; 002393 002394 002395 /* Skip partial indices for which the WHERE clause is not true */ 002396 if( pIdx->pPartIdxWhere ){ 002397 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); 002398 pParse->iSelfTab = -(regNewData+1); 002399 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk, 002400 SQLITE_JUMPIFNULL); 002401 pParse->iSelfTab = 0; 002402 } 002403 002404 /* Create a record for this index entry as it should appear after 002405 ** the insert or update. Store that record in the aRegIdx[ix] register 002406 */ 002407 regIdx = aRegIdx[ix]+1; 002408 for(i=0; i<pIdx->nColumn; i++){ 002409 int iField = pIdx->aiColumn[i]; 002410 int x; 002411 if( iField==XN_EXPR ){ 002412 pParse->iSelfTab = -(regNewData+1); 002413 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); 002414 pParse->iSelfTab = 0; 002415 VdbeComment((v, "%s column %d", pIdx->zName, i)); 002416 }else if( iField==XN_ROWID || iField==pTab->iPKey ){ 002417 x = regNewData; 002418 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i); 002419 VdbeComment((v, "rowid")); 002420 }else{ 002421 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField ); 002422 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1; 002423 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); 002424 VdbeComment((v, "%s", pTab->aCol[iField].zCnName)); 002425 } 002426 } 002427 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); 002428 VdbeComment((v, "for %s", pIdx->zName)); 002429 #ifdef SQLITE_ENABLE_NULL_TRIM 002430 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 002431 sqlite3SetMakeRecordP5(v, pIdx->pTable); 002432 } 002433 #endif 002434 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0); 002435 002436 /* In an UPDATE operation, if this index is the PRIMARY KEY index 002437 ** of a WITHOUT ROWID table and there has been no change the 002438 ** primary key, then no collision is possible. The collision detection 002439 ** logic below can all be skipped. */ 002440 if( isUpdate && pPk==pIdx && pkChng==0 ){ 002441 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002442 continue; 002443 } 002444 002445 /* Find out what action to take in case there is a uniqueness conflict */ 002446 onError = pIdx->onError; 002447 if( onError==OE_None ){ 002448 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002449 continue; /* pIdx is not a UNIQUE index */ 002450 } 002451 if( overrideError!=OE_Default ){ 002452 onError = overrideError; 002453 }else if( onError==OE_Default ){ 002454 onError = OE_Abort; 002455 } 002456 002457 /* Figure out if the upsert clause applies to this index */ 002458 if( pUpsertClause ){ 002459 if( pUpsertClause->isDoUpdate==0 ){ 002460 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */ 002461 }else{ 002462 onError = OE_Update; /* DO UPDATE */ 002463 } 002464 } 002465 002466 /* Collision detection may be omitted if all of the following are true: 002467 ** (1) The conflict resolution algorithm is REPLACE 002468 ** (2) The table is a WITHOUT ROWID table 002469 ** (3) There are no secondary indexes on the table 002470 ** (4) No delete triggers need to be fired if there is a conflict 002471 ** (5) No FK constraint counters need to be updated if a conflict occurs. 002472 ** 002473 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row 002474 ** must be explicitly deleted in order to ensure any pre-update hook 002475 ** is invoked. */ 002476 assert( IsOrdinaryTable(pTab) ); 002477 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK 002478 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */ 002479 && pPk==pIdx /* Condition 2 */ 002480 && onError==OE_Replace /* Condition 1 */ 002481 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */ 002482 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0)) 002483 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */ 002484 (0==pTab->u.tab.pFKey && 0==sqlite3FkReferences(pTab))) 002485 ){ 002486 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002487 continue; 002488 } 002489 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */ 002490 002491 /* Check to see if the new index entry will be unique */ 002492 sqlite3VdbeVerifyAbortable(v, onError); 002493 addrConflictCk = 002494 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, 002495 regIdx, pIdx->nKeyCol); VdbeCoverage(v); 002496 002497 /* Generate code to handle collisions */ 002498 regR = pIdx==pPk ? regIdx : sqlite3GetTempRange(pParse, nPkField); 002499 if( isUpdate || onError==OE_Replace ){ 002500 if( HasRowid(pTab) ){ 002501 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); 002502 /* Conflict only if the rowid of the existing index entry 002503 ** is different from old-rowid */ 002504 if( isUpdate ){ 002505 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); 002506 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002507 VdbeCoverage(v); 002508 } 002509 }else{ 002510 int x; 002511 /* Extract the PRIMARY KEY from the end of the index entry and 002512 ** store it in registers regR..regR+nPk-1 */ 002513 if( pIdx!=pPk ){ 002514 for(i=0; i<pPk->nKeyCol; i++){ 002515 assert( pPk->aiColumn[i]>=0 ); 002516 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]); 002517 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); 002518 VdbeComment((v, "%s.%s", pTab->zName, 002519 pTab->aCol[pPk->aiColumn[i]].zCnName)); 002520 } 002521 } 002522 if( isUpdate ){ 002523 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID 002524 ** table, only conflict if the new PRIMARY KEY values are actually 002525 ** different from the old. See TH3 withoutrowid04.test. 002526 ** 002527 ** For a UNIQUE index, only conflict if the PRIMARY KEY values 002528 ** of the matched index row are different from the original PRIMARY 002529 ** KEY values of this row before the update. */ 002530 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; 002531 int op = OP_Ne; 002532 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); 002533 002534 for(i=0; i<pPk->nKeyCol; i++){ 002535 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); 002536 x = pPk->aiColumn[i]; 002537 assert( x>=0 ); 002538 if( i==(pPk->nKeyCol-1) ){ 002539 addrJump = addrUniqueOk; 002540 op = OP_Eq; 002541 } 002542 x = sqlite3TableColumnToStorage(pTab, x); 002543 sqlite3VdbeAddOp4(v, op, 002544 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ 002545 ); 002546 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002547 VdbeCoverageIf(v, op==OP_Eq); 002548 VdbeCoverageIf(v, op==OP_Ne); 002549 } 002550 } 002551 } 002552 } 002553 002554 /* Generate code that executes if the new index entry is not unique */ 002555 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail 002556 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update ); 002557 switch( onError ){ 002558 case OE_Rollback: 002559 case OE_Abort: 002560 case OE_Fail: { 002561 testcase( onError==OE_Rollback ); 002562 testcase( onError==OE_Abort ); 002563 testcase( onError==OE_Fail ); 002564 sqlite3UniqueConstraint(pParse, onError, pIdx); 002565 break; 002566 } 002567 #ifndef SQLITE_OMIT_UPSERT 002568 case OE_Update: { 002569 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix); 002570 /* no break */ deliberate_fall_through 002571 } 002572 #endif 002573 case OE_Ignore: { 002574 testcase( onError==OE_Ignore ); 002575 sqlite3VdbeGoto(v, ignoreDest); 002576 break; 002577 } 002578 default: { 002579 int nConflictCk; /* Number of opcodes in conflict check logic */ 002580 002581 assert( onError==OE_Replace ); 002582 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk; 002583 assert( nConflictCk>0 || db->mallocFailed ); 002584 testcase( nConflictCk<=0 ); 002585 testcase( nConflictCk>1 ); 002586 if( regTrigCnt ){ 002587 sqlite3MultiWrite(pParse); 002588 nReplaceTrig++; 002589 } 002590 if( pTrigger && isUpdate ){ 002591 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur); 002592 } 002593 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, 002594 regR, nPkField, 0, OE_Replace, 002595 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur); 002596 if( pTrigger && isUpdate ){ 002597 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur); 002598 } 002599 if( regTrigCnt ){ 002600 int addrBypass; /* Jump destination to bypass recheck logic */ 002601 002602 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */ 002603 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */ 002604 VdbeComment((v, "bypass recheck")); 002605 002606 /* Here we insert code that will be invoked after all constraint 002607 ** checks have run, if and only if one or more replace triggers 002608 ** fired. */ 002609 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002610 lblRecheckOk = sqlite3VdbeMakeLabel(pParse); 002611 if( pIdx->pPartIdxWhere ){ 002612 /* Bypass the recheck if this partial index is not defined 002613 ** for the current row */ 002614 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk); 002615 VdbeCoverage(v); 002616 } 002617 /* Copy the constraint check code from above, except change 002618 ** the constraint-ok jump destination to be the address of 002619 ** the next retest block */ 002620 while( nConflictCk>0 ){ 002621 VdbeOp x; /* Conflict check opcode to copy */ 002622 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array. 002623 ** Hence, make a complete copy of the opcode, rather than using 002624 ** a pointer to the opcode. */ 002625 x = *sqlite3VdbeGetOp(v, addrConflictCk); 002626 if( x.opcode!=OP_IdxRowid ){ 002627 int p2; /* New P2 value for copied conflict check opcode */ 002628 const char *zP4; 002629 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){ 002630 p2 = lblRecheckOk; 002631 }else{ 002632 p2 = x.p2; 002633 } 002634 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z; 002635 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type); 002636 sqlite3VdbeChangeP5(v, x.p5); 002637 VdbeCoverageIf(v, p2!=x.p2); 002638 } 002639 nConflictCk--; 002640 addrConflictCk++; 002641 } 002642 /* If the retest fails, issue an abort */ 002643 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx); 002644 002645 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */ 002646 } 002647 seenReplace = 1; 002648 break; 002649 } 002650 } 002651 sqlite3VdbeResolveLabel(v, addrUniqueOk); 002652 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); 002653 if( pUpsertClause 002654 && upsertIpkReturn 002655 && sqlite3UpsertNextIsIPK(pUpsertClause) 002656 ){ 002657 sqlite3VdbeGoto(v, upsertIpkDelay+1); 002658 sqlite3VdbeJumpHere(v, upsertIpkReturn); 002659 upsertIpkReturn = 0; 002660 } 002661 } 002662 002663 /* If the IPK constraint is a REPLACE, run it last */ 002664 if( ipkTop ){ 002665 sqlite3VdbeGoto(v, ipkTop); 002666 VdbeComment((v, "Do IPK REPLACE")); 002667 assert( ipkBottom>0 ); 002668 sqlite3VdbeJumpHere(v, ipkBottom); 002669 } 002670 002671 /* Recheck all uniqueness constraints after replace triggers have run */ 002672 testcase( regTrigCnt!=0 && nReplaceTrig==0 ); 002673 assert( regTrigCnt!=0 || nReplaceTrig==0 ); 002674 if( nReplaceTrig ){ 002675 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v); 002676 if( !pPk ){ 002677 if( isUpdate ){ 002678 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData); 002679 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 002680 VdbeCoverage(v); 002681 } 002682 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData); 002683 VdbeCoverage(v); 002684 sqlite3RowidConstraint(pParse, OE_Abort, pTab); 002685 }else{ 002686 sqlite3VdbeGoto(v, addrRecheck); 002687 } 002688 sqlite3VdbeResolveLabel(v, lblRecheckOk); 002689 } 002690 002691 /* Generate the table record */ 002692 if( HasRowid(pTab) ){ 002693 int regRec = aRegIdx[ix]; 002694 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec); 002695 sqlite3SetMakeRecordP5(v, pTab); 002696 if( !bAffinityDone ){ 002697 sqlite3TableAffinity(v, pTab, 0); 002698 } 002699 } 002700 002701 *pbMayReplace = seenReplace; 002702 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); 002703 } 002704 002705 #ifdef SQLITE_ENABLE_NULL_TRIM 002706 /* 002707 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord) 002708 ** to be the number of columns in table pTab that must not be NULL-trimmed. 002709 ** 002710 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero. 002711 */ 002712 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){ 002713 u16 i; 002714 002715 /* Records with omitted columns are only allowed for schema format 002716 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */ 002717 if( pTab->pSchema->file_format<2 ) return; 002718 002719 for(i=pTab->nCol-1; i>0; i--){ 002720 if( pTab->aCol[i].iDflt!=0 ) break; 002721 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break; 002722 } 002723 sqlite3VdbeChangeP5(v, i+1); 002724 } 002725 #endif 002726 002727 /* 002728 ** Table pTab is a WITHOUT ROWID table that is being written to. The cursor 002729 ** number is iCur, and register regData contains the new record for the 002730 ** PK index. This function adds code to invoke the pre-update hook, 002731 ** if one is registered. 002732 */ 002733 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 002734 static void codeWithoutRowidPreupdate( 002735 Parse *pParse, /* Parse context */ 002736 Table *pTab, /* Table being updated */ 002737 int iCur, /* Cursor number for table */ 002738 int regData /* Data containing new record */ 002739 ){ 002740 Vdbe *v = pParse->pVdbe; 002741 int r = sqlite3GetTempReg(pParse); 002742 assert( !HasRowid(pTab) ); 002743 assert( 0==(pParse->db->mDbFlags & DBFLAG_Vacuum) || CORRUPT_DB ); 002744 sqlite3VdbeAddOp2(v, OP_Integer, 0, r); 002745 sqlite3VdbeAddOp4(v, OP_Insert, iCur, regData, r, (char*)pTab, P4_TABLE); 002746 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP); 002747 sqlite3ReleaseTempReg(pParse, r); 002748 } 002749 #else 002750 # define codeWithoutRowidPreupdate(a,b,c,d) 002751 #endif 002752 002753 /* 002754 ** This routine generates code to finish the INSERT or UPDATE operation 002755 ** that was started by a prior call to sqlite3GenerateConstraintChecks. 002756 ** A consecutive range of registers starting at regNewData contains the 002757 ** rowid and the content to be inserted. 002758 ** 002759 ** The arguments to this routine should be the same as the first six 002760 ** arguments to sqlite3GenerateConstraintChecks. 002761 */ 002762 void sqlite3CompleteInsertion( 002763 Parse *pParse, /* The parser context */ 002764 Table *pTab, /* the table into which we are inserting */ 002765 int iDataCur, /* Cursor of the canonical data source */ 002766 int iIdxCur, /* First index cursor */ 002767 int regNewData, /* Range of content */ 002768 int *aRegIdx, /* Register used by each index. 0 for unused indices */ 002769 int update_flags, /* True for UPDATE, False for INSERT */ 002770 int appendBias, /* True if this is likely to be an append */ 002771 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ 002772 ){ 002773 Vdbe *v; /* Prepared statements under construction */ 002774 Index *pIdx; /* An index being inserted or updated */ 002775 u8 pik_flags; /* flag values passed to the btree insert */ 002776 int i; /* Loop counter */ 002777 002778 assert( update_flags==0 002779 || update_flags==OPFLAG_ISUPDATE 002780 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION) 002781 ); 002782 002783 v = pParse->pVdbe; 002784 assert( v!=0 ); 002785 assert( !IsView(pTab) ); /* This table is not a VIEW */ 002786 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002787 /* All REPLACE indexes are at the end of the list */ 002788 assert( pIdx->onError!=OE_Replace 002789 || pIdx->pNext==0 002790 || pIdx->pNext->onError==OE_Replace ); 002791 if( aRegIdx[i]==0 ) continue; 002792 if( pIdx->pPartIdxWhere ){ 002793 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); 002794 VdbeCoverage(v); 002795 } 002796 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0); 002797 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002798 pik_flags |= OPFLAG_NCHANGE; 002799 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION); 002800 if( update_flags==0 ){ 002801 codeWithoutRowidPreupdate(pParse, pTab, iIdxCur+i, aRegIdx[i]); 002802 } 002803 } 002804 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i], 002805 aRegIdx[i]+1, 002806 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn); 002807 sqlite3VdbeChangeP5(v, pik_flags); 002808 } 002809 if( !HasRowid(pTab) ) return; 002810 if( pParse->nested ){ 002811 pik_flags = 0; 002812 }else{ 002813 pik_flags = OPFLAG_NCHANGE; 002814 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID); 002815 } 002816 if( appendBias ){ 002817 pik_flags |= OPFLAG_APPEND; 002818 } 002819 if( useSeekResult ){ 002820 pik_flags |= OPFLAG_USESEEKRESULT; 002821 } 002822 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData); 002823 if( !pParse->nested ){ 002824 sqlite3VdbeAppendP4(v, pTab, P4_TABLE); 002825 } 002826 sqlite3VdbeChangeP5(v, pik_flags); 002827 } 002828 002829 /* 002830 ** Allocate cursors for the pTab table and all its indices and generate 002831 ** code to open and initialized those cursors. 002832 ** 002833 ** The cursor for the object that contains the complete data (normally 002834 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT 002835 ** ROWID table) is returned in *piDataCur. The first index cursor is 002836 ** returned in *piIdxCur. The number of indices is returned. 002837 ** 002838 ** Use iBase as the first cursor (either the *piDataCur for rowid tables 002839 ** or the first index for WITHOUT ROWID tables) if it is non-negative. 002840 ** If iBase is negative, then allocate the next available cursor. 002841 ** 002842 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. 002843 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range 002844 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the 002845 ** pTab->pIndex list. 002846 ** 002847 ** If pTab is a virtual table, then this routine is a no-op and the 002848 ** *piDataCur and *piIdxCur values are left uninitialized. 002849 */ 002850 int sqlite3OpenTableAndIndices( 002851 Parse *pParse, /* Parsing context */ 002852 Table *pTab, /* Table to be opened */ 002853 int op, /* OP_OpenRead or OP_OpenWrite */ 002854 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */ 002855 int iBase, /* Use this for the table cursor, if there is one */ 002856 u8 *aToOpen, /* If not NULL: boolean for each table and index */ 002857 int *piDataCur, /* Write the database source cursor number here */ 002858 int *piIdxCur /* Write the first index cursor number here */ 002859 ){ 002860 int i; 002861 int iDb; 002862 int iDataCur; 002863 Index *pIdx; 002864 Vdbe *v; 002865 002866 assert( op==OP_OpenRead || op==OP_OpenWrite ); 002867 assert( op==OP_OpenWrite || p5==0 ); 002868 assert( piDataCur!=0 ); 002869 assert( piIdxCur!=0 ); 002870 if( IsVirtual(pTab) ){ 002871 /* This routine is a no-op for virtual tables. Leave the output 002872 ** variables *piDataCur and *piIdxCur set to illegal cursor numbers 002873 ** for improved error detection. */ 002874 *piDataCur = *piIdxCur = -999; 002875 return 0; 002876 } 002877 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 002878 v = pParse->pVdbe; 002879 assert( v!=0 ); 002880 if( iBase<0 ) iBase = pParse->nTab; 002881 iDataCur = iBase++; 002882 *piDataCur = iDataCur; 002883 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ 002884 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); 002885 }else if( pParse->db->noSharedCache==0 ){ 002886 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); 002887 } 002888 *piIdxCur = iBase; 002889 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ 002890 int iIdxCur = iBase++; 002891 assert( pIdx->pSchema==pTab->pSchema ); 002892 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ 002893 *piDataCur = iIdxCur; 002894 p5 = 0; 002895 } 002896 if( aToOpen==0 || aToOpen[i+1] ){ 002897 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); 002898 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 002899 sqlite3VdbeChangeP5(v, p5); 002900 VdbeComment((v, "%s", pIdx->zName)); 002901 } 002902 } 002903 if( iBase>pParse->nTab ) pParse->nTab = iBase; 002904 return i; 002905 } 002906 002907 002908 #ifdef SQLITE_TEST 002909 /* 002910 ** The following global variable is incremented whenever the 002911 ** transfer optimization is used. This is used for testing 002912 ** purposes only - to make sure the transfer optimization really 002913 ** is happening when it is supposed to. 002914 */ 002915 int sqlite3_xferopt_count; 002916 #endif /* SQLITE_TEST */ 002917 002918 002919 #ifndef SQLITE_OMIT_XFER_OPT 002920 /* 002921 ** Check to see if index pSrc is compatible as a source of data 002922 ** for index pDest in an insert transfer optimization. The rules 002923 ** for a compatible index: 002924 ** 002925 ** * The index is over the same set of columns 002926 ** * The same DESC and ASC markings occurs on all columns 002927 ** * The same onError processing (OE_Abort, OE_Ignore, etc) 002928 ** * The same collating sequence on each column 002929 ** * The index has the exact same WHERE clause 002930 */ 002931 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ 002932 int i; 002933 assert( pDest && pSrc ); 002934 assert( pDest->pTable!=pSrc->pTable ); 002935 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){ 002936 return 0; /* Different number of columns */ 002937 } 002938 if( pDest->onError!=pSrc->onError ){ 002939 return 0; /* Different conflict resolution strategies */ 002940 } 002941 for(i=0; i<pSrc->nKeyCol; i++){ 002942 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ 002943 return 0; /* Different columns indexed */ 002944 } 002945 if( pSrc->aiColumn[i]==XN_EXPR ){ 002946 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); 002947 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr, 002948 pDest->aColExpr->a[i].pExpr, -1)!=0 ){ 002949 return 0; /* Different expressions in the index */ 002950 } 002951 } 002952 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ 002953 return 0; /* Different sort orders */ 002954 } 002955 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){ 002956 return 0; /* Different collating sequences */ 002957 } 002958 } 002959 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ 002960 return 0; /* Different WHERE clauses */ 002961 } 002962 002963 /* If no test above fails then the indices must be compatible */ 002964 return 1; 002965 } 002966 002967 /* 002968 ** Attempt the transfer optimization on INSERTs of the form 002969 ** 002970 ** INSERT INTO tab1 SELECT * FROM tab2; 002971 ** 002972 ** The xfer optimization transfers raw records from tab2 over to tab1. 002973 ** Columns are not decoded and reassembled, which greatly improves 002974 ** performance. Raw index records are transferred in the same way. 002975 ** 002976 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. 002977 ** There are lots of rules for determining compatibility - see comments 002978 ** embedded in the code for details. 002979 ** 002980 ** This routine returns TRUE if the optimization is guaranteed to be used. 002981 ** Sometimes the xfer optimization will only work if the destination table 002982 ** is empty - a factor that can only be determined at run-time. In that 002983 ** case, this routine generates code for the xfer optimization but also 002984 ** does a test to see if the destination table is empty and jumps over the 002985 ** xfer optimization code if the test fails. In that case, this routine 002986 ** returns FALSE so that the caller will know to go ahead and generate 002987 ** an unoptimized transfer. This routine also returns FALSE if there 002988 ** is no chance that the xfer optimization can be applied. 002989 ** 002990 ** This optimization is particularly useful at making VACUUM run faster. 002991 */ 002992 static int xferOptimization( 002993 Parse *pParse, /* Parser context */ 002994 Table *pDest, /* The table we are inserting into */ 002995 Select *pSelect, /* A SELECT statement to use as the data source */ 002996 int onError, /* How to handle constraint errors */ 002997 int iDbDest /* The database of pDest */ 002998 ){ 002999 sqlite3 *db = pParse->db; 003000 ExprList *pEList; /* The result set of the SELECT */ 003001 Table *pSrc; /* The table in the FROM clause of SELECT */ 003002 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ 003003 SrcItem *pItem; /* An element of pSelect->pSrc */ 003004 int i; /* Loop counter */ 003005 int iDbSrc; /* The database of pSrc */ 003006 int iSrc, iDest; /* Cursors from source and destination */ 003007 int addr1, addr2; /* Loop addresses */ 003008 int emptyDestTest = 0; /* Address of test for empty pDest */ 003009 int emptySrcTest = 0; /* Address of test for empty pSrc */ 003010 Vdbe *v; /* The VDBE we are building */ 003011 int regAutoinc; /* Memory register used by AUTOINC */ 003012 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ 003013 int regData, regRowid; /* Registers holding data and rowid */ 003014 003015 assert( pSelect!=0 ); 003016 if( pParse->pWith || pSelect->pWith ){ 003017 /* Do not attempt to process this query if there are an WITH clauses 003018 ** attached to it. Proceeding may generate a false "no such table: xxx" 003019 ** error if pSelect reads from a CTE named "xxx". */ 003020 return 0; 003021 } 003022 #ifndef SQLITE_OMIT_VIRTUALTABLE 003023 if( IsVirtual(pDest) ){ 003024 return 0; /* tab1 must not be a virtual table */ 003025 } 003026 #endif 003027 if( onError==OE_Default ){ 003028 if( pDest->iPKey>=0 ) onError = pDest->keyConf; 003029 if( onError==OE_Default ) onError = OE_Abort; 003030 } 003031 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ 003032 if( pSelect->pSrc->nSrc!=1 ){ 003033 return 0; /* FROM clause must have exactly one term */ 003034 } 003035 if( pSelect->pSrc->a[0].pSelect ){ 003036 return 0; /* FROM clause cannot contain a subquery */ 003037 } 003038 if( pSelect->pWhere ){ 003039 return 0; /* SELECT may not have a WHERE clause */ 003040 } 003041 if( pSelect->pOrderBy ){ 003042 return 0; /* SELECT may not have an ORDER BY clause */ 003043 } 003044 /* Do not need to test for a HAVING clause. If HAVING is present but 003045 ** there is no ORDER BY, we will get an error. */ 003046 if( pSelect->pGroupBy ){ 003047 return 0; /* SELECT may not have a GROUP BY clause */ 003048 } 003049 if( pSelect->pLimit ){ 003050 return 0; /* SELECT may not have a LIMIT clause */ 003051 } 003052 if( pSelect->pPrior ){ 003053 return 0; /* SELECT may not be a compound query */ 003054 } 003055 if( pSelect->selFlags & SF_Distinct ){ 003056 return 0; /* SELECT may not be DISTINCT */ 003057 } 003058 pEList = pSelect->pEList; 003059 assert( pEList!=0 ); 003060 if( pEList->nExpr!=1 ){ 003061 return 0; /* The result set must have exactly one column */ 003062 } 003063 assert( pEList->a[0].pExpr ); 003064 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){ 003065 return 0; /* The result set must be the special operator "*" */ 003066 } 003067 003068 /* At this point we have established that the statement is of the 003069 ** correct syntactic form to participate in this optimization. Now 003070 ** we have to check the semantics. 003071 */ 003072 pItem = pSelect->pSrc->a; 003073 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); 003074 if( pSrc==0 ){ 003075 return 0; /* FROM clause does not contain a real table */ 003076 } 003077 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){ 003078 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */ 003079 return 0; /* tab1 and tab2 may not be the same table */ 003080 } 003081 if( HasRowid(pDest)!=HasRowid(pSrc) ){ 003082 return 0; /* source and destination must both be WITHOUT ROWID or not */ 003083 } 003084 if( !IsOrdinaryTable(pSrc) ){ 003085 return 0; /* tab2 may not be a view or virtual table */ 003086 } 003087 if( pDest->nCol!=pSrc->nCol ){ 003088 return 0; /* Number of columns must be the same in tab1 and tab2 */ 003089 } 003090 if( pDest->iPKey!=pSrc->iPKey ){ 003091 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ 003092 } 003093 if( (pDest->tabFlags & TF_Strict)!=0 && (pSrc->tabFlags & TF_Strict)==0 ){ 003094 return 0; /* Cannot feed from a non-strict into a strict table */ 003095 } 003096 for(i=0; i<pDest->nCol; i++){ 003097 Column *pDestCol = &pDest->aCol[i]; 003098 Column *pSrcCol = &pSrc->aCol[i]; 003099 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS 003100 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003101 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 003102 ){ 003103 return 0; /* Neither table may have __hidden__ columns */ 003104 } 003105 #endif 003106 #ifndef SQLITE_OMIT_GENERATED_COLUMNS 003107 /* Even if tables t1 and t2 have identical schemas, if they contain 003108 ** generated columns, then this statement is semantically incorrect: 003109 ** 003110 ** INSERT INTO t2 SELECT * FROM t1; 003111 ** 003112 ** The reason is that generated column values are returned by the 003113 ** the SELECT statement on the right but the INSERT statement on the 003114 ** left wants them to be omitted. 003115 ** 003116 ** Nevertheless, this is a useful notational shorthand to tell SQLite 003117 ** to do a bulk transfer all of the content from t1 over to t2. 003118 ** 003119 ** We could, in theory, disable this (except for internal use by the 003120 ** VACUUM command where it is actually needed). But why do that? It 003121 ** seems harmless enough, and provides a useful service. 003122 */ 003123 if( (pDestCol->colFlags & COLFLAG_GENERATED) != 003124 (pSrcCol->colFlags & COLFLAG_GENERATED) ){ 003125 return 0; /* Both columns have the same generated-column type */ 003126 } 003127 /* But the transfer is only allowed if both the source and destination 003128 ** tables have the exact same expressions for generated columns. 003129 ** This requirement could be relaxed for VIRTUAL columns, I suppose. 003130 */ 003131 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){ 003132 if( sqlite3ExprCompare(0, 003133 sqlite3ColumnExpr(pSrc, pSrcCol), 003134 sqlite3ColumnExpr(pDest, pDestCol), -1)!=0 ){ 003135 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL ); 003136 testcase( pDestCol->colFlags & COLFLAG_STORED ); 003137 return 0; /* Different generator expressions */ 003138 } 003139 } 003140 #endif 003141 if( pDestCol->affinity!=pSrcCol->affinity ){ 003142 return 0; /* Affinity must be the same on all columns */ 003143 } 003144 if( sqlite3_stricmp(sqlite3ColumnColl(pDestCol), 003145 sqlite3ColumnColl(pSrcCol))!=0 ){ 003146 return 0; /* Collating sequence must be the same on all columns */ 003147 } 003148 if( pDestCol->notNull && !pSrcCol->notNull ){ 003149 return 0; /* tab2 must be NOT NULL if tab1 is */ 003150 } 003151 /* Default values for second and subsequent columns need to match. */ 003152 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){ 003153 Expr *pDestExpr = sqlite3ColumnExpr(pDest, pDestCol); 003154 Expr *pSrcExpr = sqlite3ColumnExpr(pSrc, pSrcCol); 003155 assert( pDestExpr==0 || pDestExpr->op==TK_SPAN ); 003156 assert( pDestExpr==0 || !ExprHasProperty(pDestExpr, EP_IntValue) ); 003157 assert( pSrcExpr==0 || pSrcExpr->op==TK_SPAN ); 003158 assert( pSrcExpr==0 || !ExprHasProperty(pSrcExpr, EP_IntValue) ); 003159 if( (pDestExpr==0)!=(pSrcExpr==0) 003160 || (pDestExpr!=0 && strcmp(pDestExpr->u.zToken, 003161 pSrcExpr->u.zToken)!=0) 003162 ){ 003163 return 0; /* Default values must be the same for all columns */ 003164 } 003165 } 003166 } 003167 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003168 if( IsUniqueIndex(pDestIdx) ){ 003169 destHasUniqueIdx = 1; 003170 } 003171 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ 003172 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003173 } 003174 if( pSrcIdx==0 ){ 003175 return 0; /* pDestIdx has no corresponding index in pSrc */ 003176 } 003177 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema 003178 && sqlite3FaultSim(411)==SQLITE_OK ){ 003179 /* The sqlite3FaultSim() call allows this corruption test to be 003180 ** bypassed during testing, in order to exercise other corruption tests 003181 ** further downstream. */ 003182 return 0; /* Corrupt schema - two indexes on the same btree */ 003183 } 003184 } 003185 #ifndef SQLITE_OMIT_CHECK 003186 if( pDest->pCheck 003187 && (db->mDbFlags & DBFLAG_Vacuum)==0 003188 && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) 003189 ){ 003190 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ 003191 } 003192 #endif 003193 #ifndef SQLITE_OMIT_FOREIGN_KEY 003194 /* Disallow the transfer optimization if the destination table contains 003195 ** any foreign key constraints. This is more restrictive than necessary. 003196 ** But the main beneficiary of the transfer optimization is the VACUUM 003197 ** command, and the VACUUM command disables foreign key constraints. So 003198 ** the extra complication to make this rule less restrictive is probably 003199 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] 003200 */ 003201 assert( IsOrdinaryTable(pDest) ); 003202 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->u.tab.pFKey!=0 ){ 003203 return 0; 003204 } 003205 #endif 003206 if( (db->flags & SQLITE_CountRows)!=0 ){ 003207 return 0; /* xfer opt does not play well with PRAGMA count_changes */ 003208 } 003209 003210 /* If we get this far, it means that the xfer optimization is at 003211 ** least a possibility, though it might only work if the destination 003212 ** table (tab1) is initially empty. 003213 */ 003214 #ifdef SQLITE_TEST 003215 sqlite3_xferopt_count++; 003216 #endif 003217 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema); 003218 v = sqlite3GetVdbe(pParse); 003219 sqlite3CodeVerifySchema(pParse, iDbSrc); 003220 iSrc = pParse->nTab++; 003221 iDest = pParse->nTab++; 003222 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); 003223 regData = sqlite3GetTempReg(pParse); 003224 sqlite3VdbeAddOp2(v, OP_Null, 0, regData); 003225 regRowid = sqlite3GetTempReg(pParse); 003226 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); 003227 assert( HasRowid(pDest) || destHasUniqueIdx ); 003228 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && ( 003229 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ 003230 || destHasUniqueIdx /* (2) */ 003231 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ 003232 )){ 003233 /* In some circumstances, we are able to run the xfer optimization 003234 ** only if the destination table is initially empty. Unless the 003235 ** DBFLAG_Vacuum flag is set, this block generates code to make 003236 ** that determination. If DBFLAG_Vacuum is set, then the destination 003237 ** table is always empty. 003238 ** 003239 ** Conditions under which the destination must be empty: 003240 ** 003241 ** (1) There is no INTEGER PRIMARY KEY but there are indices. 003242 ** (If the destination is not initially empty, the rowid fields 003243 ** of index entries might need to change.) 003244 ** 003245 ** (2) The destination has a unique index. (The xfer optimization 003246 ** is unable to test uniqueness.) 003247 ** 003248 ** (3) onError is something other than OE_Abort and OE_Rollback. 003249 */ 003250 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); 003251 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto); 003252 sqlite3VdbeJumpHere(v, addr1); 003253 } 003254 if( HasRowid(pSrc) ){ 003255 u8 insFlags; 003256 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); 003257 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003258 if( pDest->iPKey>=0 ){ 003259 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003260 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003261 sqlite3VdbeVerifyAbortable(v, onError); 003262 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); 003263 VdbeCoverage(v); 003264 sqlite3RowidConstraint(pParse, onError, pDest); 003265 sqlite3VdbeJumpHere(v, addr2); 003266 } 003267 autoIncStep(pParse, regAutoinc, regRowid); 003268 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){ 003269 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); 003270 }else{ 003271 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); 003272 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); 003273 } 003274 003275 if( db->mDbFlags & DBFLAG_Vacuum ){ 003276 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003277 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003278 }else{ 003279 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND|OPFLAG_PREFORMAT; 003280 } 003281 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK 003282 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003283 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003284 insFlags &= ~OPFLAG_PREFORMAT; 003285 }else 003286 #endif 003287 { 003288 sqlite3VdbeAddOp3(v, OP_RowCell, iDest, iSrc, regRowid); 003289 } 003290 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); 003291 if( (db->mDbFlags & DBFLAG_Vacuum)==0 ){ 003292 sqlite3VdbeChangeP4(v, -1, (char*)pDest, P4_TABLE); 003293 } 003294 sqlite3VdbeChangeP5(v, insFlags); 003295 003296 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); 003297 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003298 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003299 }else{ 003300 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); 003301 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); 003302 } 003303 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ 003304 u8 idxInsFlags = 0; 003305 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ 003306 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; 003307 } 003308 assert( pSrcIdx ); 003309 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); 003310 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); 003311 VdbeComment((v, "%s", pSrcIdx->zName)); 003312 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); 003313 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); 003314 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); 003315 VdbeComment((v, "%s", pDestIdx->zName)); 003316 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); 003317 if( db->mDbFlags & DBFLAG_Vacuum ){ 003318 /* This INSERT command is part of a VACUUM operation, which guarantees 003319 ** that the destination table is empty. If all indexed columns use 003320 ** collation sequence BINARY, then it can also be assumed that the 003321 ** index will be populated by inserting keys in strictly sorted 003322 ** order. In this case, instead of seeking within the b-tree as part 003323 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the 003324 ** OP_IdxInsert to seek to the point within the b-tree where each key 003325 ** should be inserted. This is faster. 003326 ** 003327 ** If any of the indexed columns use a collation sequence other than 003328 ** BINARY, this optimization is disabled. This is because the user 003329 ** might change the definition of a collation sequence and then run 003330 ** a VACUUM command. In that case keys may not be written in strictly 003331 ** sorted order. */ 003332 for(i=0; i<pSrcIdx->nColumn; i++){ 003333 const char *zColl = pSrcIdx->azColl[i]; 003334 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break; 003335 } 003336 if( i==pSrcIdx->nColumn ){ 003337 idxInsFlags = OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT; 003338 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest); 003339 sqlite3VdbeAddOp2(v, OP_RowCell, iDest, iSrc); 003340 } 003341 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){ 003342 idxInsFlags |= OPFLAG_NCHANGE; 003343 } 003344 if( idxInsFlags!=(OPFLAG_USESEEKRESULT|OPFLAG_PREFORMAT) ){ 003345 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1); 003346 if( (db->mDbFlags & DBFLAG_Vacuum)==0 003347 && !HasRowid(pDest) 003348 && IsPrimaryKeyIndex(pDestIdx) 003349 ){ 003350 codeWithoutRowidPreupdate(pParse, pDest, iDest, regData); 003351 } 003352 } 003353 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData); 003354 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND); 003355 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); 003356 sqlite3VdbeJumpHere(v, addr1); 003357 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); 003358 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003359 } 003360 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); 003361 sqlite3ReleaseTempReg(pParse, regRowid); 003362 sqlite3ReleaseTempReg(pParse, regData); 003363 if( emptyDestTest ){ 003364 sqlite3AutoincrementEnd(pParse); 003365 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); 003366 sqlite3VdbeJumpHere(v, emptyDestTest); 003367 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); 003368 return 0; 003369 }else{ 003370 return 1; 003371 } 003372 } 003373 #endif /* SQLITE_OMIT_XFER_OPT */