000001 /* 000002 ** 000003 ** The author disclaims copyright to this source code. In place of 000004 ** a legal notice, here is a blessing: 000005 ** 000006 ** May you do good and not evil. 000007 ** May you find forgiveness for yourself and forgive others. 000008 ** May you share freely, never taking more than you give. 000009 ** 000010 ************************************************************************* 000011 ** This file contains code used by the compiler to add foreign key 000012 ** support to compiled SQL statements. 000013 */ 000014 #include "sqliteInt.h" 000015 000016 #ifndef SQLITE_OMIT_FOREIGN_KEY 000017 #ifndef SQLITE_OMIT_TRIGGER 000018 000019 /* 000020 ** Deferred and Immediate FKs 000021 ** -------------------------- 000022 ** 000023 ** Foreign keys in SQLite come in two flavours: deferred and immediate. 000024 ** If an immediate foreign key constraint is violated, 000025 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current 000026 ** statement transaction rolled back. If a 000027 ** deferred foreign key constraint is violated, no action is taken 000028 ** immediately. However if the application attempts to commit the 000029 ** transaction before fixing the constraint violation, the attempt fails. 000030 ** 000031 ** Deferred constraints are implemented using a simple counter associated 000032 ** with the database handle. The counter is set to zero each time a 000033 ** database transaction is opened. Each time a statement is executed 000034 ** that causes a foreign key violation, the counter is incremented. Each 000035 ** time a statement is executed that removes an existing violation from 000036 ** the database, the counter is decremented. When the transaction is 000037 ** committed, the commit fails if the current value of the counter is 000038 ** greater than zero. This scheme has two big drawbacks: 000039 ** 000040 ** * When a commit fails due to a deferred foreign key constraint, 000041 ** there is no way to tell which foreign constraint is not satisfied, 000042 ** or which row it is not satisfied for. 000043 ** 000044 ** * If the database contains foreign key violations when the 000045 ** transaction is opened, this may cause the mechanism to malfunction. 000046 ** 000047 ** Despite these problems, this approach is adopted as it seems simpler 000048 ** than the alternatives. 000049 ** 000050 ** INSERT operations: 000051 ** 000052 ** I.1) For each FK for which the table is the child table, search 000053 ** the parent table for a match. If none is found increment the 000054 ** constraint counter. 000055 ** 000056 ** I.2) For each FK for which the table is the parent table, 000057 ** search the child table for rows that correspond to the new 000058 ** row in the parent table. Decrement the counter for each row 000059 ** found (as the constraint is now satisfied). 000060 ** 000061 ** DELETE operations: 000062 ** 000063 ** D.1) For each FK for which the table is the child table, 000064 ** search the parent table for a row that corresponds to the 000065 ** deleted row in the child table. If such a row is not found, 000066 ** decrement the counter. 000067 ** 000068 ** D.2) For each FK for which the table is the parent table, search 000069 ** the child table for rows that correspond to the deleted row 000070 ** in the parent table. For each found increment the counter. 000071 ** 000072 ** UPDATE operations: 000073 ** 000074 ** An UPDATE command requires that all 4 steps above are taken, but only 000075 ** for FK constraints for which the affected columns are actually 000076 ** modified (values must be compared at runtime). 000077 ** 000078 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. 000079 ** This simplifies the implementation a bit. 000080 ** 000081 ** For the purposes of immediate FK constraints, the OR REPLACE conflict 000082 ** resolution is considered to delete rows before the new row is inserted. 000083 ** If a delete caused by OR REPLACE violates an FK constraint, an exception 000084 ** is thrown, even if the FK constraint would be satisfied after the new 000085 ** row is inserted. 000086 ** 000087 ** Immediate constraints are usually handled similarly. The only difference 000088 ** is that the counter used is stored as part of each individual statement 000089 ** object (struct Vdbe). If, after the statement has run, its immediate 000090 ** constraint counter is greater than zero, 000091 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY 000092 ** and the statement transaction is rolled back. An exception is an INSERT 000093 ** statement that inserts a single row only (no triggers). In this case, 000094 ** instead of using a counter, an exception is thrown immediately if the 000095 ** INSERT violates a foreign key constraint. This is necessary as such 000096 ** an INSERT does not open a statement transaction. 000097 ** 000098 ** TODO: How should dropping a table be handled? How should renaming a 000099 ** table be handled? 000100 ** 000101 ** 000102 ** Query API Notes 000103 ** --------------- 000104 ** 000105 ** Before coding an UPDATE or DELETE row operation, the code-generator 000106 ** for those two operations needs to know whether or not the operation 000107 ** requires any FK processing and, if so, which columns of the original 000108 ** row are required by the FK processing VDBE code (i.e. if FKs were 000109 ** implemented using triggers, which of the old.* columns would be 000110 ** accessed). No information is required by the code-generator before 000111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE 000112 ** generation code to query for this information are: 000113 ** 000114 ** sqlite3FkRequired() - Test to see if FK processing is required. 000115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. 000116 ** 000117 ** 000118 ** Externally accessible module functions 000119 ** -------------------------------------- 000120 ** 000121 ** sqlite3FkCheck() - Check for foreign key violations. 000122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. 000123 ** sqlite3FkDelete() - Delete an FKey structure. 000124 */ 000125 000126 /* 000127 ** VDBE Calling Convention 000128 ** ----------------------- 000129 ** 000130 ** Example: 000131 ** 000132 ** For the following INSERT statement: 000133 ** 000134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); 000135 ** INSERT INTO t1 VALUES(1, 2, 3.1); 000136 ** 000137 ** Register (x): 2 (type integer) 000138 ** Register (x+1): 1 (type integer) 000139 ** Register (x+2): NULL (type NULL) 000140 ** Register (x+3): 3.1 (type real) 000141 */ 000142 000143 /* 000144 ** A foreign key constraint requires that the key columns in the parent 000145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. 000146 ** Given that pParent is the parent table for foreign key constraint pFKey, 000147 ** search the schema for a unique index on the parent key columns. 000148 ** 000149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY 000150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx 000151 ** is set to point to the unique index. 000152 ** 000153 ** If the parent key consists of a single column (the foreign key constraint 000154 ** is not a composite foreign key), output variable *paiCol is set to NULL. 000155 ** Otherwise, it is set to point to an allocated array of size N, where 000156 ** N is the number of columns in the parent key. The first element of the 000157 ** array is the index of the child table column that is mapped by the FK 000158 ** constraint to the parent table column stored in the left-most column 000159 ** of index *ppIdx. The second element of the array is the index of the 000160 ** child table column that corresponds to the second left-most column of 000161 ** *ppIdx, and so on. 000162 ** 000163 ** If the required index cannot be found, either because: 000164 ** 000165 ** 1) The named parent key columns do not exist, or 000166 ** 000167 ** 2) The named parent key columns do exist, but are not subject to a 000168 ** UNIQUE or PRIMARY KEY constraint, or 000169 ** 000170 ** 3) No parent key columns were provided explicitly as part of the 000171 ** foreign key definition, and the parent table does not have a 000172 ** PRIMARY KEY, or 000173 ** 000174 ** 4) No parent key columns were provided explicitly as part of the 000175 ** foreign key definition, and the PRIMARY KEY of the parent table 000176 ** consists of a different number of columns to the child key in 000177 ** the child table. 000178 ** 000179 ** then non-zero is returned, and a "foreign key mismatch" error loaded 000180 ** into pParse. If an OOM error occurs, non-zero is returned and the 000181 ** pParse->db->mallocFailed flag is set. 000182 */ 000183 int sqlite3FkLocateIndex( 000184 Parse *pParse, /* Parse context to store any error in */ 000185 Table *pParent, /* Parent table of FK constraint pFKey */ 000186 FKey *pFKey, /* Foreign key to find index for */ 000187 Index **ppIdx, /* OUT: Unique index on parent table */ 000188 int **paiCol /* OUT: Map of index columns in pFKey */ 000189 ){ 000190 Index *pIdx = 0; /* Value to return via *ppIdx */ 000191 int *aiCol = 0; /* Value to return via *paiCol */ 000192 int nCol = pFKey->nCol; /* Number of columns in parent key */ 000193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ 000194 000195 /* The caller is responsible for zeroing output parameters. */ 000196 assert( ppIdx && *ppIdx==0 ); 000197 assert( !paiCol || *paiCol==0 ); 000198 assert( pParse ); 000199 000200 /* If this is a non-composite (single column) foreign key, check if it 000201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx 000202 ** and *paiCol set to zero and return early. 000203 ** 000204 ** Otherwise, for a composite foreign key (more than one column), allocate 000205 ** space for the aiCol array (returned via output parameter *paiCol). 000206 ** Non-composite foreign keys do not require the aiCol array. 000207 */ 000208 if( nCol==1 ){ 000209 /* The FK maps to the IPK if any of the following are true: 000210 ** 000211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly 000212 ** mapped to the primary key of table pParent, or 000213 ** 2) The FK is explicitly mapped to a column declared as INTEGER 000214 ** PRIMARY KEY. 000215 */ 000216 if( pParent->iPKey>=0 ){ 000217 if( !zKey ) return 0; 000218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zCnName, zKey) ){ 000219 return 0; 000220 } 000221 } 000222 }else if( paiCol ){ 000223 assert( nCol>1 ); 000224 aiCol = (int *)sqlite3DbMallocRawNN(pParse->db, nCol*sizeof(int)); 000225 if( !aiCol ) return 1; 000226 *paiCol = aiCol; 000227 } 000228 000229 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ 000230 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) && pIdx->pPartIdxWhere==0 ){ 000231 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number 000232 ** of columns. If each indexed column corresponds to a foreign key 000233 ** column of pFKey, then this index is a winner. */ 000234 000235 if( zKey==0 ){ 000236 /* If zKey is NULL, then this foreign key is implicitly mapped to 000237 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be 000238 ** identified by the test. */ 000239 if( IsPrimaryKeyIndex(pIdx) ){ 000240 if( aiCol ){ 000241 int i; 000242 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; 000243 } 000244 break; 000245 } 000246 }else{ 000247 /* If zKey is non-NULL, then this foreign key was declared to 000248 ** map to an explicit list of columns in table pParent. Check if this 000249 ** index matches those columns. Also, check that the index uses 000250 ** the default collation sequences for each column. */ 000251 int i, j; 000252 for(i=0; i<nCol; i++){ 000253 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ 000254 const char *zDfltColl; /* Def. collation for column */ 000255 char *zIdxCol; /* Name of indexed column */ 000256 000257 if( iCol<0 ) break; /* No foreign keys against expression indexes */ 000258 000259 /* If the index uses a collation sequence that is different from 000260 ** the default collation sequence for the column, this index is 000261 ** unusable. Bail out early in this case. */ 000262 zDfltColl = sqlite3ColumnColl(&pParent->aCol[iCol]); 000263 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; 000264 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; 000265 000266 zIdxCol = pParent->aCol[iCol].zCnName; 000267 for(j=0; j<nCol; j++){ 000268 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ 000269 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; 000270 break; 000271 } 000272 } 000273 if( j==nCol ) break; 000274 } 000275 if( i==nCol ) break; /* pIdx is usable */ 000276 } 000277 } 000278 } 000279 000280 if( !pIdx ){ 000281 if( !pParse->disableTriggers ){ 000282 sqlite3ErrorMsg(pParse, 000283 "foreign key mismatch - \"%w\" referencing \"%w\"", 000284 pFKey->pFrom->zName, pFKey->zTo); 000285 } 000286 sqlite3DbFree(pParse->db, aiCol); 000287 return 1; 000288 } 000289 000290 *ppIdx = pIdx; 000291 return 0; 000292 } 000293 000294 /* 000295 ** This function is called when a row is inserted into or deleted from the 000296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed 000297 ** on the child table of pFKey, this function is invoked twice for each row 000298 ** affected - once to "delete" the old row, and then again to "insert" the 000299 ** new row. 000300 ** 000301 ** Each time it is called, this function generates VDBE code to locate the 000302 ** row in the parent table that corresponds to the row being inserted into 000303 ** or deleted from the child table. If the parent row can be found, no 000304 ** special action is taken. Otherwise, if the parent row can *not* be 000305 ** found in the parent table: 000306 ** 000307 ** Operation | FK type | Action taken 000308 ** -------------------------------------------------------------------------- 000309 ** INSERT immediate Increment the "immediate constraint counter". 000310 ** 000311 ** DELETE immediate Decrement the "immediate constraint counter". 000312 ** 000313 ** INSERT deferred Increment the "deferred constraint counter". 000314 ** 000315 ** DELETE deferred Decrement the "deferred constraint counter". 000316 ** 000317 ** These operations are identified in the comment at the top of this file 000318 ** (fkey.c) as "I.1" and "D.1". 000319 */ 000320 static void fkLookupParent( 000321 Parse *pParse, /* Parse context */ 000322 int iDb, /* Index of database housing pTab */ 000323 Table *pTab, /* Parent table of FK pFKey */ 000324 Index *pIdx, /* Unique index on parent key columns in pTab */ 000325 FKey *pFKey, /* Foreign key constraint */ 000326 int *aiCol, /* Map from parent key columns to child table columns */ 000327 int regData, /* Address of array containing child table row */ 000328 int nIncr, /* Increment constraint counter by this */ 000329 int isIgnore /* If true, pretend pTab contains all NULL values */ 000330 ){ 000331 int i; /* Iterator variable */ 000332 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ 000333 int iCur = pParse->nTab - 1; /* Cursor number to use */ 000334 int iOk = sqlite3VdbeMakeLabel(pParse); /* jump here if parent key found */ 000335 000336 sqlite3VdbeVerifyAbortable(v, 000337 (!pFKey->isDeferred 000338 && !(pParse->db->flags & SQLITE_DeferFKs) 000339 && !pParse->pToplevel 000340 && !pParse->isMultiWrite) ? OE_Abort : OE_Ignore); 000341 000342 /* If nIncr is less than zero, then check at runtime if there are any 000343 ** outstanding constraints to resolve. If there are not, there is no need 000344 ** to check if deleting this row resolves any outstanding violations. 000345 ** 000346 ** Check if any of the key columns in the child table row are NULL. If 000347 ** any are, then the constraint is considered satisfied. No need to 000348 ** search for a matching row in the parent table. */ 000349 if( nIncr<0 ){ 000350 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); 000351 VdbeCoverage(v); 000352 } 000353 for(i=0; i<pFKey->nCol; i++){ 000354 int iReg = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) + regData + 1; 000355 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); 000356 } 000357 000358 if( isIgnore==0 ){ 000359 if( pIdx==0 ){ 000360 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY 000361 ** column of the parent table (table pTab). */ 000362 int iMustBeInt; /* Address of MustBeInt instruction */ 000363 int regTemp = sqlite3GetTempReg(pParse); 000364 000365 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. 000366 ** apply the affinity of the parent key). If this fails, then there 000367 ** is no matching parent key. Before using MustBeInt, make a copy of 000368 ** the value. Otherwise, the value inserted into the child key column 000369 ** will have INTEGER affinity applied to it, which may not be correct. */ 000370 sqlite3VdbeAddOp2(v, OP_SCopy, 000371 sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[0])+1+regData, regTemp); 000372 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); 000373 VdbeCoverage(v); 000374 000375 /* If the parent table is the same as the child table, and we are about 000376 ** to increment the constraint-counter (i.e. this is an INSERT operation), 000377 ** then check if the row being inserted matches itself. If so, do not 000378 ** increment the constraint-counter. */ 000379 if( pTab==pFKey->pFrom && nIncr==1 ){ 000380 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); 000381 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); 000382 } 000383 000384 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); 000385 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); 000386 sqlite3VdbeGoto(v, iOk); 000387 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); 000388 sqlite3VdbeJumpHere(v, iMustBeInt); 000389 sqlite3ReleaseTempReg(pParse, regTemp); 000390 }else{ 000391 int nCol = pFKey->nCol; 000392 int regTemp = sqlite3GetTempRange(pParse, nCol); 000393 000394 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); 000395 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 000396 for(i=0; i<nCol; i++){ 000397 sqlite3VdbeAddOp2(v, OP_Copy, 000398 sqlite3TableColumnToStorage(pFKey->pFrom, aiCol[i])+1+regData, 000399 regTemp+i); 000400 } 000401 000402 /* If the parent table is the same as the child table, and we are about 000403 ** to increment the constraint-counter (i.e. this is an INSERT operation), 000404 ** then check if the row being inserted matches itself. If so, do not 000405 ** increment the constraint-counter. 000406 ** 000407 ** If any of the parent-key values are NULL, then the row cannot match 000408 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any 000409 ** of the parent-key values are NULL (at this point it is known that 000410 ** none of the child key values are). 000411 */ 000412 if( pTab==pFKey->pFrom && nIncr==1 ){ 000413 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; 000414 for(i=0; i<nCol; i++){ 000415 int iChild = sqlite3TableColumnToStorage(pFKey->pFrom,aiCol[i]) 000416 +1+regData; 000417 int iParent = 1+regData; 000418 iParent += sqlite3TableColumnToStorage(pIdx->pTable, 000419 pIdx->aiColumn[i]); 000420 assert( pIdx->aiColumn[i]>=0 ); 000421 assert( aiCol[i]!=pTab->iPKey ); 000422 if( pIdx->aiColumn[i]==pTab->iPKey ){ 000423 /* The parent key is a composite key that includes the IPK column */ 000424 iParent = regData; 000425 } 000426 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); 000427 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); 000428 } 000429 sqlite3VdbeGoto(v, iOk); 000430 } 000431 000432 sqlite3VdbeAddOp4(v, OP_Affinity, regTemp, nCol, 0, 000433 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); 000434 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regTemp, nCol); 000435 VdbeCoverage(v); 000436 sqlite3ReleaseTempRange(pParse, regTemp, nCol); 000437 } 000438 } 000439 000440 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) 000441 && !pParse->pToplevel 000442 && !pParse->isMultiWrite 000443 ){ 000444 /* Special case: If this is an INSERT statement that will insert exactly 000445 ** one row into the table, raise a constraint immediately instead of 000446 ** incrementing a counter. This is necessary as the VM code is being 000447 ** generated for will not open a statement transaction. */ 000448 assert( nIncr==1 ); 000449 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 000450 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 000451 }else{ 000452 if( nIncr>0 && pFKey->isDeferred==0 ){ 000453 sqlite3MayAbort(pParse); 000454 } 000455 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 000456 } 000457 000458 sqlite3VdbeResolveLabel(v, iOk); 000459 sqlite3VdbeAddOp1(v, OP_Close, iCur); 000460 } 000461 000462 000463 /* 000464 ** Return an Expr object that refers to a memory register corresponding 000465 ** to column iCol of table pTab. 000466 ** 000467 ** regBase is the first of an array of register that contains the data 000468 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first 000469 ** column. regBase+2 holds the second column, and so forth. 000470 */ 000471 static Expr *exprTableRegister( 000472 Parse *pParse, /* Parsing and code generating context */ 000473 Table *pTab, /* The table whose content is at r[regBase]... */ 000474 int regBase, /* Contents of table pTab */ 000475 i16 iCol /* Which column of pTab is desired */ 000476 ){ 000477 Expr *pExpr; 000478 Column *pCol; 000479 const char *zColl; 000480 sqlite3 *db = pParse->db; 000481 000482 pExpr = sqlite3Expr(db, TK_REGISTER, 0); 000483 if( pExpr ){ 000484 if( iCol>=0 && iCol!=pTab->iPKey ){ 000485 pCol = &pTab->aCol[iCol]; 000486 pExpr->iTable = regBase + sqlite3TableColumnToStorage(pTab,iCol) + 1; 000487 pExpr->affExpr = pCol->affinity; 000488 zColl = sqlite3ColumnColl(pCol); 000489 if( zColl==0 ) zColl = db->pDfltColl->zName; 000490 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); 000491 }else{ 000492 pExpr->iTable = regBase; 000493 pExpr->affExpr = SQLITE_AFF_INTEGER; 000494 } 000495 } 000496 return pExpr; 000497 } 000498 000499 /* 000500 ** Return an Expr object that refers to column iCol of table pTab which 000501 ** has cursor iCur. 000502 */ 000503 static Expr *exprTableColumn( 000504 sqlite3 *db, /* The database connection */ 000505 Table *pTab, /* The table whose column is desired */ 000506 int iCursor, /* The open cursor on the table */ 000507 i16 iCol /* The column that is wanted */ 000508 ){ 000509 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); 000510 if( pExpr ){ 000511 assert( ExprUseYTab(pExpr) ); 000512 pExpr->y.pTab = pTab; 000513 pExpr->iTable = iCursor; 000514 pExpr->iColumn = iCol; 000515 } 000516 return pExpr; 000517 } 000518 000519 /* 000520 ** This function is called to generate code executed when a row is deleted 000521 ** from the parent table of foreign key constraint pFKey and, if pFKey is 000522 ** deferred, when a row is inserted into the same table. When generating 000523 ** code for an SQL UPDATE operation, this function may be called twice - 000524 ** once to "delete" the old row and once to "insert" the new row. 000525 ** 000526 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease 000527 ** the number of FK violations in the db) or +1 when deleting one (as this 000528 ** may increase the number of FK constraint problems). 000529 ** 000530 ** The code generated by this function scans through the rows in the child 000531 ** table that correspond to the parent table row being deleted or inserted. 000532 ** For each child row found, one of the following actions is taken: 000533 ** 000534 ** Operation | FK type | Action taken 000535 ** -------------------------------------------------------------------------- 000536 ** DELETE immediate Increment the "immediate constraint counter". 000537 ** 000538 ** INSERT immediate Decrement the "immediate constraint counter". 000539 ** 000540 ** DELETE deferred Increment the "deferred constraint counter". 000541 ** 000542 ** INSERT deferred Decrement the "deferred constraint counter". 000543 ** 000544 ** These operations are identified in the comment at the top of this file 000545 ** (fkey.c) as "I.2" and "D.2". 000546 */ 000547 static void fkScanChildren( 000548 Parse *pParse, /* Parse context */ 000549 SrcList *pSrc, /* The child table to be scanned */ 000550 Table *pTab, /* The parent table */ 000551 Index *pIdx, /* Index on parent covering the foreign key */ 000552 FKey *pFKey, /* The foreign key linking pSrc to pTab */ 000553 int *aiCol, /* Map from pIdx cols to child table cols */ 000554 int regData, /* Parent row data starts here */ 000555 int nIncr /* Amount to increment deferred counter by */ 000556 ){ 000557 sqlite3 *db = pParse->db; /* Database handle */ 000558 int i; /* Iterator variable */ 000559 Expr *pWhere = 0; /* WHERE clause to scan with */ 000560 NameContext sNameContext; /* Context used to resolve WHERE clause */ 000561 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ 000562 int iFkIfZero = 0; /* Address of OP_FkIfZero */ 000563 Vdbe *v = sqlite3GetVdbe(pParse); 000564 000565 assert( pIdx==0 || pIdx->pTable==pTab ); 000566 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); 000567 assert( pIdx!=0 || pFKey->nCol==1 ); 000568 assert( pIdx!=0 || HasRowid(pTab) ); 000569 000570 if( nIncr<0 ){ 000571 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); 000572 VdbeCoverage(v); 000573 } 000574 000575 /* Create an Expr object representing an SQL expression like: 000576 ** 000577 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... 000578 ** 000579 ** The collation sequence used for the comparison should be that of 000580 ** the parent key columns. The affinity of the parent key column should 000581 ** be applied to each child key value before the comparison takes place. 000582 */ 000583 for(i=0; i<pFKey->nCol; i++){ 000584 Expr *pLeft; /* Value from parent table row */ 000585 Expr *pRight; /* Column ref to child table */ 000586 Expr *pEq; /* Expression (pLeft = pRight) */ 000587 i16 iCol; /* Index of column in child table */ 000588 const char *zCol; /* Name of column in child table */ 000589 000590 iCol = pIdx ? pIdx->aiColumn[i] : -1; 000591 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 000592 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 000593 assert( iCol>=0 ); 000594 zCol = pFKey->pFrom->aCol[iCol].zCnName; 000595 pRight = sqlite3Expr(db, TK_ID, zCol); 000596 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight); 000597 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 000598 } 000599 000600 /* If the child table is the same as the parent table, then add terms 000601 ** to the WHERE clause that prevent this entry from being scanned. 000602 ** The added WHERE clause terms are like this: 000603 ** 000604 ** $current_rowid!=rowid 000605 ** NOT( $current_a==a AND $current_b==b AND ... ) 000606 ** 000607 ** The first form is used for rowid tables. The second form is used 000608 ** for WITHOUT ROWID tables. In the second form, the *parent* key is 000609 ** (a,b,...). Either the parent or primary key could be used to 000610 ** uniquely identify the current row, but the parent key is more convenient 000611 ** as the required values have already been loaded into registers 000612 ** by the caller. 000613 */ 000614 if( pTab==pFKey->pFrom && nIncr>0 ){ 000615 Expr *pNe; /* Expression (pLeft != pRight) */ 000616 Expr *pLeft; /* Value from parent table row */ 000617 Expr *pRight; /* Column ref to child table */ 000618 if( HasRowid(pTab) ){ 000619 pLeft = exprTableRegister(pParse, pTab, regData, -1); 000620 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); 000621 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight); 000622 }else{ 000623 Expr *pEq, *pAll = 0; 000624 assert( pIdx!=0 ); 000625 for(i=0; i<pIdx->nKeyCol; i++){ 000626 i16 iCol = pIdx->aiColumn[i]; 000627 assert( iCol>=0 ); 000628 pLeft = exprTableRegister(pParse, pTab, regData, iCol); 000629 pRight = sqlite3Expr(db, TK_ID, pTab->aCol[iCol].zCnName); 000630 pEq = sqlite3PExpr(pParse, TK_IS, pLeft, pRight); 000631 pAll = sqlite3ExprAnd(pParse, pAll, pEq); 000632 } 000633 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0); 000634 } 000635 pWhere = sqlite3ExprAnd(pParse, pWhere, pNe); 000636 } 000637 000638 /* Resolve the references in the WHERE clause. */ 000639 memset(&sNameContext, 0, sizeof(NameContext)); 000640 sNameContext.pSrcList = pSrc; 000641 sNameContext.pParse = pParse; 000642 sqlite3ResolveExprNames(&sNameContext, pWhere); 000643 000644 /* Create VDBE to loop through the entries in pSrc that match the WHERE 000645 ** clause. For each row found, increment either the deferred or immediate 000646 ** foreign key constraint counter. */ 000647 if( pParse->nErr==0 ){ 000648 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0, 0); 000649 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); 000650 if( pWInfo ){ 000651 sqlite3WhereEnd(pWInfo); 000652 } 000653 } 000654 000655 /* Clean up the WHERE clause constructed above. */ 000656 sqlite3ExprDelete(db, pWhere); 000657 if( iFkIfZero ){ 000658 sqlite3VdbeJumpHereOrPopInst(v, iFkIfZero); 000659 } 000660 } 000661 000662 /* 000663 ** This function returns a linked list of FKey objects (connected by 000664 ** FKey.pNextTo) holding all children of table pTab. For example, 000665 ** given the following schema: 000666 ** 000667 ** CREATE TABLE t1(a PRIMARY KEY); 000668 ** CREATE TABLE t2(b REFERENCES t1(a); 000669 ** 000670 ** Calling this function with table "t1" as an argument returns a pointer 000671 ** to the FKey structure representing the foreign key constraint on table 000672 ** "t2". Calling this function with "t2" as the argument would return a 000673 ** NULL pointer (as there are no FK constraints for which t2 is the parent 000674 ** table). 000675 */ 000676 FKey *sqlite3FkReferences(Table *pTab){ 000677 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); 000678 } 000679 000680 /* 000681 ** The second argument is a Trigger structure allocated by the 000682 ** fkActionTrigger() routine. This function deletes the Trigger structure 000683 ** and all of its sub-components. 000684 ** 000685 ** The Trigger structure or any of its sub-components may be allocated from 000686 ** the lookaside buffer belonging to database handle dbMem. 000687 */ 000688 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ 000689 if( p ){ 000690 TriggerStep *pStep = p->step_list; 000691 sqlite3ExprDelete(dbMem, pStep->pWhere); 000692 sqlite3ExprListDelete(dbMem, pStep->pExprList); 000693 sqlite3SelectDelete(dbMem, pStep->pSelect); 000694 sqlite3ExprDelete(dbMem, p->pWhen); 000695 sqlite3DbFree(dbMem, p); 000696 } 000697 } 000698 000699 /* 000700 ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys 000701 ** in a particular database. This needs to happen when the schema 000702 ** changes. 000703 */ 000704 void sqlite3FkClearTriggerCache(sqlite3 *db, int iDb){ 000705 HashElem *k; 000706 Hash *pHash = &db->aDb[iDb].pSchema->tblHash; 000707 for(k=sqliteHashFirst(pHash); k; k=sqliteHashNext(k)){ 000708 Table *pTab = sqliteHashData(k); 000709 FKey *pFKey; 000710 if( !IsOrdinaryTable(pTab) ) continue; 000711 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 000712 fkTriggerDelete(db, pFKey->apTrigger[0]); pFKey->apTrigger[0] = 0; 000713 fkTriggerDelete(db, pFKey->apTrigger[1]); pFKey->apTrigger[1] = 0; 000714 } 000715 } 000716 } 000717 000718 /* 000719 ** This function is called to generate code that runs when table pTab is 000720 ** being dropped from the database. The SrcList passed as the second argument 000721 ** to this function contains a single entry guaranteed to resolve to 000722 ** table pTab. 000723 ** 000724 ** Normally, no code is required. However, if either 000725 ** 000726 ** (a) The table is the parent table of a FK constraint, or 000727 ** (b) The table is the child table of a deferred FK constraint and it is 000728 ** determined at runtime that there are outstanding deferred FK 000729 ** constraint violations in the database, 000730 ** 000731 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping 000732 ** the table from the database. Triggers are disabled while running this 000733 ** DELETE, but foreign key actions are not. 000734 */ 000735 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ 000736 sqlite3 *db = pParse->db; 000737 if( (db->flags&SQLITE_ForeignKeys) && IsOrdinaryTable(pTab) ){ 000738 int iSkip = 0; 000739 Vdbe *v = sqlite3GetVdbe(pParse); 000740 000741 assert( v ); /* VDBE has already been allocated */ 000742 assert( IsOrdinaryTable(pTab) ); 000743 if( sqlite3FkReferences(pTab)==0 ){ 000744 /* Search for a deferred foreign key constraint for which this table 000745 ** is the child table. If one cannot be found, return without 000746 ** generating any VDBE code. If one can be found, then jump over 000747 ** the entire DELETE if there are no outstanding deferred constraints 000748 ** when this statement is run. */ 000749 FKey *p; 000750 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 000751 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; 000752 } 000753 if( !p ) return; 000754 iSkip = sqlite3VdbeMakeLabel(pParse); 000755 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); 000756 } 000757 000758 pParse->disableTriggers = 1; 000759 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0, 0, 0); 000760 pParse->disableTriggers = 0; 000761 000762 /* If the DELETE has generated immediate foreign key constraint 000763 ** violations, halt the VDBE and return an error at this point, before 000764 ** any modifications to the schema are made. This is because statement 000765 ** transactions are not able to rollback schema changes. 000766 ** 000767 ** If the SQLITE_DeferFKs flag is set, then this is not required, as 000768 ** the statement transaction will not be rolled back even if FK 000769 ** constraints are violated. 000770 */ 000771 if( (db->flags & SQLITE_DeferFKs)==0 ){ 000772 sqlite3VdbeVerifyAbortable(v, OE_Abort); 000773 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); 000774 VdbeCoverage(v); 000775 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, 000776 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); 000777 } 000778 000779 if( iSkip ){ 000780 sqlite3VdbeResolveLabel(v, iSkip); 000781 } 000782 } 000783 } 000784 000785 000786 /* 000787 ** The second argument points to an FKey object representing a foreign key 000788 ** for which pTab is the child table. An UPDATE statement against pTab 000789 ** is currently being processed. For each column of the table that is 000790 ** actually updated, the corresponding element in the aChange[] array 000791 ** is zero or greater (if a column is unmodified the corresponding element 000792 ** is set to -1). If the rowid column is modified by the UPDATE statement 000793 ** the bChngRowid argument is non-zero. 000794 ** 000795 ** This function returns true if any of the columns that are part of the 000796 ** child key for FK constraint *p are modified. 000797 */ 000798 static int fkChildIsModified( 000799 Table *pTab, /* Table being updated */ 000800 FKey *p, /* Foreign key for which pTab is the child */ 000801 int *aChange, /* Array indicating modified columns */ 000802 int bChngRowid /* True if rowid is modified by this update */ 000803 ){ 000804 int i; 000805 for(i=0; i<p->nCol; i++){ 000806 int iChildKey = p->aCol[i].iFrom; 000807 if( aChange[iChildKey]>=0 ) return 1; 000808 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; 000809 } 000810 return 0; 000811 } 000812 000813 /* 000814 ** The second argument points to an FKey object representing a foreign key 000815 ** for which pTab is the parent table. An UPDATE statement against pTab 000816 ** is currently being processed. For each column of the table that is 000817 ** actually updated, the corresponding element in the aChange[] array 000818 ** is zero or greater (if a column is unmodified the corresponding element 000819 ** is set to -1). If the rowid column is modified by the UPDATE statement 000820 ** the bChngRowid argument is non-zero. 000821 ** 000822 ** This function returns true if any of the columns that are part of the 000823 ** parent key for FK constraint *p are modified. 000824 */ 000825 static int fkParentIsModified( 000826 Table *pTab, 000827 FKey *p, 000828 int *aChange, 000829 int bChngRowid 000830 ){ 000831 int i; 000832 for(i=0; i<p->nCol; i++){ 000833 char *zKey = p->aCol[i].zCol; 000834 int iKey; 000835 for(iKey=0; iKey<pTab->nCol; iKey++){ 000836 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ 000837 Column *pCol = &pTab->aCol[iKey]; 000838 if( zKey ){ 000839 if( 0==sqlite3StrICmp(pCol->zCnName, zKey) ) return 1; 000840 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ 000841 return 1; 000842 } 000843 } 000844 } 000845 } 000846 return 0; 000847 } 000848 000849 /* 000850 ** Return true if the parser passed as the first argument is being 000851 ** used to code a trigger that is really a "SET NULL" action belonging 000852 ** to trigger pFKey. 000853 */ 000854 static int isSetNullAction(Parse *pParse, FKey *pFKey){ 000855 Parse *pTop = sqlite3ParseToplevel(pParse); 000856 if( pTop->pTriggerPrg ){ 000857 Trigger *p = pTop->pTriggerPrg->pTrigger; 000858 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) 000859 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) 000860 ){ 000861 assert( (pTop->db->flags & SQLITE_FkNoAction)==0 ); 000862 return 1; 000863 } 000864 } 000865 return 0; 000866 } 000867 000868 /* 000869 ** This function is called when inserting, deleting or updating a row of 000870 ** table pTab to generate VDBE code to perform foreign key constraint 000871 ** processing for the operation. 000872 ** 000873 ** For a DELETE operation, parameter regOld is passed the index of the 000874 ** first register in an array of (pTab->nCol+1) registers containing the 000875 ** rowid of the row being deleted, followed by each of the column values 000876 ** of the row being deleted, from left to right. Parameter regNew is passed 000877 ** zero in this case. 000878 ** 000879 ** For an INSERT operation, regOld is passed zero and regNew is passed the 000880 ** first register of an array of (pTab->nCol+1) registers containing the new 000881 ** row data. 000882 ** 000883 ** For an UPDATE operation, this function is called twice. Once before 000884 ** the original record is deleted from the table using the calling convention 000885 ** described for DELETE. Then again after the original record is deleted 000886 ** but before the new record is inserted using the INSERT convention. 000887 */ 000888 void sqlite3FkCheck( 000889 Parse *pParse, /* Parse context */ 000890 Table *pTab, /* Row is being deleted from this table */ 000891 int regOld, /* Previous row data is stored here */ 000892 int regNew, /* New row data is stored here */ 000893 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 000894 int bChngRowid /* True if rowid is UPDATEd */ 000895 ){ 000896 sqlite3 *db = pParse->db; /* Database handle */ 000897 FKey *pFKey; /* Used to iterate through FKs */ 000898 int iDb; /* Index of database containing pTab */ 000899 const char *zDb; /* Name of database containing pTab */ 000900 int isIgnoreErrors = pParse->disableTriggers; 000901 000902 /* Exactly one of regOld and regNew should be non-zero. */ 000903 assert( (regOld==0)!=(regNew==0) ); 000904 000905 /* If foreign-keys are disabled, this function is a no-op. */ 000906 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; 000907 if( !IsOrdinaryTable(pTab) ) return; 000908 000909 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 000910 zDb = db->aDb[iDb].zDbSName; 000911 000912 /* Loop through all the foreign key constraints for which pTab is the 000913 ** child table (the table that the foreign key definition is part of). */ 000914 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pFKey->pNextFrom){ 000915 Table *pTo; /* Parent table of foreign key pFKey */ 000916 Index *pIdx = 0; /* Index on key columns in pTo */ 000917 int *aiFree = 0; 000918 int *aiCol; 000919 int iCol; 000920 int i; 000921 int bIgnore = 0; 000922 000923 if( aChange 000924 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 000925 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 000926 ){ 000927 continue; 000928 } 000929 000930 /* Find the parent table of this foreign key. Also find a unique index 000931 ** on the parent key columns in the parent table. If either of these 000932 ** schema items cannot be located, set an error in pParse and return 000933 ** early. */ 000934 if( pParse->disableTriggers ){ 000935 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); 000936 }else{ 000937 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); 000938 } 000939 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ 000940 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); 000941 if( !isIgnoreErrors || db->mallocFailed ) return; 000942 if( pTo==0 ){ 000943 /* If isIgnoreErrors is true, then a table is being dropped. In this 000944 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped 000945 ** before actually dropping it in order to check FK constraints. 000946 ** If the parent table of an FK constraint on the current table is 000947 ** missing, behave as if it is empty. i.e. decrement the relevant 000948 ** FK counter for each row of the current table with non-NULL keys. 000949 */ 000950 Vdbe *v = sqlite3GetVdbe(pParse); 000951 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; 000952 for(i=0; i<pFKey->nCol; i++){ 000953 int iFromCol, iReg; 000954 iFromCol = pFKey->aCol[i].iFrom; 000955 iReg = sqlite3TableColumnToStorage(pFKey->pFrom,iFromCol) + regOld+1; 000956 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); 000957 } 000958 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); 000959 } 000960 continue; 000961 } 000962 assert( pFKey->nCol==1 || (aiFree && pIdx) ); 000963 000964 if( aiFree ){ 000965 aiCol = aiFree; 000966 }else{ 000967 iCol = pFKey->aCol[0].iFrom; 000968 aiCol = &iCol; 000969 } 000970 for(i=0; i<pFKey->nCol; i++){ 000971 if( aiCol[i]==pTab->iPKey ){ 000972 aiCol[i] = -1; 000973 } 000974 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 000975 #ifndef SQLITE_OMIT_AUTHORIZATION 000976 /* Request permission to read the parent key columns. If the 000977 ** authorization callback returns SQLITE_IGNORE, behave as if any 000978 ** values read from the parent table are NULL. */ 000979 if( db->xAuth ){ 000980 int rcauth; 000981 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zCnName; 000982 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); 000983 bIgnore = (rcauth==SQLITE_IGNORE); 000984 } 000985 #endif 000986 } 000987 000988 /* Take a shared-cache advisory read-lock on the parent table. Allocate 000989 ** a cursor to use to search the unique index on the parent key columns 000990 ** in the parent table. */ 000991 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); 000992 pParse->nTab++; 000993 000994 if( regOld!=0 ){ 000995 /* A row is being removed from the child table. Search for the parent. 000996 ** If the parent does not exist, removing the child row resolves an 000997 ** outstanding foreign key constraint violation. */ 000998 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); 000999 } 001000 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ 001001 /* A row is being added to the child table. If a parent row cannot 001002 ** be found, adding the child row has violated the FK constraint. 001003 ** 001004 ** If this operation is being performed as part of a trigger program 001005 ** that is actually a "SET NULL" action belonging to this very 001006 ** foreign key, then omit this scan altogether. As all child key 001007 ** values are guaranteed to be NULL, it is not possible for adding 001008 ** this row to cause an FK violation. */ 001009 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); 001010 } 001011 001012 sqlite3DbFree(db, aiFree); 001013 } 001014 001015 /* Loop through all the foreign key constraints that refer to this table. 001016 ** (the "child" constraints) */ 001017 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 001018 Index *pIdx = 0; /* Foreign key index for pFKey */ 001019 SrcList *pSrc; 001020 int *aiCol = 0; 001021 001022 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ 001023 continue; 001024 } 001025 001026 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 001027 && !pParse->pToplevel && !pParse->isMultiWrite 001028 ){ 001029 assert( regOld==0 && regNew!=0 ); 001030 /* Inserting a single row into a parent table cannot cause (or fix) 001031 ** an immediate foreign key violation. So do nothing in this case. */ 001032 continue; 001033 } 001034 001035 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ 001036 if( !isIgnoreErrors || db->mallocFailed ) return; 001037 continue; 001038 } 001039 assert( aiCol || pFKey->nCol==1 ); 001040 001041 /* Create a SrcList structure containing the child table. We need the 001042 ** child table as a SrcList for sqlite3WhereBegin() */ 001043 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 001044 if( pSrc ){ 001045 SrcItem *pItem = pSrc->a; 001046 pItem->pTab = pFKey->pFrom; 001047 pItem->zName = pFKey->pFrom->zName; 001048 pItem->pTab->nTabRef++; 001049 pItem->iCursor = pParse->nTab++; 001050 001051 if( regNew!=0 ){ 001052 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); 001053 } 001054 if( regOld!=0 ){ 001055 int eAction = pFKey->aAction[aChange!=0]; 001056 if( (db->flags & SQLITE_FkNoAction) ) eAction = OE_None; 001057 001058 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); 001059 /* If this is a deferred FK constraint, or a CASCADE or SET NULL 001060 ** action applies, then any foreign key violations caused by 001061 ** removing the parent key will be rectified by the action trigger. 001062 ** So do not set the "may-abort" flag in this case. 001063 ** 001064 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the 001065 ** may-abort flag will eventually be set on this statement anyway 001066 ** (when this function is called as part of processing the UPDATE 001067 ** within the action trigger). 001068 ** 001069 ** Note 2: At first glance it may seem like SQLite could simply omit 001070 ** all OP_FkCounter related scans when either CASCADE or SET NULL 001071 ** applies. The trouble starts if the CASCADE or SET NULL action 001072 ** trigger causes other triggers or action rules attached to the 001073 ** child table to fire. In these cases the fk constraint counters 001074 ** might be set incorrectly if any OP_FkCounter related scans are 001075 ** omitted. */ 001076 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ 001077 sqlite3MayAbort(pParse); 001078 } 001079 } 001080 pItem->zName = 0; 001081 sqlite3SrcListDelete(db, pSrc); 001082 } 001083 sqlite3DbFree(db, aiCol); 001084 } 001085 } 001086 001087 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) 001088 001089 /* 001090 ** This function is called before generating code to update or delete a 001091 ** row contained in table pTab. 001092 */ 001093 u32 sqlite3FkOldmask( 001094 Parse *pParse, /* Parse context */ 001095 Table *pTab /* Table being modified */ 001096 ){ 001097 u32 mask = 0; 001098 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 001099 FKey *p; 001100 int i; 001101 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 001102 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); 001103 } 001104 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 001105 Index *pIdx = 0; 001106 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); 001107 if( pIdx ){ 001108 for(i=0; i<pIdx->nKeyCol; i++){ 001109 assert( pIdx->aiColumn[i]>=0 ); 001110 mask |= COLUMN_MASK(pIdx->aiColumn[i]); 001111 } 001112 } 001113 } 001114 } 001115 return mask; 001116 } 001117 001118 001119 /* 001120 ** This function is called before generating code to update or delete a 001121 ** row contained in table pTab. If the operation is a DELETE, then 001122 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points 001123 ** to an array of size N, where N is the number of columns in table pTab. 001124 ** If the i'th column is not modified by the UPDATE, then the corresponding 001125 ** entry in the aChange[] array is set to -1. If the column is modified, 001126 ** the value is 0 or greater. Parameter chngRowid is set to true if the 001127 ** UPDATE statement modifies the rowid fields of the table. 001128 ** 001129 ** If any foreign key processing will be required, this function returns 001130 ** non-zero. If there is no foreign key related processing, this function 001131 ** returns zero. 001132 ** 001133 ** For an UPDATE, this function returns 2 if: 001134 ** 001135 ** * There are any FKs for which pTab is the child and the parent table 001136 ** and any FK processing at all is required (even of a different FK), or 001137 ** 001138 ** * the UPDATE modifies one or more parent keys for which the action is 001139 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL). 001140 ** 001141 ** Or, assuming some other foreign key processing is required, 1. 001142 */ 001143 int sqlite3FkRequired( 001144 Parse *pParse, /* Parse context */ 001145 Table *pTab, /* Table being modified */ 001146 int *aChange, /* Non-NULL for UPDATE operations */ 001147 int chngRowid /* True for UPDATE that affects rowid */ 001148 ){ 001149 int eRet = 1; /* Value to return if bHaveFK is true */ 001150 int bHaveFK = 0; /* If FK processing is required */ 001151 if( pParse->db->flags&SQLITE_ForeignKeys && IsOrdinaryTable(pTab) ){ 001152 if( !aChange ){ 001153 /* A DELETE operation. Foreign key processing is required if the 001154 ** table in question is either the child or parent table for any 001155 ** foreign key constraint. */ 001156 bHaveFK = (sqlite3FkReferences(pTab) || pTab->u.tab.pFKey); 001157 }else{ 001158 /* This is an UPDATE. Foreign key processing is only required if the 001159 ** operation modifies one or more child or parent key columns. */ 001160 FKey *p; 001161 001162 /* Check if any child key columns are being modified. */ 001163 for(p=pTab->u.tab.pFKey; p; p=p->pNextFrom){ 001164 if( fkChildIsModified(pTab, p, aChange, chngRowid) ){ 001165 if( 0==sqlite3_stricmp(pTab->zName, p->zTo) ) eRet = 2; 001166 bHaveFK = 1; 001167 } 001168 } 001169 001170 /* Check if any parent key columns are being modified. */ 001171 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ 001172 if( fkParentIsModified(pTab, p, aChange, chngRowid) ){ 001173 if( (pParse->db->flags & SQLITE_FkNoAction)==0 001174 && p->aAction[1]!=OE_None 001175 ){ 001176 return 2; 001177 } 001178 bHaveFK = 1; 001179 } 001180 } 001181 } 001182 } 001183 return bHaveFK ? eRet : 0; 001184 } 001185 001186 /* 001187 ** This function is called when an UPDATE or DELETE operation is being 001188 ** compiled on table pTab, which is the parent table of foreign-key pFKey. 001189 ** If the current operation is an UPDATE, then the pChanges parameter is 001190 ** passed a pointer to the list of columns being modified. If it is a 001191 ** DELETE, pChanges is passed a NULL pointer. 001192 ** 001193 ** It returns a pointer to a Trigger structure containing a trigger 001194 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. 001195 ** If the action is "NO ACTION" then a NULL pointer is returned (these actions 001196 ** require no special handling by the triggers sub-system, code for them is 001197 ** created by fkScanChildren()). 001198 ** 001199 ** For example, if pFKey is the foreign key and pTab is table "p" in 001200 ** the following schema: 001201 ** 001202 ** CREATE TABLE p(pk PRIMARY KEY); 001203 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); 001204 ** 001205 ** then the returned trigger structure is equivalent to: 001206 ** 001207 ** CREATE TRIGGER ... DELETE ON p BEGIN 001208 ** DELETE FROM c WHERE ck = old.pk; 001209 ** END; 001210 ** 001211 ** The returned pointer is cached as part of the foreign key object. It 001212 ** is eventually freed along with the rest of the foreign key object by 001213 ** sqlite3FkDelete(). 001214 */ 001215 static Trigger *fkActionTrigger( 001216 Parse *pParse, /* Parse context */ 001217 Table *pTab, /* Table being updated or deleted from */ 001218 FKey *pFKey, /* Foreign key to get action for */ 001219 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ 001220 ){ 001221 sqlite3 *db = pParse->db; /* Database handle */ 001222 int action; /* One of OE_None, OE_Cascade etc. */ 001223 Trigger *pTrigger; /* Trigger definition to return */ 001224 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ 001225 001226 action = pFKey->aAction[iAction]; 001227 if( (db->flags & SQLITE_FkNoAction) ) action = OE_None; 001228 if( action==OE_Restrict && (db->flags & SQLITE_DeferFKs) ){ 001229 return 0; 001230 } 001231 pTrigger = pFKey->apTrigger[iAction]; 001232 001233 if( action!=OE_None && !pTrigger ){ 001234 char const *zFrom; /* Name of child table */ 001235 int nFrom; /* Length in bytes of zFrom */ 001236 Index *pIdx = 0; /* Parent key index for this FK */ 001237 int *aiCol = 0; /* child table cols -> parent key cols */ 001238 TriggerStep *pStep = 0; /* First (only) step of trigger program */ 001239 Expr *pWhere = 0; /* WHERE clause of trigger step */ 001240 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ 001241 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ 001242 int i; /* Iterator variable */ 001243 Expr *pWhen = 0; /* WHEN clause for the trigger */ 001244 001245 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; 001246 assert( aiCol || pFKey->nCol==1 ); 001247 001248 for(i=0; i<pFKey->nCol; i++){ 001249 Token tOld = { "old", 3 }; /* Literal "old" token */ 001250 Token tNew = { "new", 3 }; /* Literal "new" token */ 001251 Token tFromCol; /* Name of column in child table */ 001252 Token tToCol; /* Name of column in parent table */ 001253 int iFromCol; /* Idx of column in child table */ 001254 Expr *pEq; /* tFromCol = OLD.tToCol */ 001255 001256 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; 001257 assert( iFromCol>=0 ); 001258 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); 001259 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); 001260 sqlite3TokenInit(&tToCol, 001261 pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zCnName); 001262 sqlite3TokenInit(&tFromCol, pFKey->pFrom->aCol[iFromCol].zCnName); 001263 001264 /* Create the expression "OLD.zToCol = zFromCol". It is important 001265 ** that the "OLD.zToCol" term is on the LHS of the = operator, so 001266 ** that the affinity and collation sequence associated with the 001267 ** parent table are used for the comparison. */ 001268 pEq = sqlite3PExpr(pParse, TK_EQ, 001269 sqlite3PExpr(pParse, TK_DOT, 001270 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 001271 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 001272 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) 001273 ); 001274 pWhere = sqlite3ExprAnd(pParse, pWhere, pEq); 001275 001276 /* For ON UPDATE, construct the next term of the WHEN clause. 001277 ** The final WHEN clause will be like this: 001278 ** 001279 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) 001280 */ 001281 if( pChanges ){ 001282 pEq = sqlite3PExpr(pParse, TK_IS, 001283 sqlite3PExpr(pParse, TK_DOT, 001284 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), 001285 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)), 001286 sqlite3PExpr(pParse, TK_DOT, 001287 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 001288 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)) 001289 ); 001290 pWhen = sqlite3ExprAnd(pParse, pWhen, pEq); 001291 } 001292 001293 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ 001294 Expr *pNew; 001295 if( action==OE_Cascade ){ 001296 pNew = sqlite3PExpr(pParse, TK_DOT, 001297 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), 001298 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0)); 001299 }else if( action==OE_SetDflt ){ 001300 Column *pCol = pFKey->pFrom->aCol + iFromCol; 001301 Expr *pDflt; 001302 if( pCol->colFlags & COLFLAG_GENERATED ){ 001303 testcase( pCol->colFlags & COLFLAG_VIRTUAL ); 001304 testcase( pCol->colFlags & COLFLAG_STORED ); 001305 pDflt = 0; 001306 }else{ 001307 pDflt = sqlite3ColumnExpr(pFKey->pFrom, pCol); 001308 } 001309 if( pDflt ){ 001310 pNew = sqlite3ExprDup(db, pDflt, 0); 001311 }else{ 001312 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 001313 } 001314 }else{ 001315 pNew = sqlite3ExprAlloc(db, TK_NULL, 0, 0); 001316 } 001317 pList = sqlite3ExprListAppend(pParse, pList, pNew); 001318 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); 001319 } 001320 } 001321 sqlite3DbFree(db, aiCol); 001322 001323 zFrom = pFKey->pFrom->zName; 001324 nFrom = sqlite3Strlen30(zFrom); 001325 001326 if( action==OE_Restrict ){ 001327 int iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 001328 SrcList *pSrc; 001329 Expr *pRaise; 001330 001331 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); 001332 if( pRaise ){ 001333 pRaise->affExpr = OE_Abort; 001334 } 001335 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0); 001336 if( pSrc ){ 001337 assert( pSrc->nSrc==1 ); 001338 pSrc->a[0].zName = sqlite3DbStrDup(db, zFrom); 001339 pSrc->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zDbSName); 001340 } 001341 pSelect = sqlite3SelectNew(pParse, 001342 sqlite3ExprListAppend(pParse, 0, pRaise), 001343 pSrc, 001344 pWhere, 001345 0, 0, 0, 0, 0 001346 ); 001347 pWhere = 0; 001348 } 001349 001350 /* Disable lookaside memory allocation */ 001351 DisableLookaside; 001352 001353 pTrigger = (Trigger *)sqlite3DbMallocZero(db, 001354 sizeof(Trigger) + /* struct Trigger */ 001355 sizeof(TriggerStep) + /* Single step in trigger program */ 001356 nFrom + 1 /* Space for pStep->zTarget */ 001357 ); 001358 if( pTrigger ){ 001359 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; 001360 pStep->zTarget = (char *)&pStep[1]; 001361 memcpy((char *)pStep->zTarget, zFrom, nFrom); 001362 001363 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); 001364 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); 001365 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); 001366 if( pWhen ){ 001367 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0); 001368 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); 001369 } 001370 } 001371 001372 /* Re-enable the lookaside buffer, if it was disabled earlier. */ 001373 EnableLookaside; 001374 001375 sqlite3ExprDelete(db, pWhere); 001376 sqlite3ExprDelete(db, pWhen); 001377 sqlite3ExprListDelete(db, pList); 001378 sqlite3SelectDelete(db, pSelect); 001379 if( db->mallocFailed==1 ){ 001380 fkTriggerDelete(db, pTrigger); 001381 return 0; 001382 } 001383 assert( pStep!=0 ); 001384 assert( pTrigger!=0 ); 001385 001386 switch( action ){ 001387 case OE_Restrict: 001388 pStep->op = TK_SELECT; 001389 break; 001390 case OE_Cascade: 001391 if( !pChanges ){ 001392 pStep->op = TK_DELETE; 001393 break; 001394 } 001395 /* no break */ deliberate_fall_through 001396 default: 001397 pStep->op = TK_UPDATE; 001398 } 001399 pStep->pTrig = pTrigger; 001400 pTrigger->pSchema = pTab->pSchema; 001401 pTrigger->pTabSchema = pTab->pSchema; 001402 pFKey->apTrigger[iAction] = pTrigger; 001403 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); 001404 } 001405 001406 return pTrigger; 001407 } 001408 001409 /* 001410 ** This function is called when deleting or updating a row to implement 001411 ** any required CASCADE, SET NULL or SET DEFAULT actions. 001412 */ 001413 void sqlite3FkActions( 001414 Parse *pParse, /* Parse context */ 001415 Table *pTab, /* Table being updated or deleted from */ 001416 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ 001417 int regOld, /* Address of array containing old row */ 001418 int *aChange, /* Array indicating UPDATEd columns (or 0) */ 001419 int bChngRowid /* True if rowid is UPDATEd */ 001420 ){ 001421 /* If foreign-key support is enabled, iterate through all FKs that 001422 ** refer to table pTab. If there is an action associated with the FK 001423 ** for this operation (either update or delete), invoke the associated 001424 ** trigger sub-program. */ 001425 if( pParse->db->flags&SQLITE_ForeignKeys ){ 001426 FKey *pFKey; /* Iterator variable */ 001427 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ 001428 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ 001429 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); 001430 if( pAct ){ 001431 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); 001432 } 001433 } 001434 } 001435 } 001436 } 001437 001438 #endif /* ifndef SQLITE_OMIT_TRIGGER */ 001439 001440 /* 001441 ** Free all memory associated with foreign key definitions attached to 001442 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash 001443 ** hash table. 001444 */ 001445 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ 001446 FKey *pFKey; /* Iterator variable */ 001447 FKey *pNext; /* Copy of pFKey->pNextFrom */ 001448 001449 assert( IsOrdinaryTable(pTab) ); 001450 assert( db!=0 ); 001451 for(pFKey=pTab->u.tab.pFKey; pFKey; pFKey=pNext){ 001452 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); 001453 001454 /* Remove the FK from the fkeyHash hash table. */ 001455 if( db->pnBytesFreed==0 ){ 001456 if( pFKey->pPrevTo ){ 001457 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; 001458 }else{ 001459 const char *z = (pFKey->pNextTo ? pFKey->pNextTo->zTo : pFKey->zTo); 001460 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, pFKey->pNextTo); 001461 } 001462 if( pFKey->pNextTo ){ 001463 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; 001464 } 001465 } 001466 001467 /* EV: R-30323-21917 Each foreign key constraint in SQLite is 001468 ** classified as either immediate or deferred. 001469 */ 001470 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); 001471 001472 /* Delete any triggers created to implement actions for this FK. */ 001473 #ifndef SQLITE_OMIT_TRIGGER 001474 fkTriggerDelete(db, pFKey->apTrigger[0]); 001475 fkTriggerDelete(db, pFKey->apTrigger[1]); 001476 #endif 001477 001478 pNext = pFKey->pNextFrom; 001479 sqlite3DbFree(db, pFKey); 001480 } 001481 } 001482 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */